Further advantages, features and details of the invention emerge from the following description of preferred illustrative embodiments and with reference to the drawing, in which:
a shows a top view of a cap of the dosing device in
b shows a top view of the cap in
c shows a side view of the cap in
d shows a longitudinal section through the cap along the line VI-VI in
According to
The actuating element 1.1 is configured extended in the downward direction and is inserted in the plunger 2, it being loosely snap-fastened to the latter to allow a rotational motion of the actuating element 1.1. A sealing groove 90 here serves, in cooperation with a sealing cam 91 between the actuating element 1.1 and the plunger 2, to seal off the device against the atmosphere.
In order to prevent the actuating element 1.1 from slipping out of the plunger 2, the actuating element 1.1 is provided with a sealing and snap lip 80, which, in the usage position, bears against the underneath of a plunger lip 81 of the plunger 2 and simultaneously serves as a seal.
The actuating element 1.1 further has inside it a riser 7.1, which is connected by a discharge opening 62.1 to an outlet duct 8.1 in the nozzle 20.1. In the downward direction, the riser 7.1 opens out into a dosing and displacement chamber 61 of the housing 3.
On the upper rim 10 of the actuating element 1.1 an arrow 84 is provided, with which an “OPEN” setting or a “CLOSED” setting of the actuating element 1.1 can be indicated. The arrow 84 shows the user the application and gives the system the functional orientation.
A knurl 88 and an overall concave shaping simplify handling of the actuating element 1.1.
The plunger 2 has on its outer side 11.1 a scale 70. This serves as a “ml” indicator and shows the user the desired dose quantity.
The plunger 2 is additionally provided with an indicator 83.1 for the “CLOSED” setting and the nozzle 20.1 has an indicator 82.1 for the “OPEN” setting. Both indicators 82.1 and 83.1 cooperate with the arrow 84 on the actuating element 1.1 when the dosing device P1 is in use.
On an underside 13 of the plunger 2 sealing cams 64 are provided, which, whenever the actuating element 1.1, and hence the plunger 2, is pressed down, enter into engagement with a correspondingly shaped recess 63.1 in the screw fastening 30. The recess 63.1 is connected to the interior of the container and ensures an air equalization.
The housing 3 encloses the dosing and displacement chamber 61 and tapers down into a suction tube 31. It is embraced by the screw fastening 30. For better guidance of the plunger motion, the housing 3 is provided with additional guide elements 85, which, in conjunction with the scale 70, simultaneously serve as a snap-locking element or catch mechanism for the stroke control. Further guide ribs 86 are disposed on a top side 14 of the screw fastening 30. They give the user additional guidance on the position for the dispensing of liquid.
A sealing element 5 serves the further liquid-sealing of the device P1. The sealing element 5 is disposed in the screw fastening 30.
An inlet 60 is provided in the lower region of the dosing and displacement chamber 61 and forms a transition between the dosing and displacement chamber 61 and the suction tube 31. The inlet 60 is conically configured and preferably has inside it four retaining ribs 6. Squeezed in between these retaining ribs 6 there is a ball valve 4, which seals the inlet 60 in the downward direction.
The mode of operation of the present invention is as follows:
Firstly, the dosing device P1 is screwed by means of the screw fastening 30 onto a container, for example a glass or plastic bottle, not represented in greater detail in
In the starting position of the device P1, the actuating element 1.1, together with the plunger 2, is in a depressed position, so that the sealing cams 64 of the plunger 2 are located in the recess 63.1 of the screw fastening 30. A bottom side 12 of the actuating element 1.1 in this case comes to lie upon a top side 15 of the retaining ribs 6 in the dosing and displacement chamber 61 of the housing 3. The actuating element 1.1 is turned, so that the arrow 84 points in the direction of the indicator 83.1 for the “CLOSED” setting.
Through pulling on the actuating element 1.1, the sealing and snap lip 80, together with the plunger lip 81, prevents an intake of air from outside. The generated underpressure draws liquid or the like out of the container via the suction tube 31 through the inlet 60 into the dosing and displacement chamber 61, by the ball valve 4 being lifted out of its sealing fit. At the same time, after the sealing cam 64 has been lifted off, air is drawn in through the recess 63.1 into the container, so that an equalization takes place. The desired dosage can be read off from the scale 70, which juts out over the top side 14 of the screw fastening 30.
In order to dispense the drawn-in liquid, the actuating element 1.1 is rotated until the arrow 84 is pointing at the indicator 82.1 for the “Open” setting.
Next, the actuating element 1.1, together with the plunger 2, is pressed downward again. As the actuating element 1.1. is pressed down, the sealing cam 91 in the sealing groove 90 seals off to the atmosphere, so that the liquid or the like can only take the path through the riser 7.1 and makes its way through the discharge opening 62.1 into the outlet duct 8.1 of the nozzle 20.1.
Once the stroke is completed, i.e. the actuating element 1.1 and the plunger 2 have again reached the top side 15 of the retaining ribs 6, the actuating element 1.1 must be brought by rotation back into the rest position or bearing position. The sealing cam 64 now finds itself back in the recess 63.1 of the screw fastening 30, and the discharge opening 62.1, as the connection between the outlet duct 8.1 of the nozzle 20.1 and the riser 7.1, is cut off.
When the actuating element 1.1 is rotated, the sealing and snap lip 80 and the sealing groove 90 serve to seal off the device P1 against the atmosphere.
The handling of the device P1, i.e. pulling on the actuating element 1.1 until the desired volume is reached, rotation of the actuating element 1.1 so as to bring the discharge opening 62.1 into connection with the outlet duct 8.1, pressing down of the actuating element 1.1 to the stop on the retaining ribs 6 so as to deliver the product, rotation of the actuating element 1.1 so as to lock the device P1 in the rest position, constitutes a child-locking protection, since different motional sequences are connected in series.
In a second illustrative embodiment of the present invention according to
If the actuating element 1.2 is pressed downward, an annular rib 18 on the actuating element 1.2 enters into the correspondingly shaped recess 63.2 of the screw fastening 30 and seals off the device P2 in the outward direction.
A further difference lies in the design of the nozzle 20.2. This is not, as previously described, molded onto a plunger. Instead, the nozzle 20.2 is disposed rotatably in the actuating element 1.2. A discharge opening 62.2 serves in an “OPEN” setting of the nozzle 20.2 as a connection between a riser 7.2 of the actuating element 1.2 and the outlet duct 8.2 of the nozzle 20.2. In the “CLOSED” setting of the nozzle 20.2, the discharge opening 62.2 is turned away from the riser 7.2.
The indication of the respective settings of the nozzle 20.2 is served, once again, by two indicators 82.2 and 83.2, in a view from above the indicator 82.2 indicating the “OPEN” setting and the indicator 83.2 indicating the “CLOSED” setting.
The mode of operation of the present illustrative embodiment differs from the mode of operation of the previously described illustrative embodiment by the fact that the nozzle 20.2 for dispensing the liquid or the like has now to be rotated out of a “CLOSED” setting into an “OPEN” setting. The respective setting of the nozzle 20.2 can be easily read off from the respective indicators 82.2 or 83.2.
Through the rotation of the nozzle 20.2, the discharge opening 62.2 enters into flow connection with the riser 7.2 of the actuating element 1.2, so that a pressing of the actuating element 1.2 allows the liquid or the like drawn into the dosing and displacement chamber 61 to be pumped through the riser 7.2 and the discharge opening 62.2 into the outlet duct 8.2 of the nozzle 20.2, and from there to the outside.
Following the process, the nozzle 20.2 is rotated back into its “CLOSED” setting, so that no liquid or the like can any longer make its way outward.
In a further illustrative embodiment according to
The mode of operation of the present illustrative embodiment is similar to that previously stated. Through the rotation of the turning lever 19 from a “CLOSED” setting into an “OPEN” setting, the discharge opening 62.3 makes its way into a flow-passage setting with the riser 7.3 of the actuating element 1.3, which riser opens out into a product receptacle 9.
In this way, liquid or the like which was previously drawn into the dosing and displacement chamber 61 can be pumped through the riser 7.3 and the discharge opening 62.3 into the product receptacle 9 as the actuating element 1.3 is pressed down.
In a further illustrative embodiment of the invention according to
As can be seen from
The cap 22 forms with the arm 21 a duct 24, since the internal diameter d1 of the cap 22 is greater than a diameter d2 of the arm 21 which enters into it. Thus, alongside the arm 21, there remains sufficient space for the liquid or the like guided in the duct 24.
The cap 22 further has on its outer face 25 a ring 26. After the cap 22 has been slid into the duct 23 of the actuating element 1.4, this ring 26 engages with a correspondingly shaped annular groove 27 in a wall 28 of the duct 23 and prevents the cap 22 from slipping out of the duct 23.
In addition, a discharge opening 62.4 is provided in the cap 22, which, when the cap 22 is rotated into the “OPEN” setting, enters into correspondence with the riser 7.4 of the actuating element 1.4. Consequently, through pressing down of the actuating element 1.4, liquid or the like which has previously been drawn into the dosing and displacement chamber 61 can be pumped through the riser 7.4 and the discharge opening 62.4 into the duct 24 of the cap 22, and makes its way out from there via an outlet opening 29.
Wing-like elements 32 on the outer face 25 of the cap 22 facilitate a rotation of the cap 22 from the “CLOSED” setting into the “OPEN” setting, and vice versa.
Number | Date | Country | Kind |
---|---|---|---|
102 59 275.6 | Dec 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/14401 | 12/17/2003 | WO | 00 | 8/9/2007 |