The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer redable form (CRF) of the Sequence Listing (file name:57585_Seqlisting.txt, date created: May 9, 2022, size: 1,218,935 bytes).
The present application relates to dosage and administration of anti-DLL3 agents for the treatment of cancer.
Small cell lung cancer (SCLC) is an aggressive form of lung cancer with a poor prognosis and limited therapeutic options and represents about 10-15% of lung cancers. Survival rates have remained low for several decades, with only 5% of SCLC patients surviving five years, in a large part due to the lack of new therapies to combat this form of lung cancer. About a third of patients present with limited stage disease. Most patients present with extensive-stage disease, defined by the presence of tumors in only one side of the chest and that fit in a single radiation field. These stages impact available therapeutic regiments, with limited stage disease treated with chemotherapy and radiation and extensive stage disease treated with chemotherapy alone. Disseminated, metastatic tumors with lymphoma-like characteristics are a hallmark of SCLC.
Patients typically respond well to the current front-line therapy, which includes etoposide and cisplatin, but invariably quickly relapse with chemoresistant disease, for which no therapeutic options are currently available. Prognosis in the relapsed refractory setting is extremely poor, with rapid disease progression and short median survival of less than six months. Furthermore, SCLC patients have high rates of comorbidities, including hypertension, cardiac disease, diabetes and paraneoplastic syndromes. These, coupled with the typically advanced age of SCLC patients, impact the ability of patients to endure harsh chemo regimens, further limiting treatment options.
Delta-like 3 (DLL3) is a type 1 transmembrane protein and noncanonical Notch ligand that is differentially expressed in SCLC. Using immunohistochemistry (IHC), 85% of SCLC tumors stained positive for DLL3 in a pattern consistent with both membranous and cytoplasmic expression. In contrast, low levels of DLL3 protein expression were detected in normal brain, pancreatic islets, and pituitary gland with a cytoplasmic staining pattern (Saunders et al, Sci Transl Med. 7:302ra136 (2015)). DLL3 is a novel and promising target for the development of T-cell-targeted therapies for SCLC.
There is an unmet medical need for the development of therapies for the treatment of SCLC.
Based on the disclosure provided herein, those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following embodiments (E).
E1: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered at a dose of from 0.3 mg to 100 mg, from 3 mg to 200 mg, or 100 mg once every two weeks.
E2: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose of from 0.3 mg to 100 mg, 0.5 mg to 10 mg, or 1 mg, on day 1, b) a second dose of from 0.3 mg to 100 mg, from 3 to 200 mg, or 100 mg, on day 8, and c) one or more subsequence doses of from 0.3 mg to 100 mg, from 3 to 200 mg, or 100 mg, starting on day 15 and once every two weeks thereafter, and wherein the second and subsequent doses are the same, and are higher than the first dose.
E3: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to one of the following two schedules:
Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg or 1 mg, on day 1, b) a second dose (step dose) of from 3 mg to 100 mg or from 25 mg to 50 mg, on day 4, c) a third dose (step dose) of from 3 mg to 200 mg or 100 mg, on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg or 100 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same or higher than the second dose; or
Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg or 1 mg, on day 1, b) a second dose (step dose) of from 3 mg to 100 mg or 25 mg to 50 mg, on day 8, c) a third dose (step dose) of from 3 mg to 200 mg or 100 mg, on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg or 100 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third dose and subsequent doses are the same, and are higher than the second dose.
E4: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg or 1 mg, on day 1, b) a second dose (step dose) of from 3 mg to 100 mg or 25 mg, on day 4, c) a third dose (step dose) of from 3 mg to 100 mg or 50 mg, on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg or 100 mg, on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg or 100 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same or higher than the third dose.
E5: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 200 mg on day 4, c) a third dose (target dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose.
E6: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, d) a fourth dose (target dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same the third dose.
E7: The method of any one of E1-E6, wherein the anti-DLL3 positive cancer is small cell lung cancer (SCLC).
E8: The method of any one of E1-E7, wherein the anti-DLL3 positive cancer is Relapsed/refractory (RR) SCLC or Extensive disease (ED) SCLC.
E9: The method of any one of E1-E8, wherein the anti-DLL3 agent is a bispecific antibody construct comprising two binding domains: the first domain binds to human DLL3, and the second domain binds to human CD3.
E10: The method of E9, wherein the DLL3-binding domain binds to an epitope of human DLL3 comprised within the amino acid sequence of SEQ ID NO: 258.
E11: The method of E9 or E10, wherein the DLL3-binding domain comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36.
E12: The method of any one of E9-E1 1, wherein the DLL3-binding domain comprises: (1) a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38, or (2) a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO:436.
E13: The method of any one of E9-E12, wherein the VH and VL of the DLL3-binding domain are joined by a linker to form a single chain Fv (scFv).
E14: The method of E13, wherein the linker comprises a sequence selected from any one of SEQ ID NOs: 285-293.
E15: The method of E13 or E14, wherein the linker comprises (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 1, 2, 3 or 4).
E16: The method of any one of E9-E15, wherein the DLL3-binding domain comprises the amino acid sequence of SEQ ID NO: 39 or SEQ ID NO: 437.
E17: The method of any one of E9-E16, wherein the CD3-binding domain comprises: (a) a VH that comprises: a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and a VL that comprises: a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.
E18: The method of any one of E9-E17, wherein the CD3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.
E19: The method of E17 or E18, wherein the VH and VL of the CD3-binding domain are joined by a linker to form a single chain Fv (scFv).
E20: The method of E19, wherein the linker comprises a sequence selected from any one of SEQ ID NOs: 285-293.
E21: The method of E19 or E20, wherein the linker comprises (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 1, 2, 3 or 4).
E22: The method of any one of E17-E21, wherein the CD3-binding domain comprises the amino acid sequence of SEQ ID NO: 431.
E23: The method of any one of E9-E22, wherein the DLL3-binding domain and the CD3-binding domain are joined by a linker.
E24: The method of E23, wherein the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293.
E25: The method of E23 or E24, wherein the linker is a peptide linker comprises (Gly4Ser)x, where x is an integer of 1 or greater (e.g., 1, 2, 3 or 4).
E26: The method of any one of E9-E25, the anti-DLL3 agent comprises a DLL3-binding domain and a CD3-binding domain. The DLL3-binding domain comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36. The CD3-binding domain comprises (a) a VH that comprises: (i) a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and (b) a VL that comprises: (i) a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.
E27: The method of any one of E9-E26, the DLL3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38, and the CD3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.
E28: The method of any one of E9-E26, the DLL3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO:436, and the CD3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.
E29: The method of any one of E9-E27, wherein the DLL3-binding domain comprises the amino acid of SEQ ID NO: 39 and the CD3-binding domain comprises the amino acid of SEQ ID NO: 431.
E30: The method of any one of E9-E26 or E28, the DLL3-binding domain comprises the amino acid of SEQ ID NO: 437 and the CD3-binding domain comprises the amino acid of SEQ ID NO: 431.
E31: The method of E29, wherein the anti-DLL3 agent comprises the amino acid sequence of SEQ ID NO: 40.
E32: The method of E30, wherein the anti-DLL3 agent comprises the amino acid sequence of SEQ ID NO: 438.
E33: The method of any one of E9-E32, wherein the anti-DLL3 agent further comprises a third domain that extends or enhance the serum half-life of the anti-DLL3 agent.
E34: The method of E33, wherein the third domain comprises the amino acid sequence selected from any one of SEQ ID NOs: 541-548.
E35: The method of any one of E9-E26, E28, E30, E32, E33 or E35, wherein the anti-DLL3 agent comprises the amino acid of SEQ ID NO: 520.
E36: The method of any one of Elor E7-E35, wherein the anti-DLL3 agent is administered once every two weeks at a dose of: from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, or from about 30 mg to about 40 mg.
E37: The method of any one of Elor E7-E35, wherein the anti-DLL3 agent is administered once every two weeks at a dose of: from about 3 mg to about 100 mg, from about 10 to about 180 mg, from about 10 to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, or from about 100 mg to about 120 mg; or wherein the anti-DLL3 agent is administered once every two weeks at a dose of 3 mg, 10 mg, 30 mg or 100 mg.
E38: The method of any one of E1 or E7-E37, wherein the anti-DLL3 agent is administered on day 1 and day 15 of a 28-day cycle.
E39: The method of any one of E2 or E7-E35, wherein the second and the one or more subsequent doses are the same and are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, at least 100-fold, at least 120-fold, at least 150-fold, at least 200-fold, higher than the first dose.
E40: The method of any one of E2, E7-E35 or E39, wherein each of the first dose of the anti-DLL3 agent is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or about 1 mg, and the second and subsequent doses of the anti-DLL3 agent can be any one of the following: from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, from about 30 mg to about 40 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, and from about 100 mg to about 120 mg.
E41: The method of any one of E2, E7-E35, E39, or E40, wherein the first dose of the anti-DLL3 agent is 1 mg, the second and subsequently doses of the anti-DLL3 agent are each 3 mg, 10 mg, 30 mg, or 100 mg.
E42: The method of any one of E3 or E7-E35, wherein the first dose of the anti-DLL3 agent is from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose of the anti-DLL3 agent is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg, the third and subsequent doses of the of the anti-DLL3 agent can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg.
E43: The method of any one of E3, E7-E35, or E42, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is from 25 mg to 50 mg or from 45 mg to 70 mg, and the third and subsequent doses of the anti-DLL3 agent are 100 mg.
E44: The method of any one of E3, E7-E35, or E42, wherein the first dose of the anti-DLL3 agent is 1 mg on day 1, the second dose of the anti-DLL3 agent is 25 mg or 50 mg on day 4, the third dose of the anti-DLL3 agent is 100 mg on day 8, and the subsequent dose of the anti-DLL3 agent is 100 mg, starting on day 15 and once every two weeks thereafter.
E45: The method of any one of E4 or E7-E35, wherein the first dose of the anti-DLL3 agent is from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose of the anti-DLL3 agent is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 10 mg to about 40 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 20 mg to about 40 mg, or about 25 mg, the third dose of the anti-DLL3 agent is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from 10 mg to about 60 mg, from about 20 mg to about 100 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 30 mg to about 100 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 40 mg to about 100 mg, from about 40 mg to about 80 mg, from about 40 mg to about 60 mg, or about 50 mg, the fourth and subsequent doses of the anti-DLL3 agent can be any of the following: from about 3 mg to about 100 mg, from about 10 mg to about 150 mg, from about 30 mg to 200 mg, from about 30 mg to about 150 mg, from about 30 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg.
E46: The method of any one of E4, E7-E35 or E45, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is 25 mg, the third dose of the anti-DLL3 agent is 50 mg, and the fourth and subsequent doses of the anti-DLL3 agent are 100 mg.
E47: The method of any one of E5 or E7-E35, wherein the first dose of the anti-DLL3 agent is 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second, the third dose and the subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, from 100 mg to 200 mg, or 100 mg.
E48: The method of any one of E6 or E7-E35, wherein the first dose is from 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second dose is from 3 mg to 10 mg, from 10 mg to 80 mg, from 10 mg to 60 mg, from 20 mg to 80 mg, from 20 mg to 60 mg, from 20 mg to 40 mg, 25 mg, or 50 mg, and the third, the fourth and subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, 100 mg to 200 mg, or 100 mg.
E49: The method of any one of E1-E48, wherein the method comprises administering one or more additional therapeutic agent to the subject.
E50: The method of E49, wherein the one or more additional therapeutic agents is a steroid.
E51: The method of any one of E49 or E50, wherein the additional therapeutic agent is dexamethasone.
E52: The method of any one of E49-E51, wherein the additional therapeutic agent is administered prior to the treatment with the anti-DLL3 agent.
E53: The method of any one of E48-E51, wherein the additional therapeutic agent is administered concurrently with the anti-DLL3 agent.
E54: The method of any one of E2-E53, wherein the anti-DLL3 agent is administered in a 28-day cycle, and the method further comprises administering a fluid (e.g., saline), an anti-inflammatory agent, tocilizumab, or etanercept to the subject in the first cycle wherein the anti-DLL3 agent is administered.
E55: The method of E54, wherein one-liter saline is administered by IV infusion to the subject after the run-in dose and the step doses of the anti-DLL3 agent.
E56: The method of E55, wherein the one-liter saline is administered over about 4-5 hours.
E57: The method of E54, wherein the anti-inflammatory agent is a corticosteroid or acetaminophen.
E58: The method of E57, wherein the corticosteroid is dexamethasone.
E59: The method of any one of E54, E57, or E58, wherein the anti-inflammatory agent or tocilizumab is administered to the subject prior to the run-in dose and the step doses of the anti-DLL3 agent.
E60: The method of E59, wherein the corticosteroid is administered to the subject about 6-16 hours prior to the run-in dose and step doses of the anti-DLL3 agent.
E61: The method of E59, wherein tocilizumab or acetaminophen is administered to the subject about one hour prior to the run-in dose and step doses of the anti-DLL3 agent.
E62: The method of E54, wherein etanercept is administered to the subject about 36-60 hours prior to the run-in dose and step doses, except the step dose on day 4, of the anti-DLL3 agent.
E63: The method of E62, wherein etanercept is administered 2 days prior to the run-in dose and step doses, except the step dose on day 4, of the anti-DLL3 agent.
E64: The method of any one of E1-E63, wherein the subject is a human.
E65: An anti-DLL3 agent for use in a method as set forth in any one of embodiments E1-E64.
E66: An anti-DLL3 agent for use in the treatment of DLL3-positive cancer (e.g., SCLC), wherein the anti-DLL3 agent is administered as set forth in any one of embodiments E1-E64.
E67: Use of an anti-DLL3 agent for the manufacture of a medicament for the treatment of SCLC, wherein the medicament is prepared to be administered as set forth in any one of embodiments E1-E64.
E68: Use of an anti-DLL3 agent in the preparation of a medicament for the treatment of an DLL3-positive cancer, wherein the anti-DLL3 agent is administered as set for in any one of embodiments E1-E64.
As disclosed and exemplified herein, a Phase 1 clinical study was conducted for the treatment of SCLC, using a bispecific protein (AMG 757) that targets DLL3 and CD3.
AMG 757 is a half-life-extended BiTE® (bispecific T cell engager) molecule developed for the treatment of SCLC. The activity of AMG 757 requires the simultaneous binding to both target cells (DLL3+ cells) and T cells. The pharmacological effect of AMG 757 is mediated by specific redirection of previously primed cytotoxic CD8+or CD4+ T lymphocytes to kill DLL3+ cells. The selection of the starting dose for the First in Human (FIH) study was based on the Minimum Anticipated Biological Effect Level (MABEL), which was identified as the EC50 of AMG 757-mediated CD69 upregulation in SHP-77 cells (Study 123564). A starting dose of 0.003 mg once every two weeks (Q2W) was selected based on human PK predictions and is predicted to generate maximum serum concentrations equivalent to the MABEL (0.61 ng/mL). This regimen is expected to achieve adequate exposures in target tissues (e.g., lung) throughout the entire dosing interval, while minimizing peak-to-trough ratios after multiple treatment cycles of AMG 757. Based on clinical experience in the FIH study, a dose of at least 0.3 mg Q2W is desirable.
Some of exemplary bispecific anti-DLL3 agents disclosed herein (such as BiTE® molecules) are recombinant protein constructs comprising two binding domains, each domain derived from an antigen-binding fragment of a full-length antibody. Such antigen-binding fragment retains the ability to specifically bind to an antigen (preferably with substantially the same binding affinity). Examples of an antigen-binding fragment includes (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH 1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, and (v) a dAb fragment (Ward et al.. 1989 Nature 341:544-546), which consists of a VH domain. Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. Science 242:423- 426 (1988) and Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883.
A “variable domain” refers to the variable region of the antibody light chain (VL) or the variable region of the antibody heavy chain (VH), either alone or in combination. As known in the art, the variable regions of the heavy and light chains each consist of four framework regions (FR) connected by three complementarity determining regions (CDRs), and contribute to the formation of the antigen-binding site of antibodies.
The “Complementarity Determining Regions” (CDRs) of exemplary DLL3-binding domains and CD3-binding domains are provided in the Sequence Table. The CDRs can be defined according to Kabat, Chothia, the accumulation of both Kabat and Chothia, AbM, contact. North, and/or conformational definitions or any method of CDR determination well known in the art. See, e.g., Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th ed. (hypervariable regions); Chothia et al., 1989, Nature 342:877-883 (structural loop structures). AbM definition of CDRs is a compromise between Kabat and Chothia and uses Oxford Molecular’s AbM antibody modeling software (Acceltys®). The identity of the amino acid residues in a particular antibody that make up a CDR can be determined using methods well known in the art.
The term “treatment” includes prophylactic and/or therapeutic treatments. If it is administered prior to clinical manifestation of a condition, the treatment is considered prophylactic. Therapeutic treatment includes, e.g., ameliorating or reducing the severity of a disease, or shortening the length of the disease.
“About” or “approximately,” when used in connection with a measurable numerical variable, refers to the indicated value of the variable and to all values of the variable that are within the experimental error of the indicated value (e.g. within the 95% confidence interval for the mean) or ±10% of the indicated value, whichever is greater. Numeric ranges are inclusive of the numbers defining the range.
“Run-in dose” when used in connection with administration of anti-DLL3 agents for the treatment of cancer (e.g.. small cell lung cancer (SCLC)) refers to the initial dose of an anti-DLL3 agent equal to or lower than a dose at which a first dose effect (e.g.. cytokine release syndrome (CRS)) is observed. As known in the art, run-in dose can be determined by modeling and simulation of safety and pharmacokinetic data. For example, run-in dose can be a maximum tolerated dose (MTD) of an anti-DLL3 agent where no CRS or a CRS lower than a certain grade (e.g., Grade 2) is observed.
“Target dose” when used in connection with administration of anti-DLL3 agents for the treatment of cancer (e.g., SCLC) refers to a dose that achieves a target effect of an anti-DLL3 agent (e.g., ameliorating or reducing the severity of SCLC, or shortening the length of the SCLC).
“Step dose” when used in connection with administration of anti-DLL3 agents for the treatment of cancer (e.g.. SCLC) refers to a dose that is higher than the previous dose at which an anti-DLL3 agent is administered. Step dose includes one or more doses that increase from a run-in dose to reach a target dose.
DLL3 is a non-canonical Notch ligand expressed primarily during embryonic development that functions during somitogenesis. In contrast to other Notch ligands that are expressed on the surface of cells, DLL3 accumulate in the Golgi in normal tissues (Geffers et al, J Cell Biol.178:465-476 (2007)). DLL3 was identified as a tumor-associated antigen and a compelling target for T cell-based therapies by analyzing the differential expression of this target in 28 SCLC tumors and a large panel of normal tissues (Study 123658).
The human DLL3 protein comprises eight extracellular domains: signal peptide, N-terminus, DSL, EGF1, EGF2, EGF3, EGF4, EGF5 and EGF6. The amino acid sequence of human DLL3, the EGF3 domain, the EGF4 domain, and the combined EGF3 and EGF4 domains are shown in the sequence table as SEQ ID NOs: 252, 258, 259 and 260, respectively.
An exemplary anti-DLL3 agent is a bispecific molecule that binds DLL3 and CD3, such as a BiTE® (bispecific T cell engager) molecule. BiTE® molecules are recombinant protein constructs made from two flexibly linked binding domains, each domain derived from antibodies. One binding domain of BiTE® molecule is specific for a tumor-associated surface antigen (such as DLL3); the second binding domain is specific for CD3, a subunit of the T cell receptor complex on T cells. By their design, BiTE® molecules are uniquely suited to transiently connect T cells with target cells and, at the same time, potently activate the inherent cytolytic potential of T cells against target cells. See e.g., WO 99/54440, WO 2005/040220, and WO 2008/119567.
Accordingly, in some embodiments, the anti-DLL3 agent described comprises two binding domains: the first domain binds DLL3 (preferably human DLL3), and the second domain binds CD3 (preferably human CD3). Preferably, the first domain binds to an epitope of DLL3 comprised within the amino acid sequence of SEQ ID NO: 260. More preferably, the first domain binds to an epitope of DLL3 comprised within the amino acid sequence of SEQ ID NO: 258.
In certain embodiments, the DLL3-binding domain comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36.
In certain embodiments, the DLL3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38. In certain preferred embodiments, the DLL3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO:436.
In some embodiments, the VH and VL are joined by a linker to form a single chain Fv (scFv). In some embodiments, the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3) (e.g., SEQ ID NOs: 292, 293).
In certain embodiments, the DLL3-binding domain comprises the amino acid sequence of SEQ ID NO: 39. In certain preferred embodiments, the DLL3-binding domain comprises the amino acid sequence of SEQ ID NO: 437.
In certain embodiments, the CD3-binding domain comprises: (a) a VH that comprises: a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and a VL that comprises: a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.
In certain embodiments, the CD3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430. In some embodiments, the VH and VL are joined by a linker to form a single chain Fv (scFv). In some embodiments, the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3).
In certain embodiments, the CD3-binding domain comprises the amino acid sequence of SEQ ID NO: 431.
In certain embodiments, the DLL3-binding domain and the CD3-binding domain are joined by a linker. In some embodiments, the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g., 2 or 3).
In certain embodiments, the anti-DLL3 agent disclosed herein comprises two domains. The first domain binds to DLL3 (preferably human DLL3) and comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36. The second domain binds to CD3 (preferably human CD3), and comprises (a) a VH that comprises: (i) a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and (b) a VL that comprises: (i) a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.
In certain embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38; and (b) the second domain binds CD3 (preferably human CD3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430. In certain preferred embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO: 436; and (b) the second domain binds CD3 (preferably human CD3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.
In certain embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 39, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431. In certain embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 437, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431.
In certain embodiments, the anti-DLL3 agent described herein comprises the amino acid sequence of SEQ ID NO: 40. In certain embodiments, the anti-DLL3 agent described herein comprises the amino acid sequence of SEQ ID NO: 438.
In certain embodiments, anti-DLL3 agent described herein further comprises a third domain that extends or enhance the serum half-life of the anti-DLL3 agent. In certain embodiments, the third domain comprises two polypeptides joined by a linker, each peptide comprising a hinge, a CH2 and a CH3 domain of human IgG. In certain embodiments, the third domain comprises, in an N- to C-terminal order: hinge-CH2-CH3-linker-hinge-CH2-CH3. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g., 6). In certain embodiments, the third domain comprises the amino acid sequence selected from any one of SEQ ID NOs: 541-548.
In certain embodiments, the DLL3-binding domain and the CD3-binding domain are joined by a first linker to form a peptide, which is joined to the third domain by a second linker. In certain embodiments, the first linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293, and the second linker comprises a sequence selected from any one of SEQ ID NO: 285, 286, 288, 289, 290, 292 and 293. In some embodiments, the first linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3), and the second linker comprises a sequence selected from any one of SEQ ID NO: 285, 286, 288, 289, 290, 292 and 293.
In certain embodiments, the anti-DLL3 agent described herein comprises three domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 39, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431, and (c) the third domain comprises an amino acid sequence selected from any one of SEQ ID NOs: 541-548. In certain embodiments, the anti-DLL3 agent described herein comprises three domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 437, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431, and (c) the third domain comprises any one of the amino acid sequence selected from SEQ ID NOs: 541-548.
In certain embodiments, the anti-DLL3 agent described herein comprises the amino acid sequence of SEQ ID NO: 520.
Disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, at a dose of from about 0.3 mg to about 100 mg, from about 3 mg to about 200 mg, or about 100 mg, once every two weeks. In certain embodiments, the DLL3-positive cancer is small cell lung cancer (SCLC). In certain embodiments, the SCLC is relapsed/refractory SCLC (RR SCLC) or extensive disease SCLC (ED SCLC). In certain embodiments, the subject is a human having SCLC, e.g., RR SCLC or ED SCLC.
In certain embodiments, the anti-DLL3 agent is administered once every two weeks at a dose of: from about 0.3 mg to about 100 mg, from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, or from about 30 mg to about 40 mg.
In certain embodiments, the anti-DLL3 agent is administered once every two weeks at a dose of: from about 3 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, or from about 100 mg to about 120 mg.
In certain embodiments, the anti-DLL3 agent is administered once every two weeks at a dose of about 3 mg, 10 mg, 30 mg, or 100 mg.
In certain embodiments, the anti-DLL3 agent is administered on day 1 and day 15 of a 28-day cycle.
As described Example 2, the starting dose for the FIH study was based on the Minimum Anticipated Biological Effect Level (MABEL), which was identified as the EC50 of AMG 757-mediated CD69 upregulation in SHP-77 cells (Study 123564). A starting dose of 0.003 mg was selected based on human PK predictions and is predicted to generate maximum serum concentrations equivalent to the MABEL (0.61 ng/mL). The dose of AMG 757 in the Phase 1 clinical study is 0.003 mg and higher and is administered as intravenous (IV) infusions once every two weeks (Q2W) in patients with SCLC. This regimen is believed to achieve adequate exposures in target tissues (e.g., lung) throughout the entire dosing interval, while minimizing peak-to-trough ratios after multiple treatment cycles of AMG 757.
Predicted human PK parameters were used to predict AMG 757 concentrations in the lung, which was designated as the representative site of action and was assumed to achieve approximately 1% of serum exposures (Vugmeyster et al, 2010). Early signs of efficacy were predicted at 10 mg every 2 weeks based on trough coverage of the average EC90 of cell killing in SHP-77 cells (assuming 1% lung exposure), see e.g., Example 2.
There was one confirmed response at 0.3 mg administered as IV infusion once every two weeks (Cohort 5) in the clinical study. This observed efficacy of AMG 757 is surprising because it is significantly lower than the dose of 10 mg Q2W that was predicted to be efficacious based on pre-clinical results. Additional confirmed responses were observed in higher dose cohorts. It is believed that efficacious dose of AMG 757 can be at least 0.3 mg (e.g., from about 0.3 mg to about 100 mg or from about 3 mg to about 200 mg) administered once every two weeks.
The anti-DLL3 agent can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, intranasal, and/or intralesional administration. Parenteral administration includes intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In some embodiments, the anti-DLL3 agent is administered by intravenous (IV) infusion, such as a short IV infusion (approximately 60 minutes), once every two weeks.
Due to its mechanism of action, subjects may be at an increased risk for first dose effects (e.g., cytokine release syndrome) following initial infusion of AMG 757. It is believed that an optimal maximal tolerated dose (MTD) may require a step dosing approach (e.g., initial dose on day 1, step dose on Day 8, and subsequent dose starting on day 15 and thereafter). In certain aspects, two MTDs may be estimated or established, one for the initial dosing (MTD1, run-in dose) and one for the subsequent dosing (MTD2). In certain aspects, multiple MTDs may be estimated or established, one for the initial run-in dose (MTD1) and one for each step dose(s) and the subsequent dose, as applicable.
If a first dose effect (e.g., cytokine release syndrome (CRS)) is experienced by a subject, an appropriate first dose (MTD1) not exceeding the dose at which a CRS event is observed can be determined and implemented. A second dose and a subsequent dose can also be determined and implemented. In addition, a second dose, a third dose, a fourth dose and a subsequent dose can be determined and implemented, depending on the number of steps in a step dosing schedule. In certain embodiments, the second dose and the subsequent dose are the same, and are higher than the first dose. In certain embodiments, the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose. In certain embodiments, the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth and subsequent doses are the same, and are higher than the third dose. These doses and dosing schedules can be guided by modeling and simulation of clinical data (e.g., pharmacokinetics, safety data, etc.) to ensure that systemic exposures of AMG 757 may not exceed those associated with doses at which first dose effects were seen (e.g., CRS) due to the increased dosing frequency of a step dosing regimen and potential for drug accumulation.
Exemplary step dosing schedules of anti-DLL3 agents (e.g., AMG 757) in a 28-day cycle are shown in the table below (cycle 1 only), the anti-DLL3 agent is administered once every two weeks thereafter.
Exemplary Single and Multiple Step Dosing Schedules (Cycle 1 only)
Accordingly, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to a one-step dosing schedule.
In certain embodiments, disclosed herein is a method of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to the following schedule: a) a first dose of from 0.3 mg to 100 mg (run-in dose) on day 1, b) a second dose of from 0.3 mg to 100 mg (step dose) on day 8, and c) one or more subsequence doses of from 0.3 mg to 100 mg (target dose), starting on day 15 and once every two weeks thereafter, and wherein the second and subsequent doses are the same, and are higher than the first dose.
In certain embodiments, disclosed herein is a method of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 200 mg on day 8, and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second and subsequent doses are the same, and are higher than the first dose.
In certain embodiments of the one-step dosing schedule, the second and the subsequent doses are the same and are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, at least 100-fold, or at least 120-fold, at least 150-fold, or at least 200-fold higher than the first dose.
In certain embodiments of the one-step dosing schedule, the second and the subsequent doses are the same and are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, or at least 100-fold higher than the first dose, and each of the first, second and subsequent doses of the anti-DLL3 agent can be any one of the following: from about 0.3 mg to about 100 mg, from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, and from about 30 mg to about 40 mg.
In certain embodiments of the one-step dosing schedule, the first dose of the anti-DLL3 agent is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or about 1 mg; the second and subsequent doses are the same, and are at least 3-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, at least 60-fold, at least 70-fold, at least 80-fold, at least 90-fold, at least 100-fold, at least 120-fold, at least 150-fold, or at least 200-fold, higher than the first dose, and each of the second and subsequent doses can be any one of the following: from about 3 mg to about 200 mg, from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200, from about 70 mg to about 180, from about 70 mg to about 150, from about 70 mg to about 120 mg, from about 90 mg to about 200, from about 90 mg to about 180, from about 90 mg to about 120 mg, or about 100 mg.
In certain embodiments of the one-step dosing schedule, the first dose of the anti-DLL3 agent is 1 mg, the second and subsequent doses are the same and are 3 mg, 10 mg, 30 mg, or 100 mg.
In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to a two-step dosing schedule.
In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to one of the following two schedules:
Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose; or
Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 8, c) a third dose (step dose) of from 3 mg to 200 mg on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third dose and subsequent doses are the same, and are higher than the second dose.
In certain embodiments of the two-step dosing schedule, the second dose is at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, at least 60-fold, at least 70-fold, at least 80-fold, or at least 90-fold, higher than the first dose, and the third and subsequent doses are the same and are at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold, higher than the second dose.
In certain embodiments of the two-step dosing schedule, the second dose is from about 20-fold to about 100-fold, from about 20-fold to about 90-fold, from about 20-fold to about 70-fold, from about 20-fold to about 50-fold, from about 25-fold to about 50-fold, from about 30-fold to about 100-fold, from about 30-fold to about 90-fold, from about 30-fold to about 70-fold, or from about 30-fold to about 50-fold, higher than the first dose, and the third and subsequent doses are the same and are from about 2-fold to about 10-fold, from about 2-fold to about 8-fold, from about 2-fold to about 6-fold, from about 2-fold to about 4-fold, from about 4-fold to about 8-fold, or from about 4-fold to about 6-fold, higher than the second dose.
In certain embodiments of the two-step dosing schedule, the first dose is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg, and the third and subsequent doses are the same and are from about 3 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg.
In certain embodiments of the two-step dosing schedule, the first dose is 1 mg, the second dose is from about 25 mg to about 50 mg, and the third and subsequent doses are the same and are 100 mg. In certain embodiments of the two-step dosing schedule, the first dose is 1 mg, the second dose is from about 45 mg to about 70 mg, and the third and subsequent doses are the same and are 100 mg.
In certain embodiments of the two-step dosing schedule, the first dose is 1 mg on day 1, the second dose is 25 mg or 50 mg on day 4, the third dose is 100 mg on day 8, and the one or more subsequent doses are 100 mg, starting on day 15 and once every two weeks thereafter.
In certain embodiments of Schedule I, target dose is administered on day 4. In such embodiments, the anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose, equal to target dose) of from 3 mg to 200 mg on day 4, c) a third dose (target dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose. In certain embodiments, the first dose is from 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second, the third dose and the subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, from 100 mg to 200 mg, or 100 mg. It is believed that such dosing schedule (which target dose is administered on day 4, 8 and 15 of the first cycle), is beneficial in that it helps to reach the desired serum level of the anti-DLL3 agent quickly.
In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to a three-step dosing schedule.
In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose) of from 3 mg to 100 mg on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are higher than the third dose.
In certain embodiments of the three-step dosing schedule, the second dose is at least 5-fold, at least 10-fold, at least 20-fold, at least 30-fold, at least 40-fold, or at least 50-fold, higher than the first dose, the third dose is at least 0.5-fold, at least 1-fold, at least 2-fold, at least 3-fold, or at least 5-fold, higher than the second dose, the fourth and subsequent doses are the same and are at least 1-fold, at least 2-fold, at least 3-fold, or at least 5-fold, higher than the third dose.
In certain embodiments of the three-step dosing schedule, the second dose is from about 5-fold to about 70-fold, from about 20-fold to about 70-fold, from about 20-fold to about 60-fold, for rom about 25-fold to about 50-fold, higher than the first dose, the third dose is from about 0.5-fold to about 4-fold, from about 0.5-fold to about 2.5-fold, from about 1-fold to about 4-fold, or from about 1-fold to about 2-fold, higher than the second dose, and the fourth and subsequent doses are the same and are from about 1-fold to about 4-fold or from about 2-fold to about 3-fold, higher than the third dose.
In certain embodiments of the three-step dosing schedule, the first dose is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 10 mg to about 40 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 20 mg to about 40 mg, or about 25 mg, the third dose is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from 10 mg to about 60 mg, from about 20 mg to about 100 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 30 mg to about 100 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 40 mg to about 100 mg, from about 40 mg to about 80 mg, from about 40 mg to about 60 mg, or about 50 mg, and the fourth and subsequent doses are the same and are from about 3 mg to about 10 mg, from about 10 mg to about 200 mg, from about 10 mg to about 150 mg, from about 30 mg to 200 mg, from about 30 mg to about 150 mg, from about 30 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg.
In certain embodiments of the three-step dosing schedule, the first dose is 1 mg, the second dose is 25 mg, the third dose is 50 mg and the fourth and subsequent doses are the same and are 100 mg.
In certain embodiments of the three-step dosing schedule, target dose is administered on day 8. In such embodiments, the anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose, equal to target dose) of from 3 mg to 200 mg on day 8, d) a fourth dose (target dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same as the third dose. In certain embodiments, the first dose is from 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second dose is from 3 mg to 10 mg, from 10 mg to 80 mg, from 10 mg to 60 mg, from 20 mg to 80 mg, from 20 mg to 60 mg, from 20 mg to 40 mg, 25 mg, or 50 mg, and the third, the fourth and subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, 100 mg to 200 mg, or 100 mg. It is believed that such dosing schedule is beneficial in that it helps to reach the desired serum level of the anti-DLL3 agent quickly.
The anti-DLL3 agent can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, intranasal, and/or intralesional administration. Parenteral administration includes intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In some embodiments, the anti-DLL3 agent is administered by intravenous (IV) infusion.
In certain embodiments, the DLL3-positive cancer is small cell lung cancer (SCLC). In certain embodiments, the SCLC is relapsed/refractory SCLC (RR SCLC) or extensive disease SCLC (ED SCLC). In certain embodiments, the subject is a human having SCLC, e.g., RR SCLC or ED SCLC.
In some embodiments, the compositions and methods of the invention provide for the use of an anti-DLL3 agent in combination with one or more additional therapeutic agents. In certain embodiments, the one or more additional therapeutic agents is an agent that mitigates CRS of anti-DLL3 agents (e.g., AMG 757). In certain embodiments, the one or more additional therapeutic agents include an anti-inflammatory agent, a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab) or an anti-TNF agent (e.g., etanercept). In certain embodiments, the methods disclosed herein comprise the administration of an anti-DLL3 agent (e.g., AMG 757) in combination with one or more of an anti-inflammatory agent, a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab) and an anti-TNF agent (e.g., etanercept).
In some embodiments, the one or more additional therapeutic agents may be an anti-inflammatory agent (for example, to prophylactically treat CRS). The anti-inflammatory agent may be administered prior to, concurrently, or after the administration of the anti-DLL3 agent. Exemplary anti-inflammatory agent includes acetaminophen, naproxen sodium, ibuprofen, tramadol, aspirin, celecoxib, valdecoxib, indomethacin, or other Non-steroidal anti-inflammatory drugs (NSAIDs). Other anti-inflammatory agent includes, e.g., beclomethasone, hydroxycortisone, betamethasone, methylprednisolone, budesonide, prednisolone, cortisone, prednisone, dexamethasone, and triamcinolone, or other glucocorticoids. In certain embodiments, the anti-inflammatory agent is a corticosteroid. In certain embodiments, the corticosteroid is dexamethasone. In certain embodiments, the anti-inflammatory agent is acetaminophen. In certain embodiments, the anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone or acetaminophen) is administered before the administration of the anti-DLL3 agent. In certain embodiments, dexamethasone is administered intravenously, e.g., prior to cycle 1 doses of AMG 757. In certain embodiments, dexamethasone is administered orally.
In some embodiments, the one or more additional therapeutic agents that mitigate CRS are a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab) or an anti-TNF agent (e.g., etanercept). Each of these agents may be administered prior to, concurrently, or after the administration of the anti-DLL3 agent. In certain embodiments, saline is administered (e.g., by IV administration) after the administration of the anti-DLL3 agent. In certain embodiments, the anti-IL6 antibody (e.g., tocilizumab) or the anti-TNF agent (e.g., etanercept) is administered prior to the administration of the anti-DLL3 agent.
When a steroid (such as dexamethasone) is used, higher doses of anti-DLL3 agent may be needed. Accordingly, in some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof a steroid (such as a corticosteroid, e.g., dexamethasone), and an anti-DLL3 agent, wherein the anti-DLL3 agent is administered at a dose of from about 0.3 mg to 100 mg once every two weeks (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg, once every two weeks).
In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof a steroid (such as a corticosteroid, e.g., dexamethasone), and an anti-DLL3 agent, wherein the anti-DLL3 agent is administered at a dose of from about 0.3 mg to 100 mg or from about 3 mg to about 200 mg, once every two weeks (such as from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 3 mg, 10 mg, 30 mg, or 100 mg, once every two weeks). In certain embodiments, the anti-DLL3 agent is administered in a 28-day cycle. In certain embodiments, the steroid is administered in the first cycle the anti-DLL3 agent is administered.
In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof a steroid (such as a corticosteroid, e.g., dexamethasone), and an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to the following schedule: (a) a first dose of from 0.3 mg to 100 mg on day 1 (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg, on day 1), (b) a second dose of from 0.3 mg to 100 mg on day 8 (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg, on day 8), and (c) one or more subsequence doses of from 0.3 mg to 100 mg (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, or from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg), starting on day 15 and once every two weeks thereafter, and wherein the second and the one or more subsequent doses are the same, and are higher than the first dose. In certain embodiments, the second and the one or more subsequent doses are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, or at least 100-fold higher than the first dose.
In certain embodiments, an anti-DLL3 agent (e.g., AMG 757) is administered in a 28-day cycle to a subject having DLL3 positive cancer (e.g., SCLC), wherein the anti-DLL3 agent is administered together with an anti-inflammatory agent, a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab), an anti-TNF agent (e.g., etanercept), or a combination thereof in the first cycle. In certain embodiments, a corticosteroid (e.g., dexamethasone) is further administered together with the anti-DLL3 agent and the anti-inflammatory agent, fluid (e.g., saline), anti-IL6 antibody (e.g., tocilizumab), anti-TNF agent (e.g., etanercept), or a combination thereof in the first cycle. In certain embodiments, the corticosteroid (e.g., dexamethasone) is administered by IV infusion in cycle 1 of AMG 757 administration.
In certain embodiments, a fluid such as saline is administered by IV infusion after the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, one-liter saline is administered by IV infusion after the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, one-liter saline is administered by IV infusion after the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, the one-liter saline is administered by IV infusion over about 4-5 hours after the administration of the anti-DLL3 agent.
In certain embodiments, an anti-inflammatory agent is administered prior to the administration of the anti-DLL3 agent in the firs cycle. In certain embodiments, the anti-inflammatory agent is a corticosteroid (e.g., dexamethasone) and is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, dexamethasone is administered orally, in other embodiments, dexamethasone is administered intravenously.
In certain embodiments, the anti-inflammatory agent is acetaminophen and is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, acetaminophen is administered orally.
In certain embodiments, the anti-IL6 antibody is tocilizumab and is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle.
In certain embodiments, the anti-TNF agent is etanercept (e.g., Enbrel®) and is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered 2 days prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 50 mg etanercept is administered subcutaneously 2 days prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 50 mg etanercept is administered subcutaneously 2 days prior to the run-in dose and step dose(s) of the anti-DLL3 agent, except the step dose on day 4 with two-step or three-step dosing schedule, in the first cycle.
Exemplary CRS mitigation strategies for anti-DLL3 agents (e.g., AMG 757) using an anti-inflammatory agent (e.g., dexamethasone or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept) are shown in the tables below. In certain embodiments, a corticosteroid (e.g., dexamethasone) is further administered (e.g., by IV infusion) in cycle one of AMG 757 administration (e.g., administered prior to cycle 1 doses of AMG 757) in addition to the CRS mitigation strategies listed below.
Exemplary CRS Mitigation Strategies (One-step Dosing, Cycle 1 only)
Exemplary CRS Mitigation Strategies (Two-step dosing, Option 1, cycle 1 only)
Exemplary CRS Mitigation Strategies (Two-step dosing, Option 2, cycle 1 only)
Exemplary CRS Mitigation Strategies (Three-step dosing, cycle 1 only)
In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), and wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following one-step schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or about 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 200 mg (such as from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200, from about 70 mg to about 180, from about 70 mg to about 150, from about 70 mg to about 120 mg, from about 90 mg to about 200, from about 90 mg to about 180, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg) on day 8, and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg (such as from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200, from about 70 mg to about 180, from about 70 mg to about 150, from about 70 mg to about 120 mg, from about 90 mg to about 200, from about 90 mg to about 180, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg), starting on day 15 and once every two weeks thereafter, wherein the second and subsequent doses are the same, and are higher than the first dose, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, the second and subsequent doses are the same and are at least 3-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, at least 60-fold, at least 70-fold, at least 80-fold, at least 90-fold, at least 100-fold, at least 120-fold, at least 150-fold, or at least 200-fold, higher than the first dose.
In some embodiments of the one-step schedule, the method comprising administering the anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose and subsequent doses of the anti-DLL3 agent are the same and are 3 mg, 10 mg, 30 mg, or 100 mg, wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such one-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.
In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg) on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose, and the third and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such two-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.
In certain embodiments, the method comprises administering to a subject in need thereof an anti-DLL3 agent (e.g., AMG 757) and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: the first dose is 1 mg on day 1, the second dose is 25 mg or 50 mg on day 4, the third dose is 100 mg on day 8, and the one or more subsequent doses are 100 mg, starting on day 15 and once every two weeks thereafter, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered on the same day or prior to the day the run-in and step dose(s) of AMG 757 in cycle 1. In certain embodiments, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.
In certain embodiments of Schedule I, target dose is administered on day 4. In such embodiments, the method comprises administering to a subject in need thereof an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 200 mg on day 4, c) a third dose (target dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose, and the second, third and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, dexamethasone, acetaminophen, saline, or tocilizumab is administered on day 1 and 4, or on day 1, 4 and 8, of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1 and day 8 of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1 of AMG 757 administration in cycle 1. In certain embodiments, the method further comprises administering dexamethasone by IV infusion in cycle 1 of AMG 757 administration.
In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg), on day 8, c) a third dose (step dose) of from 3 mg to 200 mg, on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third dose and subsequent doses are the same, and are higher than the second dose, the third and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such two-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.
In some embodiments of the two-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is from about 25 mg to about 50 mg, and the third and subsequent doses of the anti-DLL3 agent are the same and are 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.
In some embodiments of the two-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is from about 45 mg to about 70 mg, and the third and subsequent doses of the anti-DLL3 agent are the same and are 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.
In certain embodiments of the two-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg on day 1, the second dose of the anti-DLL3 agent is 25 mg or 50 mg on day 4, the third is 100 mg on day 8, and subsequent doses of the anti-DLL3 agent is 100 mg, starting on day 15 and once every two weeks thereafter, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.
In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), and wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following three step schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 10 mg to about 40 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 20 mg to about 40 mg, or about 25 mg) on day 4, c) a third dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from 10 mg to about 60 mg, from about 20 mg to about 100 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 30 mg to about 100 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 40 mg to about 100 mg, from about 40 mg to about 80 mg, from about 40 mg to about 60 mg, or about 50 mg) on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are higher than the third dose, and the fourth and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 150 mg, from about 30 mg to 200 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such three-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.
In some embodiments of the three-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is 25 mg, the third dose of the anti-DLL3 agent is 50 mg and the fourth and subsequent doses of the anti-DLL3 agent are the same and are 100 mg, and wherein the dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.
In certain embodiments of the three-step dosing schedule, target dose is administered on day 8. In such embodiments, the method comprises administering to a subject in need thereof an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following three-step schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from 3 mg to 10 mg, from 10 mg to 80 mg, from 10 mg to 60 mg, from 20 mg to 80 mg, from 20 mg to 60 mg, from 20 mg to 40 mg, 25 mg, or 50 mg) on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, d) a fourth dose (target dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose, the fourth dose and the subsequent doses are the same and are is higher than the second dose, and the third dose, the fourth dose, and the subsequent dose each can be any of the following: from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, 100 mg to 200 mg, or 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, dexamethasone, acetaminophen, saline, or tocilizumab is administered on day 1, 4 and 8, or on day 1, 4, 8 and 15, of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1, day 8, and day 15 of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1 and day 8 of AMG 757 administration in cycle 1. In some embodiments of such three-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.
In certain embodiments of any one of the step dosing schedules, saline (e.g., about 1 liter) is administered by IV infusion after the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, one-liter saline is administered by IV infusion after the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, the one-liter saline is administered by IV infusion over about 4-5 hours after the administration of the anti-DLL3 agent.
In certain embodiments of any one of the step dosing schedules, the anti-inflammatory agent is a corticosteroid (e.g., dexamethasone) and is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, dexamethasone is administered orally.
In certain embodiments any one of the step dosing schedules, the anti-inflammatory agent is acetaminophen and is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, acetaminophen is administered orally.
In certain embodiments any one of the step dosing schedules, the anti-IL6 antibody tocilizumab is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle.
In certain embodiments any one of the step dosing schedules, the anti-TNF agent etanercept (e.g., Enbrel®) is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent, except the step dose on day 4 with two-step or three-step dosing schedule, in the first cycle. In certain embodiments, about 50 mg etanercept is administered 2 days prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 50 mg etanercept is administered subcutaneously 2 days prior to the run-in dose and step dose(s) of the anti-DLL3 agent, except the step dose on day 4 with two-step or three-step dosing schedule, in the first cycle.
In certain embodiments of any one of the step dosing schedules, the subject is a human.
Disclosed herein are articles of manufacture comprising: (a) a container comprising an anti-DLL3 agent; and (b) a package insert with instructions for treating DLL3-positive cancer (or treating SCLC) in a subject, wherein the instructions specifies that a dose of from about 0.3 mg to about 100 mg, from about 3 mg to about 200 mg, or 100 mg (or any of the dose ranges disclosed herein) of the anti-DLL3 agent be administered to the subject once every two weeks, such as on day 1 and day 15 of a 28-day cycle. The instructions may also specify that the anti-DLL3 agent be administered according to the following schedule: a) a first dose of from 0.3 mg to 100 mg (or any of the dose ranges disclosed herein) on day 1, b) a second dose of from 0.3 mg to 100 mg (or any of the dose ranges disclosed herein) on day 8, and c) one or more subsequence doses of from 0.3 mg to 100 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second and one or more subsequent doses are the same, and are higher than the first dose.
The instructions may also specify that the anti-DLL3 agent be administered according to the following schedule: a) a first dose of from 0.5 mg to 10 mg or from (or any of the dose ranges disclosed herein) on day 1, b) a second dose of from 3 mg to 200 mg (or any of the dose ranges disclosed herein) on day 8, and c) one or more subsequence doses of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second and one or more subsequent doses are the same, and are higher than the first dose.
In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according to one of the following two schedules: Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose; or Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 8, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose and subsequent doses are the same, and are higher than the second dose.
In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose.
In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 29 and once every two weeks thereafter, wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are higher than the third dose.
In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 29 and once every two weeks thereafter, wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same as the third dose.
In certain embodiments, the instruction specifies that an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept) is also administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, the instruction specifies that dexamethasone is further administered in the first cycle in which the anti-DLL3 agent is administered (e.g., by IV administration prior to cycle doses of the anti-DLL3 agent).
The human PK parameters of AMG 757 were predicted using allometric scaling of PK parameters obtained from studies in cynomolgus monkeys at doses ranging from 12 to 4500 µg/kg. A two-compartment model with linear elimination was used to characterize the pharmacokinetics of AMG 757 from the pooled cynomolgus monkey data, excluding data from animals that were identified as positive for anti-drug antibodies after the administration of the first dose. The model was parameterized using linear clearance (CL), volume of distribution of central compartment (Vc), distribution clearance (CLD), and peripheral volume of distribution (VT). Allometry was used to predict human AMG 757 PK using exponents of 0.75 and 1 for clearance and volume parameters, respectively. The human and cynomolgus monkey body weights were assumed to be 60 kg and 3 kg, respectively. Derived monkey and predicted human AMG 757 PK parameters are provided in Table 1.
In combination with these PK predictions, the FIH starting dose was selected based on the identified in vitro Minimum Anticipated Biological Effect Level (MABEL). This concentration was determined by assessing the most sensitive marker of AMG 757 activity in the most sensitive DLL3-expressing cell line (Study 123564). In conjunction with animal exposures from the GLP toxicology studies, the predicted human exposures were used to calculate the exposure margins using standard ratio calculations based on AUCtau (168 hours for cynomolgus monkeys in the GLP toxicology study and 336 hours for humans) and Cmax for the proposed doses in the FIH study.
The FIH study evaluates the safety, tolerability, and pharmacokinetics of AMG 757 in patients with small cell lung cancer. The predicted human PK parameters described above were used to simulate predicted exposures at the proposed FIH doses (
The selection of the starting dose for the FIH study was based on the in vitro MABEL. Briefly, the EC50 values of AMG 757-mediated cell killing of SHP-77 tumor cells and induction of T cell activation (de novo expression of CD69 and CD25) from human peripheral blood mononuclear cells (PBMCs) were compared, and AMG 757-induced de novo expression of CD69 on T cells was identified as the most sensitive parameter of AMG 757 activity. Based on the assessment of individual dose-response curves from 12 different PBMC donors, the MABEL (mean EC50) was calculated to be 0.61 ng/mL (5.8 pM; Study 123564).
The use of the in vitro EC50 as the MABEL and basis for the FIH starting dose is supported by the previous and safe implementation of this strategy to identify the maximum recommended starting doses of previous BiTE® molecules in clinical development.
Efficacious exposures of AMG 757 were predicted based on in vitro data generated in Study 122717, which evaluated the in vitro pharmacology of AMG 757. Concentrations for half-maximal effect (EC50) and 90% of maximal effect (EC90) of AMG 757-mediated cell killing in SHP-77 cells (human DLL3-expressing cell line) were used to estimate a concentration range in which efficacy may be expected.
The lungs were used as the representative site of action for AMG 757 and were assumed to achieve exposures of approximately 1% of free serum exposures (Vugmeyser et al., J Pharm Sci. 99:1028-1045 (2010)). Based on this assumption, doses of AMG 757 to provide trough coverage of the EC50 of AMG 757-mediated cell killing in SHP-77 cells were considered to be minimally efficacious. Early signs of efficacy were predicted at 10 mg IV once every two weeks based on trough coverage of the average EC90 of cell killing in SHP-77 cells (assuming 1 % lung exposure) for the entire treatment cycle (
Small Cell Lung Cancer (SCLC), accounting for 10-15% of lung cancer (Rudin et al, J Clin Oncol. 33:4106-4111(2015)), is an aggressive lung cancer subtype with neuroendocrine differentiation and strongly associated with smoking (Koinis et al, Transl Lung Cancer Res. 5:39-50 (2016)). It displays a distinct natural history characterized by a high growth fraction, rapid doubling time and early establishment of widespread metastatic lesions (Gustafsson et al, Cancer.113:5-21(2008)). While 30% of patients present with disease confined to one hemithorax [limited disease (LD)], the majority of cases have disease not encompassed by one radiotherapy field [extended disease (ED)]. SCLC is exquisitely sensitive to first-line chemotherapy (approximately 60%-70% response rates) and to radiation which is stark contrast to subsequent resistance to second-line and subsequent therapies after disease recurrence (Byers et al, Cancer.121:664 672(2015)). Patients with ED develop drug resistance and die as a result of disease at a median time of 10 to 12 months from diagnosis (Rudin et al, 2015). For patients with ED SCLC, first line treatment is platinum-based chemotherapy. Most patients in the United States receive platinum-etoposide (EP) chemotherapy (with either carboplatin or cisplatin), and some patients receive platinum-irinotecan as an alternative, especially outside the United States. In March 2019, atezolizumab was approved by the United States Food and Drug Administration (US FDA) in combination with carboplatin and etoposide for the first-line treatment of adult patients with ED-SCLC (Tecentriq® United States Prescribing Information [USPI], 2019). After relapse, topotecan is the only second-line drug approved by the US FDA. However, despite its indication in this setting, topotecan has produced disappointing response rates (Byers et al, Cancer.121:664 672(2015)).
AMG 757 is a half-life extended (HLE) BiTE® molecule targeting DLL3 as a tumor-specific antigen and T-cell receptor-associated complex cluster of differentiation 3 (CD3) on T-cells. AMG 757 is developed for the treatment of SCLC and is a potent molecule acting by formation of an immunological synapse between CD3-positive T cells and cancer cells expressing the DLL3 protein. The resulting proximity triggers the redirected lysis of DLL3-positive target cells by the T cells. AMG 757 monotherapy significantly inhibited growth of subcutaneously implanted DLL3 expressing human melanoma WM266-4 cells and induced regression of orthotopic SHP-77-Luc lung tumors.
Study 20160323 is an open-label, ascending, multiple dose, phase 1 study evaluating AMG 757 administered as a short term intravenous (IV) infusion every 2 weeks (with or without Day 8 step dosing for example) in subjects with small cell lung cancer. There are two indications for this Study: A: Relapsed/refractory small cell lung cancer (RR SCLC) and B: Extensive disease SCLC (ED SCLC).
Due to its known mechanism of action, subjects are at an increased risk of CRS during initiation of AMG 757 treatment.
The study contains three parts:
The primary objectives for both Part A and Part B of the study are to evaluate the safety and tolerability of AMG 757 and to determine MTD or RP2D of AMG 757. The secondary objectives of both Part A and Part B of the study are to characterize the pharmacokinetics (PK) of AMG 757 and to evaluate preliminary anti-tumor activity of AMG 757.
AMG 757 is administered as a short IV infusion (approximately 60 minutes). Pre-specified doses for use in the dose escalation (planned dose levels for investigation) are: 0.003 mg (Cohort 1), 0.01 mg (Cohort 2), 0.03 mg (Cohort 3), 0.1 mg (Cohort 4), 0.3 mg (Cohort 5), 1 mg (Cohort 6), 3 mg (Cohort 7), 10 mg (Cohort 8), 30 mg (Cohort 9), and 100 mg (Cohort 10), administered once every two weeks. Dosing schedule in first cycle may be adjusted to include one or more step doses as described below. If compelling clinical responses are observed during the escalation period, further dose escalation can be stopped. Alternative dose levels or dosing schedule(s) of AMG 757 may be explored based on emerging pharmacokinetic (PK), pharmacodynamic (PD) and safety data. Higher doses may be explored if MTD is not reached at planned dose cohort levels (Cohorts 1-10) and supported by safety and PK/PD data.
Step Dosing: subjects may experience first dose effects (e.g., cytokine release syndrome with associated manifestations and any other potentially evolving and unknown first dose effects) following the initial infusion of AMG 757. It is believed that an optimal MTD may require a step dosing approach (e.g., initial dose on day 1 and step dose on Day 8). Two MTDs may be estimated, one for the initial dosing (MTD1) and one for the subsequent dosing (MTD2).
At any point during the study, the first time a subject experiences a first dose effect (e.g., CRS event of any grade), the safety data need to be reviewed to determine the appropriate dose to be implemented as an initial dose (MTD1), which does not exceed the dose where a CRS of Grade 2 or higher is observed. These doses and dosing schedules are guided by modeling and simulation of emerging clinical data (e.g., pharmacokinetics, safety data, etc.) to ensure that systemic exposures of AMG 757 do not exceed those associated with doses at which first dose effects were seen. Increased dosing frequency of a step dosing regimen and potential for drug accumulation need to be taken into account.
For all subjects enrolled in subsequent cohorts throughout the study, dose escalation continues with a constant dose for the first dose of the first cycle of AMG 757 (MTD1) and only the step dose will be escalated according to the pre-specified doses in the dose escalation to determine MTD2. An example of step dosing is shown in
Step dosing schedules are summarized below. The dosing schedule may be adapted to include one or more of the following measures, as per DLRT recommendation based on emerging safety data.
Part B: Part B will commence once a preliminary MTD or RP2D in Indication A (Part A1) is established.
Part C: One or more additional CRS mitigation strategies as outlined below may be evaluated, as per DLRT recommendation based on emerging safety data. Part C will commence while Part A1 is ongoing.
The above CRS mitigation strategies will initially be administered with IV dexamethasone. Based on the emerging safety profile, IV dexamethasone may be discontinued while continuing with one of the above CRS strategies alone to assess the safety profile without steroid premedication.
Each subject enrolled in Part C will receive only one of the above additional CRS mitigation strategies in addition to their AMG 757 therapy as described above. Subjects will start with a dose of AMG 757 that has been deemed safe and tolerable. If based on emerging safety data the incidence of CRS is reduced, then one or more of the above strategies may be implemented into Parts A or B.
Table 2 summaries the Eligibility Criteria for Study 20160323
The hypothesis of Study 20160323 is that AMG 757 is safe and tolerated in subjects with Indications A and B.
Primary Endpoints: Dose limiting toxicities (DLTs), treatment-emergent adverse events (AEs), treatment-related AEs, and clinically significant changes in vital signs, ECG, physical examinations, and clinical laboratory tests.
Secondary Endpoints: For Indications A and B: (1) PK parameters for AMG 757 following intravenous administration including but not limited to maximum observed concentration (Cmax), minimum observed concentration (Cmin), area under the concentration-time curve (AUC) over the 2 week dosing interval, accumulation following multiple dosing, and, if feasible, half-life (t½), (2) Objective Response (OR) per modified Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, (3) Duration of Response (DOR), and (4) 1-year Progression-Free Survival (PFS), and (5)1-year Overall Survival (OS). For Indication B only: Relapse Free Survival (RFS).
Exploratory Endpoints: For Indications A and B: (1) Incidence of anti-AMG 757 antibody formation, (2) Changes in protein, nucleic acid and cellular biomarkers in blood (e.g., cytokines, lymphocyte status, CTCs, sDLL3), (3) Cell surface protein expression (e.g., DLL3) and tumor infiltrating lymphocyte status in tumor tissue at baseline. For Indication B only: Effect of prior chemotherapy on T cell cytokine production pre-AMG 757 treatment. For Par C only: incidence of CRS.
Pharmacokinetics in humans: Preliminary AMG 757 PK analysis using noncompartmental approach was conducted for subjects in cohorts 1 to 5. Preliminary PK results show that AMG 757 exposures increased with dose from 0.003 mg to 0.3 mg. Estimated terminal half-life (t½) is approximately a week across doses after multiple Q2W dosing. No significant accumulation was observed (< 2-fold).
There was one confirmed response at 0.3 mg IV Q2W (cohort 5).
The following is a summary of AMG 757 dose and dosing schedule that were used in the different cohorts in the study.
Antitumor activity was assessed using modified Response Evaluation Criteria in Solid Tumors (RECIST) 1.1; assessments were performed at screening and every 8 ± 1 weeks after AMG 757 treatment until disease progression, withdrawal of consent, or start of new anticancer therapy.
40 patients (median age [range], 64 years [44-80]; ECOG PS: 0-1, n=39 [97.5%], median prior lines: 2.0 [1-6]; prior PD-⅟PD-L1 treatment: n=17 [42.5%]) enrolled at eight dose levels (DL) received ≥1 dose of AMG 757. Median treatment duration was 6.1 weeks (0.1-59.4). Adverse events (AEs) occurred in 39 (97.5%) patients, resulting in discontinuation in 4 (10.0%); 32 (80.0%) were treatment-related, including 7 (17.5%) grade ≥3 and 1 (2.5%) grade 5 (pneumonitis; DL5 [0.3 mg]). Cytokine release syndrome (CRS) was reported in 18 (45.0%) patients; grade 2 CRS in 5 (12.5%); no grade ≥3 CRS. CRS presented mainly as fever ± hypotension, was reversible, did not lead to treatment interruption or discontinuation, occurred mostly within 24 hours of the first two doses of AMG 757, and was managed with supportive care, corticosteroids, and/or anti-IL-6 treatment. 6 (17.6%) patients developed treatment-emergent anti-AMG 757 binding antibodies. The anti-AMG 757 antibodies were not associated with AEs and had no clear effect on drug exposure. Mean (+SD) steady state serum Concentration-Time profiles of AMG 757 are shown in
Confirmed partial response (PR) was reported for 6 (15.8%) patients (1/12 [8.3%] in DL5, ⅛ [12.5%] in DL6, 3/7 [42.9%] in DL7, and ⅐ [14.3%] in DL8 [
59 patients enrolled in ten dose levels (DL) received ≥1 dose of AMG 757. Summary of Objective Response of the patients who met the overall response rate (ORR) analysis criteria at the relevant data cut off day is shown in
Seven patients enrolled in Cohort 10 received ≥1 dose of AMG 757 with 4 subjects received 100 mg (on day 8) at least once. No new safety signals were observed in these patients compared to earlier cohorts.
The specification is most thoroughly understood in light of the teachings of the references cited within the specification. The embodiments within the specification provide an illustration of embodiments of the invention and should not be construed to limit the scope of the invention. The skilled artisan readily recognizes that many other embodiments are encompassed by the invention. All publications, patents, and sequences cited in this disclosure are incorporated by reference in their entirety. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material. The citation of any references herein is not an admission that such references are prior art to the present invention.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following embodiments.
Number | Date | Country | Kind |
---|---|---|---|
19208214.7 | Nov 2019 | EP | regional |
This application is a national phase of International Patent Application No. PCT/US2020/059052, filed on Nov. 5, 2020, which claims the benefit of European Patent Application No. 19208214, filed on Nov. 10, 2019 and U.S. Provisional Application No. 63/078,131, filed Sep. 14, 2020. The content of these applications is incorporated in its entirety by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/059052 | 11/5/2020 | WO |
Number | Date | Country | |
---|---|---|---|
63078131 | Sep 2020 | US |