Vehicles equipped with internal combustion engines (e.g., diesel engines) typically include exhaust systems that have aftertreatment components such as selective catalytic reduction (SCR) catalyst devices, lean NOx catalyst devices, or lean NOx trap devices to reduce the amount of undesirable gases, such as nitrogen oxides (NOx) in the exhaust. In order for these types of aftertreatment devices to work properly, a doser injects reactants, such as urea, ammonia, or hydrocarbons, into the exhaust gas. As the exhaust gas and reactants flow through the aftertreatment device, the exhaust gas and reactants convert the undesirable gases, such as NOx, into more acceptable gases, such as nitrogen and oxygen. However, the efficiency of the aftertreatment system depends upon how evenly the reactants are mixed with the exhaust gases. Therefore, there is a need for a flow device that provides a uniform mixture of exhaust gases and reactants.
SCR exhaust treatment devices focus on the reduction of nitrogen oxides. In SCR systems, a reductant (e.g., aqueous urea solution) is dosed into the exhaust stream. The reductant reacts with nitrogen oxides while passing through an SCR substrate to reduce the nitrogen oxides to nitrogen and water. When aqueous urea is used as a reductant, the aqueous urea is converted to ammonia which in turn reacts with the nitrogen oxides to covert the nitrogen oxides to nitrogen and water. Dosing, mixing and evaporation of aqueous urea solution can be challenging because the urea and by-products from the reaction of urea to ammonia can form deposits on the surfaces of the aftertreatment devices. Such deposits can accumulate over time and partially block or otherwise disturb effective exhaust flow through the aftertreatment device.
An aspect of the present disclosure relates to a dosing and mixing unit for use in exhaust aftertreatment. The dosing and mixing unit includes a mixing tube having a generally constant diameter along the length of the mixing tube. The mixing tube includes a first portion having a plurality of apertures (e.g., perforations) and a second portion having a solid wall without any apertures. The mixing tube includes a first end portioned adjacent the first portion of the mixing tube and a second end positioned adjacent the second portion of the mixing tube. The first end of the mixing tube is closed to exhaust flow and a doser is mounted at the first end of the mixing tube. The second end of the mixing tube is open and functions as an outlet for the mixing tube. The dosing and mixing unit also includes a swirling structure for swirling exhaust generally circumferentially (i.e., tangentially) around an exterior of the first portion of the mixing tube. The swirling exhaust enters the first portion of the mixing tube through the apertures of the mixing tube. The exhaust entering the mixing tube through the apertures has a tangential flow component that causes the flow to swirl within the mixing tube about a central axis of the mixing tube. The swirling exhaust then flows from the first portion of the mixing tube to the second portion of the mixing tube and exits the mixing tube through the second end of the mixing tube. The doser injects reactant into the interior of the mixing tube and the swirling motion of the exhaust within the mixing tube assists in uniformly mixing the reactant into the exhaust while the exhaust is within the mixing tube.
Another aspect of the present disclosure relates to a dosing and mixing unit for use in exhaust aftertreatment. The dosing and mixing unit includes a mixing tube having a plurality of apertures. The dosing and mixing unit also includes a swirl housing partially surrounding the mixing tube. The dosing and mixing unit further includes an inlet pipe attached to a side of the swirl housing and extending out from the side of the swirl housing in an angled tangential direction in relation to a central axis of the mixing tube. The dosing and mixing unit also includes a swirl structure for causing exhaust flow to swirl along a flow path around the central axis of the mixing tube. In addition, the dosing and mixing unit includes a doser for dispensing a reactant into the interior of the mixing tube.
In certain embodiments, the swirling structure can include different types of structures for causing the exhaust to swirl about the mixing tube. In one embodiment, the swirling structure can include an outer housing that at least partially encloses the mixing tube and that directs exhaust flow in a swirling motion about the mixing tube. In another embodiment, the swirling structure can include a baffle that directs exhaust flow in a swirling motion about the mixing tube.
In certain embodiments, dosing and mixing units in accordance with the principles of the present disclosure can be used as part of an SCR exhaust treatment system for reducing nitrogen oxides to nitrogen and water. In such embodiments, the dosing and mixing units can be used to dose and mix reductants such as aqueous urea or ammonia at locations upstream from SCR substrates. In other embodiments, dosing and mixing units in accordance with the principles of the present disclosure can be used to mix other types of reactants such as hydrocarbons (e.g., fuels such as diesel fuel or syngas) upstream from other types of substrates such as lean NOx catalyst devices, lean NOx traps, catalytic converters such as diesel oxidation catalyst (DOC) substrates and diesel particulate filter (DPF) substrates.
A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.
Reference will now be made in detail to the exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like structure.
The mixing tube 30 has a first portion 36 positioned adjacent to the first end 32 of the mixing tube 30 and a second portion 38 positioned adjacent to the second end 34 of the mixing tube 30. The first portion 36 has a plurality of apertures 37 (e.g., perforations) and the second portion 38 has a solid wall without any apertures. The apertures 37 can be formed as circles, squares, slots or any other shape. The dosing and mixing unit 20 also includes a doser 40 mounted to the top end 27 of the swirl housing 28 adjacent to the first end 32 of the mixing tube 30. The doser 40 is adapted for dispensing reactant into an interior region of the mixing tube 30.
In use of the dosing and mixing unit 20, exhaust enters the dosing and mixing unit 20 through the inlet 22 and is swirled circumferentially (i.e., tangentially) through a swirl structure about the exterior of the first portion 36 of the mixing tube 30 by the swirl housing 28. As the exhaust flow swirls circumferentially around the first portion 36 of the mixing tube 30, the exhaust gas enters the interior of the mixing tube 30 through the apertures 37. The exhaust flow entering the interior of the mixing tube 30 through the apertures 37 has a tangential/circumferential flow component that causes the exhaust to swirl within the interior of the mixing tube 30. The doser 40 dispenses reactant into the swirling exhaust within the interior of the mixing tube where the swirling action of the exhaust assists in uniformly mixing the reactant within the exhaust. Swirling flow of the exhaust continues from the first portion 36 of the mixing tube 30 to the second portion 38 of the mixing tube 30 whereby mixing is enhanced as the exhaust moves through the length of the mixing tube 30. After the swirling exhaust has traveled through the mixing tube in a direction extending from the first end 32 to the second end 34 of the mixing tube 30, the exhaust exits the dosing and mixing unit 20 through the outlet 24. As is seen in
The mixing tube 30 of the dosing and mixing unit 20 defines the central axis 42 and has a length that extends along the central axis 42 from the first end 32 to the second end 34 of the mixing tube 30. The mixing tube 30 is cylindrical in shape and has in some embodiments (shown in
In certain embodiments, the doser 40 can include an injector that injects reactant in a spray cone aligned along the central axis 42 of the mixing tube 30. The swirling action of the exhaust and the converging flow passing through the apertures 37 (see
The swirl housing 28 at least partially encloses the first portion 36 of the mixing tube 30 and has an arrangement that directs exhaust flow tangentially relative to the outer surface of the mixing tube 30 such that the exhaust swirls circumferentially around the exterior of the mixing tube 30. In one embodiment, the exhaust flows in a single direction (e.g., clockwise relative to the central longitudinal axis as shown at
In another embodiment, the tube 130 can be offset from the center of the housing 128 so as to be closer to a first side 131 (e.g., a top side) of the housing as compared to a second side 133 (e.g., a bottom side) of the housing 128.
In use of the aftertreatment device 120, exhaust enters the device 120 through the inlet 122 and passes through the substrate 129 where the exhaust is initially treated (e.g., contaminants removed by filtration or chemically through a catalyzed reaction at the substrate). After the exhaust passes through the substrate 129, the baffle 150 causes the exhaust to swirl circumferentially (i.e., tangentially) through a swirl structure about the exterior of the first portion 136 of the mixing tube 130. As the exhaust flow swirls circumferentially around the first portion 136 of the mixing tube 130, the exhaust gas enters the interior of the mixing tube 130 through the apertures 137. The exhaust flow entering the interior of the mixing tube 130 through the apertures 137 has a tangential/circumferential flow component that causes the exhaust to swirl within the interior of the mixing tube 130. The doser 140 dispenses reactant into the swirling exhaust within the interior of the mixing tube where the swirling action of the exhaust assists in uniformly mixing the reactant within the exhaust. Swirling flow of the exhaust continues from the first portion 136 of the mixing tube 130 to the second portion 138 of the mixing tube 130 whereby mixing is enhanced as the exhaust moves through the length of the mixing tube 130. After the swirling exhaust has traveled through the mixing tube in a direction extending from the first end 132 to the second end 134 of the mixing tube 130, the exhaust exits the device 120 through the outlet 124. As is seen in
As the exhaust flow swirls circumferentially around the first portion 236 of the mixing tube 230, the exhaust gas enters the interior of the mixing tube 230 through the apertures 237. The exhaust flow entering the interior of the mixing tube 230 through the apertures 237 has a tangential/circumferential flow component that causes the exhaust to swirl within the interior of the mixing tube 230. The doser 240 dispenses reactant into the swirling exhaust within the interior of the mixing tube where the swirling action of the exhaust assists in uniformly mixing the reactant within the exhaust. Swirling flow of the exhaust continues from the first portion 236 of the mixing tube 230 to the second portion 238 of the mixing tube 230 whereby mixing is enhanced as the exhaust moves through the length of the mixing tube 230. After the swirling exhaust has traveled through the mixing tube 230 in a direction extending from the first end 232 to the second end 234 of the mixing tube 230, the exhaust exits the unit 220 through the outlet 224.
A selective catalytic reduction (SCR) catalyst device is typically used in an exhaust system to remove undesirable gases such as nitrogen oxides (NOx) from the vehicle's emissions. SCR's are capable of converting NOx to nitrogen and oxygen in an oxygen rich environment with the assistance of reactants such as urea or ammonia, which are injected into the exhaust stream upstream of the SCR through the doser 40. In alternative embodiments, other aftertreatment devices such as lean NOx catalyst devices or lean NOx traps could be used in place of the SCR catalyst device, and other reactants (e.g., hydrocarbons) can be dispensed by the doser.
A lean NOx catalyst device is also capable of converting NOx to nitrogen and oxygen. In contrast to SCR's, lean NOx catalysts use hydrocarbons as reducing agents/reactants for conversion of NOx to nitrogen and oxygen. The hydrocarbon is injected into the exhaust stream upstream of the lean NOx catalyst. At the lean NOx catalyst, the NOx reacts with the injected hydrocarbons with the assistance of a catalyst to reduce the NOx to nitrogen and oxygen. While the exhaust treatment systems 400 and 500 will be described as including an SCR, it will be understood that the scope of the present disclosure is not limited to an SCR as there are various catalyst devices that can be used in accordance with the principles of the present disclosure.
The lean NOx traps use a material such as barium oxide to absorb NOx during lean burn operating conditions. During fuel rich operations, the NOx is desorbed and converted to nitrogen and oxygen by reaction with hydrocarbons in the presence of catalysts (precious metals) within the traps.
Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative embodiments set forth herein.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/357,418 entitled DOSING AND MIXING ARRANGEMENT FOR USE IN EXHAUST AFTERTREATMENT and filed on Jun. 22, 2010, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2561457 | Beales et al. | Jul 1951 | A |
2898202 | Houdry et al. | Aug 1959 | A |
2946651 | Houdry et al. | Jul 1960 | A |
3048376 | Howald | Aug 1962 | A |
3072457 | Bloch | Jan 1963 | A |
3779335 | Chelminski | Dec 1973 | A |
3797240 | Inoue et al. | Mar 1974 | A |
3835645 | Zoleta | Sep 1974 | A |
3863678 | Pettersson et al. | Feb 1975 | A |
3867508 | Hass | Feb 1975 | A |
3964875 | Chang | Jun 1976 | A |
4498786 | Ruscheweyh | Feb 1985 | A |
4902487 | Cooper et al. | Feb 1990 | A |
4916897 | Hayashi et al. | Apr 1990 | A |
5138834 | Maund | Aug 1992 | A |
5272871 | Oshima et al. | Dec 1993 | A |
5315824 | Takeshima | May 1994 | A |
5489153 | Berner et al. | Feb 1996 | A |
5540897 | Chu et al. | Jul 1996 | A |
5601792 | Hug et al. | Feb 1997 | A |
5653105 | Noirot et al. | Aug 1997 | A |
5662869 | Abe et al. | Sep 1997 | A |
5693299 | Chopin et al. | Dec 1997 | A |
5701735 | Kawaguchi | Dec 1997 | A |
5772972 | Hepburn et al. | Jun 1998 | A |
5884474 | Topsøe | Mar 1999 | A |
5916134 | Yang et al. | Jun 1999 | A |
5941069 | Heath | Aug 1999 | A |
5992141 | Berriman | Nov 1999 | A |
6041594 | Brenner | Mar 2000 | A |
6050088 | Brenner | Apr 2000 | A |
6192677 | Tost | Feb 2001 | B1 |
6199375 | Russell | Mar 2001 | B1 |
6294141 | Twigg et al. | Sep 2001 | B1 |
6312650 | Frederiksen et al. | Nov 2001 | B1 |
6314722 | Matros et al. | Nov 2001 | B1 |
6401449 | Hofmann | Jun 2002 | B1 |
6442933 | Rusch | Sep 2002 | B2 |
6444177 | Müller et al. | Sep 2002 | B1 |
6449947 | Liu et al. | Sep 2002 | B1 |
6539708 | Hofmann et al. | Apr 2003 | B1 |
6546717 | Chandler et al. | Apr 2003 | B1 |
6606854 | Siefker | Aug 2003 | B1 |
6680037 | Allansson et al. | Jan 2004 | B1 |
6689327 | Reck | Feb 2004 | B1 |
6712869 | Cheng | Mar 2004 | B2 |
6722123 | Liu | Apr 2004 | B2 |
6722124 | Pawson et al. | Apr 2004 | B2 |
6770252 | Cheng | Aug 2004 | B2 |
6824743 | Pawson et al. | Nov 2004 | B1 |
6863874 | Twigg | Mar 2005 | B1 |
6889500 | Martinez | May 2005 | B1 |
6935105 | Page et al. | Aug 2005 | B1 |
7104251 | Kim | Sep 2006 | B2 |
7168241 | Rudelt et al. | Jan 2007 | B2 |
7448206 | Meingast et al. | Nov 2008 | B2 |
7482986 | Wu et al. | Jan 2009 | B2 |
7537083 | Frederiksen | May 2009 | B2 |
7581389 | Crawley et al. | Sep 2009 | B2 |
7712305 | Kapsos et al. | May 2010 | B2 |
7877983 | Kunkel et al. | Feb 2011 | B2 |
7896645 | Loving | Mar 2011 | B2 |
8015802 | Nishiyama et al. | Sep 2011 | B2 |
8033104 | Zhang | Oct 2011 | B2 |
8359838 | Yamazaki et al. | Jan 2013 | B2 |
8499548 | De Rudder et al. | Aug 2013 | B2 |
20020053287 | Natarius | May 2002 | A1 |
20020162322 | Ganzmann et al. | Nov 2002 | A1 |
20030003029 | Rogers et al. | Jan 2003 | A1 |
20030079467 | Liu et al. | May 2003 | A1 |
20030108457 | Gault et al. | Jun 2003 | A1 |
20030226539 | Kim | Dec 2003 | A1 |
20040040782 | Frederiksen | Mar 2004 | A1 |
20040237511 | Ripper et al. | Dec 2004 | A1 |
20060218902 | Arellano et al. | Oct 2006 | A1 |
20060275192 | Gabrielsson et al. | Dec 2006 | A1 |
20070101703 | Kanaya et al. | May 2007 | A1 |
20070144158 | Girard | Jun 2007 | A1 |
20070189936 | Suwabe et al. | Aug 2007 | A1 |
20070274877 | Bush et al. | Nov 2007 | A1 |
20080041052 | Doring et al. | Feb 2008 | A1 |
20080141662 | Schuster et al. | Jun 2008 | A1 |
20080245060 | Stieglbauer | Oct 2008 | A1 |
20090000287 | Blaisdell et al. | Jan 2009 | A1 |
20090019843 | Levin et al. | Jan 2009 | A1 |
20090173063 | Boorse et al. | Jul 2009 | A1 |
20090205327 | Kabat et al. | Aug 2009 | A1 |
20090313979 | Kowada | Dec 2009 | A1 |
20090320726 | Loving | Dec 2009 | A1 |
20100101222 | Oesterle et al. | Apr 2010 | A1 |
20100107612 | Yamazaki et al. | May 2010 | A1 |
20100139258 | Hackett et al. | Jun 2010 | A1 |
20100199645 | Telford | Aug 2010 | A1 |
20100212292 | Rusch et al. | Aug 2010 | A1 |
20100212301 | De Rudder et al. | Aug 2010 | A1 |
20100263359 | Haverkamp | Oct 2010 | A1 |
20110094206 | Liu et al. | Apr 2011 | A1 |
20110113759 | Tilinski et al. | May 2011 | A1 |
20110167810 | Lebas et al. | Jul 2011 | A1 |
20110219755 | Muller-Haas | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
40 12 411 | Oct 1991 | DE |
42 03 807 | Aug 1993 | DE |
199 55 013 | May 2001 | DE |
44 17 238 | Mar 2003 | DE |
20 2006 011281 | Sep 2006 | DE |
10 2004 020 138 | Feb 2007 | DE |
10 2006 019 052 | Oct 2007 | DE |
10 2007 009890 | Sep 2008 | DE |
10 2007 012790 | Sep 2008 | DE |
20 2007 010 324 | Jan 2009 | DE |
10 2008 009 564 | Aug 2009 | DE |
10 2008 031136 | Jan 2010 | DE |
10 2008 048 796 | Mar 2010 | DE |
10 2009 053 950 | May 2011 | DE |
0319299 | Jun 1989 | EP |
0 470 361 | Feb 1992 | EP |
0 555 746 | Aug 1993 | EP |
0 555 746 | Aug 1993 | EP |
0628706 | Dec 1994 | EP |
0666099 | Aug 1995 | EP |
0758713 | Feb 1997 | EP |
0839996 | May 1998 | EP |
0849441 | Jun 1998 | EP |
0862941 | Sep 1998 | EP |
1 054 722 | Nov 2000 | EP |
0 779 415 | May 2001 | EP |
1 262 644 | Apr 2002 | EP |
1 262 644 | Dec 2002 | EP |
1 109 993 | May 2003 | EP |
1 054 139 | Mar 2004 | EP |
1 712 753 | Oct 2006 | EP |
1 770 253 | Apr 2007 | EP |
1 890 016 | Feb 2008 | EP |
1947307 | Jul 2008 | EP |
1 712 756 | Mar 2009 | EP |
2 111 916 | Oct 2009 | EP |
2 128 398 | Dec 2009 | EP |
1 781 908 | Mar 2010 | EP |
2 168 672 | Mar 2010 | EP |
2168672 | Mar 2010 | EP |
2 204 556 | Jul 2010 | EP |
2 295 756 | Mar 2011 | EP |
2 325 448 | May 2011 | EP |
2 204 556 | May 2012 | EP |
2 465 602 | Jun 2012 | EP |
1 770 253 | Sep 2012 | EP |
2 465 602 | May 2013 | EP |
2 128 398 | Dec 2013 | EP |
20106317 | Dec 2010 | FI |
20115569 | Jun 2011 | FI |
2 384 206 | Oct 1978 | FR |
2 861 137 | Apr 2005 | FR |
2 891 305 | Mar 2007 | FR |
2 381 218 | Apr 2003 | GB |
2 434 557 | Aug 2007 | GB |
11-166410 | Jun 1999 | JP |
2003-193823 | Jul 2003 | JP |
2003-232218 | Aug 2003 | JP |
2005-113826 | Apr 2005 | JP |
2005155404 | Jun 2005 | JP |
2005-273564 | Oct 2005 | JP |
2006-105414 | Apr 2006 | JP |
2006-205077 | Aug 2006 | JP |
2008-128093 | Jun 2008 | JP |
2008-274878 | Nov 2008 | JP |
2008-309000 | Dec 2008 | JP |
2009-144614 | Jul 2009 | JP |
2009-150338 | Jul 2009 | JP |
2009-270449 | Nov 2009 | JP |
2010-101236 | Jun 2010 | JP |
9701387 | Jan 1997 | WO |
9944725 | Sep 1999 | WO |
0104466 | Jan 2001 | WO |
0142630 | Jun 2001 | WO |
03004839 | Jan 2003 | WO |
03036056 | May 2003 | WO |
03104624 | Dec 2003 | WO |
2006009056 | Jan 2004 | WO |
2004033866 | Apr 2004 | WO |
2004038192 | May 2004 | WO |
WO 2004113690 | Dec 2004 | WO |
WO 2004113690 | Dec 2004 | WO |
2005073524 | Aug 2005 | WO |
WO 2006001855 | Jan 2006 | WO |
WO 2006010922 | Feb 2006 | WO |
WO 2006010922 | Feb 2006 | WO |
WO 2006014129 | Feb 2006 | WO |
WO 2008024535 | Feb 2008 | WO |
2008061734 | May 2008 | WO |
2008111254 | Sep 2008 | WO |
WO 2008144385 | Nov 2008 | WO |
WO 2009012885 | Jan 2009 | WO |
WO 2009012885 | Jan 2009 | WO |
WO 2009024815 | Feb 2009 | WO |
2009157995 | Dec 2009 | WO |
WO 2010032077 | Mar 2010 | WO |
WO 2010032077 | Mar 2010 | WO |
WO 2011106487 | Sep 2011 | WO |
WO 2011163395 | Dec 2011 | WO |
Entry |
---|
Machine English translation of JP2005-155404A. |
Jungmin Seo, “Aftertreatment Package Design for SCR Performance Optimization” Apr. 12, 2011, SAE International, 7 pages. |
Alano et al., “Compact SCR for Passenger Cars” Apr. 12, 2011, SAE International, 9 pages. |
Akiyoshi et al., “Development of Efficient Urea-SCR Systems for EPA 2010-Compliant Medium Duty Diesel Vehicles” Apr. 12, 2011, SAE International, 8 pages. |
International Search Report and Written Opinion for PCT/US2009/068529 mailed Mar. 16, 2010. |
Third Party Observation for Application No. EP 20110729001 on Jan. 10, 2014. |
Third Party Observation for Application No. EP 20110729001 on Jan. 15, 2014. |
Third Party Observation for application No. EP20110729001 dated Dec. 8, 2014 (5 pages). |
Machine translation of DE 4012411, which was previously cited. |
Number | Date | Country | |
---|---|---|---|
20110308234 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61357418 | Jun 2010 | US |