This application is a U.S. national stage application under 35 USC § 371 of International Application No. PCT/EP2016/058322, filed on Apr. 15, 2016, which claims priority to European Patent Application No. 15164460.6, filed on Apr. 21, 2015, the entire contents of which are incorporated herein by reference.
The present disclosure is generally directed to a dosing mechanism for use in a drug delivery device, i.e. a handheld injection device for selecting and dispensing a number of user variable doses of a medicament, and a respective drug delivery device.
Drug delivery devices have application where regular injection by persons without formal medical training occurs. This may be increasingly common among patients having diabetes where self-treatment enables such patients to conduct effective management of their disease. In practice, such a drug delivery device allows a user to individually select and dispense a number of user variable doses of a medicament.
There are basically two types of drug delivery devices: resettable devices (i.e., reusable) and non-resettable (i.e., disposable). For example, disposable drug delivery devices are supplied as self-contained devices. Such self-contained devices do not have removable pre-filled cartridges. Rather, the pre-filled cartridges may not be removed and replaced from these devices without destroying the device itself. Consequently, such disposable devices need not have a resettable dose setting mechanism.
A further differentiation of drug delivery device types refers to the dosing or drive mechanism: There are devices which are manually driven, e.g. by a user applying a force to an injection button, devices which are driven by a spring or the like and devices which combine these two concepts, i.e. spring assisted devices which still require a user to exert an injection force. The spring-type devices involve springs which are preloaded and springs which are loaded by the user during dose selecting. Some stored-energy devices use a combination of spring preload and additional energy provided by the user, for example during dose setting. Further types of energy storage may comprise compressed fluids or electrically driven devices with a battery or the like.
These types of delivery devices generally comprise of three primary elements: a cartridge section that includes a cartridge often contained within a housing or holder; a needle assembly connected to one end of the cartridge section; and a dosing section with the dosing mechanism connected to the other end of the cartridge section. A cartridge (often referred to as an ampoule) typically includes a reservoir that is filled with a medication (e.g., insulin), a movable rubber type bung or stopper located at one end of the cartridge reservoir, and a top having a pierceable rubber seal located at the other, often necked-down, end. A crimped annular metal band is typically used to hold the rubber seal in place. While the cartridge housing may be typically made of plastic, cartridge reservoirs have historically been made of glass.
The needle assembly is typically a replaceable double-ended needle assembly. Before an injection, a replaceable double-ended needle assembly is attached to one end of the cartridge section, a dose is set, and then the set dose is administered using the dosing mechanism of the dosing section. Removable needle assemblies may be threaded onto, or pushed (i.e., snapped) onto the pierceable seal end of the cartridge assembly.
The dosing section or dosing mechanism is typically the portion of the device that is used to set (select) a dose. During an injection, a plunger or piston rod contained within the dosing mechanism presses against the bung or stopper of the cartridge. This force causes the medication contained within the cartridge to be injected through an attached needle assembly. After an injection, as generally recommended by most drug delivery device and/or needle assembly manufacturers and suppliers, the needle assembly is removed and discarded.
The dosing section of drug delivery devices for selecting and dispensing a number of user variable doses of a medicament often comprises a display for indicating the selected dose to a user. This is especially important where a user may select a different dose each time depending on the state of health. There are mechanical displays, e.g. a drum with printed numbers on its outer surface, wherein the number corresponding to the actually selected dose is visible through a window or opening in the device.
A disposable drug delivery device is known from WO 2004/078241 A1, wherein the display comprises a number sleeve with numbers printed on its outer surface. The device further comprises a housing, a cartridge holder for retaining a cartridge containing a medicament, a piston rod displaceable relative to the cartridge holder, a driver coupled to the piston rod, a dose setting knob coupled to the driver and fixed to the number sleeve, and an injection button. The number sleeve is in threaded engagement with the housing, such that the number sleeve rotates along a helical path in a first direction during dose selecting and rotates back into the housing in a second, opposite direction during dose dispensing.
Some embodiments implement a dialing mode and a dispensing mode, and comprise a dose button, a housing and a determination unit, wherein the dose button is activatable by the user for dose dispense causing displacement of an indicating element connected to the housing from a first position to a second position, wherein the determination unit is adapted such that it detects the indicating element in its second position and thereby estimates that the dosing mechanism is in the dispensing mode. Preferably, the determination unit is adapted not only to detect the change of position and the second position, but also the first position of the indicating element. The dose button is adapted such that it can be pressed by the user in order to be activated, i.e. to dispense a dose, and operably coupled to the indicating element.
The determination unit of the inventive dosing mechanism allows to distinguish between the dialing and the dispensing mode and thereby to distinguish between dialing down and dispensing when the dose display decrements. Preferably, the determination unit comprises a data processing unit, e.g. a microprocessor. The determination unit is preferably a part of an electronic module. In a preferred embodiment the electronic module is releasably attached to the housing of the dosing mechanism or drug delivery device by a snap fit connection. The determination unit further comprises preferably a proximity sensor and a lighting element in the visible or invisible wavelength range, for example a visible LED or an infrared LED.
The inventive dosing mechanism is in the dialing mode in which the dose button is not activated. In the dialing mode the user may dial up or down to increase or decrease the set dose. In contrast, in the dispensing mode the dosing mechanism facilitates dispensing of the dialed dose through a needle from a cartridge of the drug delivery device.
In a preferred embodiment the dosing mechanism comprises the indicating element which is connected to the housing, wherein the indicating element is the tip of a lever arm, preferably rigidly connected to the lever arm, wherein the lever arm is biased against displacement from the first position to the second position and connected or attached to the housing. Preferably, as the tip of the lever arm is rigidly connected to the lever arm, the first position of the lever arm corresponds to the first position of the tip and the second position of the lever arm corresponds to the second position of its tip. Further preferred the lever arm is a flexible lever making up part of the housing, which deflects under the load from a mechanism part moved by the dose button or the dose button into its second position and springs back to its first position wherein the tip is also in the first position when the dose button is released. Preferably, the lever arm may be rotated or pivoted or tilted around an axis extending through the attachment point or area where it is connected to the housing and/or deflected or moved from the first position to the second position when the dose button is activated
In a further preferred embodiment for detecting that the indicating element is in its second position the determination unit comprises the proximity sensor adapted to detect this position using electromagnetic radiation provided by a lighting element emitting light of the visible and/or invisible wavelength range, e.g. a visible LED or an infrared LED, into the direction of the indicating element, wherein the proximity sensor detects the position of the indicating element measuring the reflected electromagnetic radiation by the indicating element and/or the absorption of the electromagnetic radiation impinging on the indicating element. The infrared LED illuminates inside the dosing mechanism through a light tube into a direction in which the position change of the indicating element can be safely detected.
The tip of the lever arm may comprise either a light or a dark surface which either reflects the impinged electromagnetic radiation or absorbs it, so that the position change of the indicating element from the first position to the second position is detected by a clear change in back reflected electromagnetic radiation.
In another preferred embodiment, the dosing mechanism comprises a transparent prism guiding the electromagnetic radiation from the proximity sensor of the determination unit to the indicating element. Accordingly, the transparent prism is accommodated between the proximity sensor and the indicating element. The prism thereby is transparent to the electromagnetic radiation provided by the lighting element and detected by the proximity sensor. Usually, the electromagnetic radiation comprises a waveband of the visible light, the infrared light and/or UV light. Accordingly, the prism is transparent to the electromagnetic radiation of the used waveband.
In a further improved embodiment, the determination unit comprises a display, preferably attached to the housing, which is adapted to visibly and/or audibly display whether the dosing mechanism is in the dialing mode or in the dispensing mode. Therefore, the proximity sensor sends a respective signal to the display containing the mode information. For an audible display the display comprises a loudspeaker for example. This is an advantage for the user because then the user knows exactly whether the dosing mechanism or the drug delivery device comprising the dosing mechanism is in the dialing or dispensing mode.
It is further preferred if the determination unit further comprises a sensor, preferably a camera, reading the dialed dose and/or the dispensed dose. Accordingly, the display may visually and/or audibly display also the dialed and/or dispensed dose. Thereby, it is possible to for example enlarge the display with regard the mechanical display of a conventional drug delivery device and to show the doses to visually impaired persons.
In another embodiment, the determination unit comprises a storage unit storing the read dialed doses and/or the red dispensed doses for further data processing.
In another embodiment, the dosing mechanism comprises a drive gear coupled to the dose button, wherein activation of the dose button means movement of the dose button in an axial direction relative to the housing thereby driving the drive gear in the axial direction relative to the housing which causes displacement of the indicating element from the first position to the second position, for example by applying a load to a protrusion of the lever arm containing the indicating element as the lever arm tip. Alternatively, the drive gear may comprise a protrusion which applies a load to the lever arm with the tip as indicating element in order to cause its displacement from the first position to the second position. This embodiment comprises a very easy and cost effective implementation of a dosing mechanism with determination of the kind of mode.
An assembly comprising the dosing mechanism described above, wherein the determination unit is accommodated within a separate module that is releasably attached to the dosing mechanism, may improve visualization of the dialed dose. Analogously, an assembly comprising a drug delivery device with the above described dosing mechanism, wherein the determination unit is accommodated in a separate module that is releasably attached to the drug delivery device, may improve visualization of the dialed dose. The assemblies in which the determination unit is accommodated within a separate module have the advantage that the module can be reused with different disposable dosing mechanisms or drug delivery devices. As the module comprising the determination unit is an electronic module which is costlier it makes sense to reuse such a device.
Preferably, the module is an electronic module separate from the drug delivery device or dosing mechanism, further comprising a power source for delivery of electrical energy to the proximity sensor, the lighting element, the storage unit and/or the display, for example a battery.
For attachment to the dosing mechanism or the drug delivery device the module comprises attachment means which may be connected to according attachment means of the dosing mechanism or the drug delivery device releasably or non-releasably, e.g. corresponding snap-fit connection means.
The drug delivery device usually comprises a cartridge, wherein preferably, in a reusable drug delivery device the cartridge may be replaceable.
The cartridge of the drug delivery device typically contains a medicament. The term “medicament”, as used herein, means a pharmaceutical formulation containing at least one pharmaceutically active compound,
wherein in one embodiment the pharmaceutically active compound has a molecular weight up to 1500 Da and/or is a peptide, a protein, a polysaccharide, a vaccine, a DNA, a RNA, an enzyme, an antibody or a fragment thereof, a hormone or an oligonucleotide, or a mixture of the above-mentioned pharmaceutically active compound,
wherein in a further embodiment the pharmaceutically active compound is useful for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy, thromboembolism disorders such as deep vein or pulmonary thromboembolism, acute coronary syndrome (ACS), angina, myocardial infarction, cancer, macular degeneration, inflammation, hay fever, atherosclerosis and/or rheumatoid arthritis,
wherein in a further embodiment the pharmaceutically active compound comprises at least one peptide for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy,
wherein in a further embodiment the pharmaceutically active compound comprises at least one human insulin or a human insulin analogue or derivative, glucagon-like peptide (GLP-1) or an analogue or derivative thereof, or exendin-3 or exendin-4 or an analogue or derivative of exendin-3 or exendin-4.
Insulin analogues are for example Gly(A21), Arg(B31), Arg(B32) human insulin; Lys(B3), Glu(B29) human insulin; Lys(B28), Pro(B29) human insulin; Asp(B28) human insulin; human insulin, wherein proline in position B28 is replaced by Asp, Lys, Leu, Val or Ala and wherein in position B29 Lys may be replaced by Pro; Ala(B26) human insulin; Des(B28-B30) human insulin; Des(B27) human insulin and Des(B30) human insulin.
Insulin derivates are for example B29-N-myristoyl-des(B30) human insulin; B29-N-palmitoyl-des(B30) human insulin; B29-N-myristoyl human insulin; B29-N-palmitoyl human insulin; B28-N-myristoyl LysB28ProB29 human insulin; B28-N-palmitoyl-LysB28ProB29 human insulin; B30-N-myristoyl-ThrB29LysB30 human insulin; B30-N-palmitoyl-ThrB29LysB30 human insulin; B29-N—(N-palmitoyl-Y-glutamyl)-des(B30) human insulin; B29-N—(N-lithocholyl-Y-glutamyl)-des(B30) human insulin; B29-N-(ω-carboxyheptadecanoyl)-des(B30) human insulin and B29-N-(ω-carboxyheptadecanoyl) human insulin.
Exendin-4 for example means Exendin-4(1-39), a peptide of the sequence H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2.
Exendin-4 derivatives are for example selected from the following list of compounds:
H-(Lys)4-des Pro36, des Pro37 Exendin-4(1-39)-NH2,
H-(Lys)5-des Pro36, des Pro37 Exendin-4(1-39)-NH2,
des Pro36 Exendin-4(1-39),
des Pro36 [Asp28] Exendin-4(1-39),
des Pro36 [IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39); or
des Pro36 [Asp28] Exendin-4(1-39),
des Pro36 [IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39),
wherein the group -Lys6-NH2 may be bound to the C-terminus of the Exendin-4 derivative;
or an Exendin-4 derivative of the sequence
des Pro36 Exendin-4(1-39)-Lys6-NH2 (AVE0010),
H-(Lys)6-des Pro36 [Asp28] Exendin-4(1-39)-Lys6-NH2,
des Asp28 Pro36, Pro37, Pro38Exendin-4(1-39)-NH2,
H-(Lys)6-des Pro36, Pro38 [Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6-NH2,
H-des Asp28 Pro36, Pro37, Pro38 [Trp(O2)25] Exendin-4(1-39)-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6NH2,
H-(Lys)6-des Pro36 [Met(O)14, Asp28] Exendin-4(1-39)-Lys6NH2,
des Met(O)14 Asp28 Pro36, Pro37, Pro38 Exendin-4(1-39)-NH2,
H-(Lys)6-desPro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6NH2,
H-Asn-(Glu)5 des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6NH2,
H-Lys6-des Pro36 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6NH2,
H-des Asp28 Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25] Exendin-4(1-39)-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(S1-39)-(Lys)6-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2;
or a pharmaceutically acceptable salt or solvate of any one of the afore-mentioned Exendin-4 derivative.
Hormones are for example hypophysis hormones or hypothalamus hormones or regulatory active peptides and their antagonists as listed in Rote Liste, ed. 2008, Chapter 50, such as Gonadotropine (Follitropin, Lutropin, Choriongonadotropin, Menotropin), Somatropine (Somatropin), Desmopressin, Terlipressin, Gonadorelin, Triptorelin, Leuprorelin, Buserelin, Nafarelin, Goserelin.
A polysaccharide is for example a glucosaminoglycane, a hyaluronic acid, a heparin, a low molecular weight heparin or an ultra-low molecular weight heparin or a derivative thereof, or a sulphated, e.g. a poly-sulphated form of the above-mentioned polysaccharides, and/or a pharmaceutically acceptable salt thereof. An example of a pharmaceutically acceptable salt of a poly-sulphated low molecular weight heparin is enoxaparin sodium.
Antibodies are globular plasma proteins (˜150 kDa) that are also known as immunoglobulins which share a basic structure. As they have sugar chains added to amino acid residues, they are glycoproteins. The basic functional unit of each antibody is an immunoglobulin (Ig) monomer (containing only one Ig unit); secreted antibodies can also be dimeric with two Ig units as with IgA, tetrameric with four Ig units like teleost fish IgM, or pentameric with five Ig units, like mammalian IgM.
The Ig monomer is a “Y”-shaped molecule that consists of four polypeptide chains; two identical heavy chains and two identical light chains connected by disulfide bonds between cysteine residues. Each heavy chain is about 440 amino acids long; each light chain is about 220 amino acids long. Heavy and light chains each contain intrachain disulfide bonds which stabilize their folding. Each chain is composed of structural domains called Ig domains. These domains contain about 70-110 amino acids and are classified into different categories (for example, variable or V, and constant or C) according to their size and function. They have a characteristic immunoglobulin fold in which two β sheets create a “sandwich” shape, held together by interactions between conserved cysteines and other charged amino acids.
There are five types of mammalian Ig heavy chain denoted by α, δ, ε, γ, and μ. The type of heavy chain present defines the isotype of antibody; these chains are found in IgA, IgD, IgE, IgG, and IgM antibodies, respectively.
Distinct heavy chains differ in size and composition; α and γ contain approximately 450 amino acids and δ approximately 500 amino acids, while μ and ε have approximately 550 amino acids. Each heavy chain has two regions, the constant region (CH) and the variable region (VH). In one species, the constant region is essentially identical in all antibodies of the same isotype, but differs in antibodies of different isotypes. Heavy chains γ, α and δ have a constant region composed of three tandem Ig domains, and a hinge region for added flexibility; heavy chains μ and ε have a constant region composed of four immunoglobulin domains. The variable region of the heavy chain differs in antibodies produced by different B cells, but is the same for all antibodies produced by a single B cell or B cell clone. The variable region of each heavy chain is approximately 110 amino acids long and is composed of a single Ig domain.
In mammals, there are two types of immunoglobulin light chain denoted by γ and κ. A light chain has two successive domains: one constant domain (CL) and one variable domain (VL). The approximate length of a light chain is 211 to 217 amino acids. Each antibody contains two light chains that are always identical; only one type of light chain, κ or λ, is present per antibody in mammals.
Although the general structure of all antibodies is very similar, the unique property of a given antibody is determined by the variable (V) regions, as detailed above. More specifically, variable loops, three on the light (VL) and three on the heavy (VH) chain, are responsible for binding to the antigen, i.e. for its antigen specificity. These loops are referred to as the Complementarity Determining Regions (CDRs). Because CDRs from both VH and VL domains contribute to the antigen-binding site, it is the combination of the heavy and the light chains, and not either alone, that determines the final antigen specificity.
An “antibody fragment” contains at least one antigen binding fragment as defined above, and exhibits essentially the same function and specificity as the complete antibody of which the fragment is derived from. Limited proteolytic digestion with papain cleaves the Ig prototype into three fragments. Two identical amino terminal fragments, each containing one entire L chain and about half an H chain, are the antigen binding fragments (Fab). The third fragment, similar in size but containing the carboxyl terminal half of both heavy chains with their interchain disulfide bond, is the crystalizable fragment (Fc). The Fc contains carbohydrates, complement-binding, and FcR-binding sites. Limited pepsin digestion yields a single F(ab′)2 fragment containing both Fab pieces and the hinge region, including the H-H interchain disulfide bond. F(ab′)2 is divalent for antigen binding. The disulfide bond of F(ab′)2 may be cleaved in order to obtain Fab′. Moreover, the variable regions of the heavy and light chains can be fused together to form a single chain variable fragment (scFv).
Pharmaceutically acceptable salts are for example acid addition salts and basic salts. Acid addition salts are e.g. HCl or HBr salts. Basic salts are e.g. salts having a cation selected from alkali or alkaline, e.g. Na+, or K+, or Ca2+, or an ammonium ion N+(R1)(R2)(R3)(R4), wherein R1 to R4 independently of each other mean: hydrogen, an optionally substituted C1-C6-alkyl group, an optionally substituted C2-C6-alkenyl group, an optionally substituted C6-C10-aryl group, or an optionally substituted C6-C10-heteroaryl group. Further examples of pharmaceutically acceptable salts are described in “Remington's Pharmaceutical Sciences” 17. ed. Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, Pa., U.S.A., 1985 and in Encyclopedia of Pharmaceutical Technology.
Pharmaceutically acceptable solvates are for example hydrates.
Some embodiments are not directed to so called fixed dose devices which only allow dispensing of a predefined dose without the possibility to increase or decrease the set dose.
Some embodiments are, in general, applicable for both disposable devices as well as for reusable devices.
Some embodiments may advantageously allow electronic processing of data provided by the dosing mechanism or drug delivery device, such as dialed doses or the dispensed doses and further, to improve visualization of the dialed dose.
Exemplary embodiments will now be described in further detail with reference to the accompanying schematic drawings, wherein
As shown in
As the detailed views in
The drive spring 130 is provided in the form of a helical torsion spring and is attached at one end to the chassis 30 and at the other end to the drive gear 110. The drive spring 130 is charged for life, which means that the drive spring is fully charged during assembly and does not require charging by the user until the entire contents of the cartridge 140 is dispensed.
The drive gear 110 is axially constrained between the chassis 30 and number wheel 100 and biased away from the chassis 30 by the trigger spring 80 that is provided in the form of a compression spring. It travels axially with the button 40 when the button 40 is pressed to commence dose delivery. During dose dialing or selection, the drive gear 110 is in splined engagement with the chassis 30 and hence locked against rotation, but when it travels axially as the button 40 is depressed downwardly for dose delivery this spline engagement is disconnected. Similarly, the separate spline features between the number wheel 100 and the drive gear 110 are engaged when the button 40 is depressed. The trigger spring 80 applies a force between the chassis 30 and drive gear 110 to separate them. In an “at rest” condition, prior to pressing the button 40, this ensures that the drive gear 110 is rotationally coupled to the chassis 30 and that the button splines 42 are engaged with the dial member 50.
The flexible piston rod 120 is located within the chassis 30 and is engaged with the drive gear 110 via a rack and pinion interface so that counter-clockwise (CCW) rotation of the drive gear 110 advances the flexible piston rod 120 towards a bung in the cartridge 140. The pinion 114 is rotatably held in the chassis 30 and is in meshed engagement with the piston rod 120. The piston rod 120 is a single component with discrete rigid rod pieces or segments 121 (see
The distal end of the flexible piston rod 120 acts on the bung within the liquid medicament cartridge 140. The liquid medicament cartridge 140 is housed within the cartridge holder 20. The cartridge holder 20, chassis 30, outer/upper casework 13, lower casework 14, and the prism 90 are fixed rigidly relative to one another.
The drug delivery device can be operated to deliver a number of user variable doses of medicament from the cartridge 140, via a needle (not shown). The device as shown in
The force required to actuate the dose button 40 and the distance which it has to move are small, providing a significant ergonomic advantage, particularly for those users with impaired dexterity. The mechanism requires consistent user input forces to set a dose and initiate the delivery of a dose, which are insensitive to variations in the force required to displace the bung within the cartridge 140. The dial member 50 is disengaged during dose delivery so that it does not rotate, which improves handling of the device during use. The device has relatively low part count, very compact size and is particularly attractive for cost sensitive device applications.
In the following use and function of the device will be described in more detail.
To dial a variable dose of liquid medicament, the user rotates the dial member 50 in clockwise (CW) direction. The spline features 52 provided on the underside of the dial member 50, and spline features 42, 43 on the button 40 and spline features 103 the number wheel 100 are engaged (see
As shown in
In
In
With regard to
In
When for dose dispense the button 40 is depressed in an axial direction along the axis of rotation 117, the button 40 moves relative to the dial member 50 and the number sleeve 100 so that the button 40 disengages from the spline features 52 of the dial member 50 and disengages from the spline features 103 of the number wheel 100.
The drive gear 110 moves axially with the button 40 against the force of the trigger spring 80, and when the button 40 is partially depressed (
After the button 40 is fully depressed, the drive gear 110 and the number wheel 100 are rotationally locked and free to rotate under the action of the drive spring 130. The button 40 is disengaged from all spline teeth and therefore the mechanism can rotate relative to the dose button 40 and the dial member 50.
The pinion 114 of the drive gear 110 acts on the teeth of the piston rod 120 causing the medicament to be dispensed. At the end of dose, the number wheel 100 zero stop abutment stops against the stop feature in the outer casework 13 causing the mechanism to stop. During delivery of a dose, the drive gear 110 and the number wheel 100 rotate together, so that no relative motion in the last dose nut 60 occurs.
The dose delivery clicker arm is a compliant cantilever arm integrated into the chassis 30, which interfaces axially with ratchet features on the drive gear 110 (not shown). The ratchet teeth spacing corresponds to the drive gear 110 rotation required to deliver a single dose unit. During dispense, as the drive gear 110 rotates, the ratchet features engage with the clicker arm to produce an audible click with each dose unit delivered.
When the button 40 is released, the trigger spring 80 causes the drive gear 110 and hence the button 40 to travel axially to their at-rest position. This travel causes the drive gear 110 spline teeth 113 to mesh with the chassis 30 again, locking the drive gear 110 against further rotation. The drive gear 110 also disengages its spline teeth 111 from the number wheel 100. The button 40 then re-engages its spline teeth features 42 and 43 with the dial member 50 and the number wheel 100. The user is then free to dial their next dose when required.
When the user has dialed the user settable dose the user is going to dispense the dose by pressing the dose button 40. This causes the drive gear 110 as described above to move axially and to disengage from the chassis 30 by moving it out of engagement with the chassis teeth enabling the drive spring 130 to release its stored energy and dispense the dose. Thereby, the lever arm 37 is moved into a second position caused by the load of the lower side of the drive gear 110 to an upper protrusion 39 of the lever arm 37 and bending it. The light being depicted in
Thereby, the determination unit is able to differentiate between the dialing and dispensing modes and the doses dialed or dispensed. As shown in
Further, the first module 150 may comprise a camera with which the magnified marking (numbering) 107 of the number wheel 100 is read. The dialed dose may then be displayed at a display (not shown) provided by the first module 150 at its upper side facilitating further enlargement of the marking in order to easy reading, in particular for vision impaired people.
In
In
Instead of a torsion spring, a power spring may be assembled.
The embodiment shown in
The lower component 119b does not move axially and secures the inner leg of the power spring 130. It also contains the pinion 114 that drives the flexible piston rod 120. The upper drive gear component 119a moves axially with the button travel relative to the second drive gear component 119b and interfaces with the number wheel 100 and the last dose nut 60. Alternatively, the pinion 114 may be part of an arbor that constitutes the second component. The two parts 119a and 119b are biased apart by the trigger spring 80, which also gives the advantage that during dose delivery, since both components are rotating together, the spring does not add any frictional losses that the drive spring 130 must overcome. When the button is actuated, which means that the button 40 is moved in downward direction so that the clutch between the drive gear 110 and the number wheel 100 is released, the trigger spring 80 is compressed.
The dose button 252 interacts with the dose button 40 of the drug delivery device 1. In order to dispense a dose, the user depresses the dose button 252 of the second module 250 which leads to depression of the dose of button 40 of the drug delivery device 1 as the dose button 252 of the second module 250 is accommodated just above the dose button 40 of the drug delivery device 1 contacting and fully covering it.
The second module 250 is assembled axially from part of the drug delivery device 1 containing the cartridge 140 and cartridge holder 20. The distal end of the drug delivery device 1 is inserted into the free space formed by the loop 257 of the housing 251 in axial direction (see
The second module 250 comprises within the housing 251 a battery (not shown), the display 253, for example an LCD display, a determining unit comprising a 2-D sensor (not shown), a lens (not shown), a LED (not shown), and a light pipe (not shown).
The second module 250 shows the dialed dose on its display 253 using the lens and the prism 90. Therefor prism 90 and the lens focus the image shown on the number wheel 100 of the drug delivery device 1 at the 2-D sensor of the determination unit. The determination unit then performs number recognition in order to determine the dialed dose volume. The determined dialed dose volume is then displayed at the display 253.
The LED and the light pipe facilitate illumination of the protruding tip 38 of the lever arm 37 and the illumination of the number wheel 100. Thereby it is ensured that a clear image is captured by the 2-D sensor.
Number | Date | Country | Kind |
---|---|---|---|
15164460 | Apr 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/058322 | 4/15/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/169845 | 10/27/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20090292247 | Basso | Nov 2009 | A1 |
20130303836 | Coble | Nov 2013 | A1 |
20140128843 | Baker | May 2014 | A1 |
20140142512 | Butler | May 2014 | A1 |
20150005713 | Baran | Jan 2015 | A1 |
20150126963 | Despa | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2838812 | Jan 2013 | CA |
1980705 | Jun 2007 | CN |
102307611 | Jan 2012 | CN |
103648552 | Mar 2014 | CN |
103797336 | May 2014 | CN |
104245020 | Dec 2014 | CN |
2014-520615 | Aug 2014 | JP |
2014-520617 | Aug 2014 | JP |
WO 2004078241 | Sep 2004 | WO |
WO 2006003130 | Jan 2006 | WO |
WO 2010088973 | Aug 2010 | WO |
WO 2013010887 | Jan 2013 | WO |
WO 2013010893 | Jan 2013 | WO |
WO 2013120778 | Aug 2013 | WO |
WO-2013120774 | Aug 2013 | WO |
WO 2014118107 | Aug 2014 | WO |
Entry |
---|
International Preliminary Report on Patentability in International Application No. PCT/EP2016/058322, dated Apr. 21, 2015, 7 pages. |
International Search Report and Written Opinion in International Application No. PCT/EP2016/058322, dated Jul. 26, 2016, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20180085528 A1 | Mar 2018 | US |