DOSING REGIMEN FOR ANTI-DLL3 AGENTS

Abstract
The present invention provides a method for the treatment of DLL3-positive cancer or SCLC, comprising administering to a subject in need thereof an anti-DLL3 agent at a dose of between about 0.3 mg to about 100 mg or between about 3 mg to about 200 mg, once every two weeks. Step dosing of the anti-DLL3 agent for the treatment of SCLC is also disclosed.
Description
SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE

The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer redable form (CRF) of the Sequence Listing (file name:57585_Seqlisting.txt, date created: May 9, 2022, size: 1,218,935 bytes).


FIELD OF THE INVENTION

The present application relates to dosage and administration of anti-DLL3 agents for the treatment of cancer.


BACKGROUND OF THE INVENTION

Small cell lung cancer (SCLC) is an aggressive form of lung cancer with a poor prognosis and limited therapeutic options and represents about 10-15% of lung cancers. Survival rates have remained low for several decades, with only 5% of SCLC patients surviving five years, in a large part due to the lack of new therapies to combat this form of lung cancer. About a third of patients present with limited stage disease. Most patients present with extensive-stage disease, defined by the presence of tumors in only one side of the chest and that fit in a single radiation field. These stages impact available therapeutic regiments, with limited stage disease treated with chemotherapy and radiation and extensive stage disease treated with chemotherapy alone. Disseminated, metastatic tumors with lymphoma-like characteristics are a hallmark of SCLC.


Patients typically respond well to the current front-line therapy, which includes etoposide and cisplatin, but invariably quickly relapse with chemoresistant disease, for which no therapeutic options are currently available. Prognosis in the relapsed refractory setting is extremely poor, with rapid disease progression and short median survival of less than six months. Furthermore, SCLC patients have high rates of comorbidities, including hypertension, cardiac disease, diabetes and paraneoplastic syndromes. These, coupled with the typically advanced age of SCLC patients, impact the ability of patients to endure harsh chemo regimens, further limiting treatment options.


Delta-like 3 (DLL3) is a type 1 transmembrane protein and noncanonical Notch ligand that is differentially expressed in SCLC. Using immunohistochemistry (IHC), 85% of SCLC tumors stained positive for DLL3 in a pattern consistent with both membranous and cytoplasmic expression. In contrast, low levels of DLL3 protein expression were detected in normal brain, pancreatic islets, and pituitary gland with a cytoplasmic staining pattern (Saunders et al, Sci Transl Med. 7:302ra136 (2015)). DLL3 is a novel and promising target for the development of T-cell-targeted therapies for SCLC.


There is an unmet medical need for the development of therapies for the treatment of SCLC.


SUMMARY OF THE INVENTION

Based on the disclosure provided herein, those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following embodiments (E).


E1: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered at a dose of from 0.3 mg to 100 mg, from 3 mg to 200 mg, or 100 mg once every two weeks.


E2: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose of from 0.3 mg to 100 mg, 0.5 mg to 10 mg, or 1 mg, on day 1, b) a second dose of from 0.3 mg to 100 mg, from 3 to 200 mg, or 100 mg, on day 8, and c) one or more subsequence doses of from 0.3 mg to 100 mg, from 3 to 200 mg, or 100 mg, starting on day 15 and once every two weeks thereafter, and wherein the second and subsequent doses are the same, and are higher than the first dose.


E3: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to one of the following two schedules:


Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg or 1 mg, on day 1, b) a second dose (step dose) of from 3 mg to 100 mg or from 25 mg to 50 mg, on day 4, c) a third dose (step dose) of from 3 mg to 200 mg or 100 mg, on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg or 100 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same or higher than the second dose; or


Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg or 1 mg, on day 1, b) a second dose (step dose) of from 3 mg to 100 mg or 25 mg to 50 mg, on day 8, c) a third dose (step dose) of from 3 mg to 200 mg or 100 mg, on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg or 100 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third dose and subsequent doses are the same, and are higher than the second dose.


E4: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg or 1 mg, on day 1, b) a second dose (step dose) of from 3 mg to 100 mg or 25 mg, on day 4, c) a third dose (step dose) of from 3 mg to 100 mg or 50 mg, on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg or 100 mg, on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg or 100 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same or higher than the third dose.


E5: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 200 mg on day 4, c) a third dose (target dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose.


E6: A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, d) a fourth dose (target dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same the third dose.


E7: The method of any one of E1-E6, wherein the anti-DLL3 positive cancer is small cell lung cancer (SCLC).


E8: The method of any one of E1-E7, wherein the anti-DLL3 positive cancer is Relapsed/refractory (RR) SCLC or Extensive disease (ED) SCLC.


E9: The method of any one of E1-E8, wherein the anti-DLL3 agent is a bispecific antibody construct comprising two binding domains: the first domain binds to human DLL3, and the second domain binds to human CD3.


E10: The method of E9, wherein the DLL3-binding domain binds to an epitope of human DLL3 comprised within the amino acid sequence of SEQ ID NO: 258.


E11: The method of E9 or E10, wherein the DLL3-binding domain comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36.


E12: The method of any one of E9-E1 1, wherein the DLL3-binding domain comprises: (1) a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38, or (2) a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO:436.


E13: The method of any one of E9-E12, wherein the VH and VL of the DLL3-binding domain are joined by a linker to form a single chain Fv (scFv).


E14: The method of E13, wherein the linker comprises a sequence selected from any one of SEQ ID NOs: 285-293.


E15: The method of E13 or E14, wherein the linker comprises (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 1, 2, 3 or 4).


E16: The method of any one of E9-E15, wherein the DLL3-binding domain comprises the amino acid sequence of SEQ ID NO: 39 or SEQ ID NO: 437.


E17: The method of any one of E9-E16, wherein the CD3-binding domain comprises: (a) a VH that comprises: a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and a VL that comprises: a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.


E18: The method of any one of E9-E17, wherein the CD3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.


E19: The method of E17 or E18, wherein the VH and VL of the CD3-binding domain are joined by a linker to form a single chain Fv (scFv).


E20: The method of E19, wherein the linker comprises a sequence selected from any one of SEQ ID NOs: 285-293.


E21: The method of E19 or E20, wherein the linker comprises (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 1, 2, 3 or 4).


E22: The method of any one of E17-E21, wherein the CD3-binding domain comprises the amino acid sequence of SEQ ID NO: 431.


E23: The method of any one of E9-E22, wherein the DLL3-binding domain and the CD3-binding domain are joined by a linker.


E24: The method of E23, wherein the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293.


E25: The method of E23 or E24, wherein the linker is a peptide linker comprises (Gly4Ser)x, where x is an integer of 1 or greater (e.g., 1, 2, 3 or 4).


E26: The method of any one of E9-E25, the anti-DLL3 agent comprises a DLL3-binding domain and a CD3-binding domain. The DLL3-binding domain comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36. The CD3-binding domain comprises (a) a VH that comprises: (i) a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and (b) a VL that comprises: (i) a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.


E27: The method of any one of E9-E26, the DLL3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38, and the CD3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.


E28: The method of any one of E9-E26, the DLL3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO:436, and the CD3-binding domain comprises a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.


E29: The method of any one of E9-E27, wherein the DLL3-binding domain comprises the amino acid of SEQ ID NO: 39 and the CD3-binding domain comprises the amino acid of SEQ ID NO: 431.


E30: The method of any one of E9-E26 or E28, the DLL3-binding domain comprises the amino acid of SEQ ID NO: 437 and the CD3-binding domain comprises the amino acid of SEQ ID NO: 431.


E31: The method of E29, wherein the anti-DLL3 agent comprises the amino acid sequence of SEQ ID NO: 40.


E32: The method of E30, wherein the anti-DLL3 agent comprises the amino acid sequence of SEQ ID NO: 438.


E33: The method of any one of E9-E32, wherein the anti-DLL3 agent further comprises a third domain that extends or enhance the serum half-life of the anti-DLL3 agent.


E34: The method of E33, wherein the third domain comprises the amino acid sequence selected from any one of SEQ ID NOs: 541-548.


E35: The method of any one of E9-E26, E28, E30, E32, E33 or E35, wherein the anti-DLL3 agent comprises the amino acid of SEQ ID NO: 520.


E36: The method of any one of Elor E7-E35, wherein the anti-DLL3 agent is administered once every two weeks at a dose of: from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, or from about 30 mg to about 40 mg.


E37: The method of any one of Elor E7-E35, wherein the anti-DLL3 agent is administered once every two weeks at a dose of: from about 3 mg to about 100 mg, from about 10 to about 180 mg, from about 10 to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, or from about 100 mg to about 120 mg; or wherein the anti-DLL3 agent is administered once every two weeks at a dose of 3 mg, 10 mg, 30 mg or 100 mg.


E38: The method of any one of E1 or E7-E37, wherein the anti-DLL3 agent is administered on day 1 and day 15 of a 28-day cycle.


E39: The method of any one of E2 or E7-E35, wherein the second and the one or more subsequent doses are the same and are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, at least 100-fold, at least 120-fold, at least 150-fold, at least 200-fold, higher than the first dose.


E40: The method of any one of E2, E7-E35 or E39, wherein each of the first dose of the anti-DLL3 agent is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or about 1 mg, and the second and subsequent doses of the anti-DLL3 agent can be any one of the following: from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, from about 30 mg to about 40 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, and from about 100 mg to about 120 mg.


E41: The method of any one of E2, E7-E35, E39, or E40, wherein the first dose of the anti-DLL3 agent is 1 mg, the second and subsequently doses of the anti-DLL3 agent are each 3 mg, 10 mg, 30 mg, or 100 mg.


E42: The method of any one of E3 or E7-E35, wherein the first dose of the anti-DLL3 agent is from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose of the anti-DLL3 agent is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg, the third and subsequent doses of the of the anti-DLL3 agent can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg.


E43: The method of any one of E3, E7-E35, or E42, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is from 25 mg to 50 mg or from 45 mg to 70 mg, and the third and subsequent doses of the anti-DLL3 agent are 100 mg.


E44: The method of any one of E3, E7-E35, or E42, wherein the first dose of the anti-DLL3 agent is 1 mg on day 1, the second dose of the anti-DLL3 agent is 25 mg or 50 mg on day 4, the third dose of the anti-DLL3 agent is 100 mg on day 8, and the subsequent dose of the anti-DLL3 agent is 100 mg, starting on day 15 and once every two weeks thereafter.


E45: The method of any one of E4 or E7-E35, wherein the first dose of the anti-DLL3 agent is from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose of the anti-DLL3 agent is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 10 mg to about 40 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 20 mg to about 40 mg, or about 25 mg, the third dose of the anti-DLL3 agent is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from 10 mg to about 60 mg, from about 20 mg to about 100 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 30 mg to about 100 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 40 mg to about 100 mg, from about 40 mg to about 80 mg, from about 40 mg to about 60 mg, or about 50 mg, the fourth and subsequent doses of the anti-DLL3 agent can be any of the following: from about 3 mg to about 100 mg, from about 10 mg to about 150 mg, from about 30 mg to 200 mg, from about 30 mg to about 150 mg, from about 30 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg.


E46: The method of any one of E4, E7-E35 or E45, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is 25 mg, the third dose of the anti-DLL3 agent is 50 mg, and the fourth and subsequent doses of the anti-DLL3 agent are 100 mg.


E47: The method of any one of E5 or E7-E35, wherein the first dose of the anti-DLL3 agent is 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second, the third dose and the subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, from 100 mg to 200 mg, or 100 mg.


E48: The method of any one of E6 or E7-E35, wherein the first dose is from 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second dose is from 3 mg to 10 mg, from 10 mg to 80 mg, from 10 mg to 60 mg, from 20 mg to 80 mg, from 20 mg to 60 mg, from 20 mg to 40 mg, 25 mg, or 50 mg, and the third, the fourth and subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, 100 mg to 200 mg, or 100 mg.


E49: The method of any one of E1-E48, wherein the method comprises administering one or more additional therapeutic agent to the subject.


E50: The method of E49, wherein the one or more additional therapeutic agents is a steroid.


E51: The method of any one of E49 or E50, wherein the additional therapeutic agent is dexamethasone.


E52: The method of any one of E49-E51, wherein the additional therapeutic agent is administered prior to the treatment with the anti-DLL3 agent.


E53: The method of any one of E48-E51, wherein the additional therapeutic agent is administered concurrently with the anti-DLL3 agent.


E54: The method of any one of E2-E53, wherein the anti-DLL3 agent is administered in a 28-day cycle, and the method further comprises administering a fluid (e.g., saline), an anti-inflammatory agent, tocilizumab, or etanercept to the subject in the first cycle wherein the anti-DLL3 agent is administered.


E55: The method of E54, wherein one-liter saline is administered by IV infusion to the subject after the run-in dose and the step doses of the anti-DLL3 agent.


E56: The method of E55, wherein the one-liter saline is administered over about 4-5 hours.


E57: The method of E54, wherein the anti-inflammatory agent is a corticosteroid or acetaminophen.


E58: The method of E57, wherein the corticosteroid is dexamethasone.


E59: The method of any one of E54, E57, or E58, wherein the anti-inflammatory agent or tocilizumab is administered to the subject prior to the run-in dose and the step doses of the anti-DLL3 agent.


E60: The method of E59, wherein the corticosteroid is administered to the subject about 6-16 hours prior to the run-in dose and step doses of the anti-DLL3 agent.


E61: The method of E59, wherein tocilizumab or acetaminophen is administered to the subject about one hour prior to the run-in dose and step doses of the anti-DLL3 agent.


E62: The method of E54, wherein etanercept is administered to the subject about 36-60 hours prior to the run-in dose and step doses, except the step dose on day 4, of the anti-DLL3 agent.


E63: The method of E62, wherein etanercept is administered 2 days prior to the run-in dose and step doses, except the step dose on day 4, of the anti-DLL3 agent.


E64: The method of any one of E1-E63, wherein the subject is a human.


E65: An anti-DLL3 agent for use in a method as set forth in any one of embodiments E1-E64.


E66: An anti-DLL3 agent for use in the treatment of DLL3-positive cancer (e.g., SCLC), wherein the anti-DLL3 agent is administered as set forth in any one of embodiments E1-E64.


E67: Use of an anti-DLL3 agent for the manufacture of a medicament for the treatment of SCLC, wherein the medicament is prepared to be administered as set forth in any one of embodiments E1-E64.


E68: Use of an anti-DLL3 agent in the preparation of a medicament for the treatment of an DLL3-positive cancer, wherein the anti-DLL3 agent is administered as set for in any one of embodiments E1-E64.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows predicted serum concentration-time profiles of a single cycle of AMG 757 in humans after administration of short IV-infusions once every two weeks. The dashed lines represent the concentrations required for 50% and 90% maximal effect (EC50 and EC90 values of 0.61 ng/mL and 4.6 ng/mL, respectively) of AMG 757-mediated CD69 upregulation, which was identified as the most sensitive marker of AMG 757 activity (Study 123564).



FIG. 2 shows predicted lung concentration-time profiles of a single cycle of AMG 757 in humans after administration of short IV-infusions once every two weeks. The dashed lines represent the concentrations required for 50% and 90% maximal effect (EC50 and EC90 values of 2.8 ng/mL and 5.7 ng/mL, respectively) of AMG 757-mediated cell killing in SHP-77 cells.



FIG. 3 shows a step dosing example assuming adverse events related to first dose effects occurs at 0.03 mg.



FIG. 4 shows confirmed partial response (PR) of SCLC patients treated with AMG 757.



FIG. 5 shows the mean steady state serum AMG 757 Concentration-Time profiles of SCLC patients treated with the molecule. In FIG. 5, *denotes step dosing, data are presented after Cycle 2 Day 15 dose during the 2 week dosing interval. Data from the only patient enrolled in 0.1 mg group were not available as the patient dropped out during cycle 1.



FIG. 6 shows Summary of Objective Response of SCLC patients treated with AMG 757.





DETAILED DESCRIPTION

As disclosed and exemplified herein, a Phase 1 clinical study was conducted for the treatment of SCLC, using a bispecific protein (AMG 757) that targets DLL3 and CD3.


AMG 757 is a half-life-extended BiTE® (bispecific T cell engager) molecule developed for the treatment of SCLC. The activity of AMG 757 requires the simultaneous binding to both target cells (DLL3+ cells) and T cells. The pharmacological effect of AMG 757 is mediated by specific redirection of previously primed cytotoxic CD8+or CD4+ T lymphocytes to kill DLL3+ cells. The selection of the starting dose for the First in Human (FIH) study was based on the Minimum Anticipated Biological Effect Level (MABEL), which was identified as the EC50 of AMG 757-mediated CD69 upregulation in SHP-77 cells (Study 123564). A starting dose of 0.003 mg once every two weeks (Q2W) was selected based on human PK predictions and is predicted to generate maximum serum concentrations equivalent to the MABEL (0.61 ng/mL). This regimen is expected to achieve adequate exposures in target tissues (e.g., lung) throughout the entire dosing interval, while minimizing peak-to-trough ratios after multiple treatment cycles of AMG 757. Based on clinical experience in the FIH study, a dose of at least 0.3 mg Q2W is desirable.


1. Definition

Some of exemplary bispecific anti-DLL3 agents disclosed herein (such as BiTE® molecules) are recombinant protein constructs comprising two binding domains, each domain derived from an antigen-binding fragment of a full-length antibody. Such antigen-binding fragment retains the ability to specifically bind to an antigen (preferably with substantially the same binding affinity). Examples of an antigen-binding fragment includes (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH 1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, and (v) a dAb fragment (Ward et al.. 1989 Nature 341:544-546), which consists of a VH domain. Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. Science 242:423- 426 (1988) and Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883.


A “variable domain” refers to the variable region of the antibody light chain (VL) or the variable region of the antibody heavy chain (VH), either alone or in combination. As known in the art, the variable regions of the heavy and light chains each consist of four framework regions (FR) connected by three complementarity determining regions (CDRs), and contribute to the formation of the antigen-binding site of antibodies.


The “Complementarity Determining Regions” (CDRs) of exemplary DLL3-binding domains and CD3-binding domains are provided in the Sequence Table. The CDRs can be defined according to Kabat, Chothia, the accumulation of both Kabat and Chothia, AbM, contact. North, and/or conformational definitions or any method of CDR determination well known in the art. See, e.g., Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th ed. (hypervariable regions); Chothia et al., 1989, Nature 342:877-883 (structural loop structures). AbM definition of CDRs is a compromise between Kabat and Chothia and uses Oxford Molecular’s AbM antibody modeling software (Acceltys®). The identity of the amino acid residues in a particular antibody that make up a CDR can be determined using methods well known in the art.


The term “treatment” includes prophylactic and/or therapeutic treatments. If it is administered prior to clinical manifestation of a condition, the treatment is considered prophylactic. Therapeutic treatment includes, e.g., ameliorating or reducing the severity of a disease, or shortening the length of the disease.


“About” or “approximately,” when used in connection with a measurable numerical variable, refers to the indicated value of the variable and to all values of the variable that are within the experimental error of the indicated value (e.g. within the 95% confidence interval for the mean) or ±10% of the indicated value, whichever is greater. Numeric ranges are inclusive of the numbers defining the range.


“Run-in dose” when used in connection with administration of anti-DLL3 agents for the treatment of cancer (e.g.. small cell lung cancer (SCLC)) refers to the initial dose of an anti-DLL3 agent equal to or lower than a dose at which a first dose effect (e.g.. cytokine release syndrome (CRS)) is observed. As known in the art, run-in dose can be determined by modeling and simulation of safety and pharmacokinetic data. For example, run-in dose can be a maximum tolerated dose (MTD) of an anti-DLL3 agent where no CRS or a CRS lower than a certain grade (e.g., Grade 2) is observed.


“Target dose” when used in connection with administration of anti-DLL3 agents for the treatment of cancer (e.g., SCLC) refers to a dose that achieves a target effect of an anti-DLL3 agent (e.g., ameliorating or reducing the severity of SCLC, or shortening the length of the SCLC).


“Step dose” when used in connection with administration of anti-DLL3 agents for the treatment of cancer (e.g.. SCLC) refers to a dose that is higher than the previous dose at which an anti-DLL3 agent is administered. Step dose includes one or more doses that increase from a run-in dose to reach a target dose.


2. Anti-DLL3 Agents

DLL3 is a non-canonical Notch ligand expressed primarily during embryonic development that functions during somitogenesis. In contrast to other Notch ligands that are expressed on the surface of cells, DLL3 accumulate in the Golgi in normal tissues (Geffers et al, J Cell Biol.178:465-476 (2007)). DLL3 was identified as a tumor-associated antigen and a compelling target for T cell-based therapies by analyzing the differential expression of this target in 28 SCLC tumors and a large panel of normal tissues (Study 123658).


The human DLL3 protein comprises eight extracellular domains: signal peptide, N-terminus, DSL, EGF1, EGF2, EGF3, EGF4, EGF5 and EGF6. The amino acid sequence of human DLL3, the EGF3 domain, the EGF4 domain, and the combined EGF3 and EGF4 domains are shown in the sequence table as SEQ ID NOs: 252, 258, 259 and 260, respectively.


An exemplary anti-DLL3 agent is a bispecific molecule that binds DLL3 and CD3, such as a BiTE® (bispecific T cell engager) molecule. BiTE® molecules are recombinant protein constructs made from two flexibly linked binding domains, each domain derived from antibodies. One binding domain of BiTE® molecule is specific for a tumor-associated surface antigen (such as DLL3); the second binding domain is specific for CD3, a subunit of the T cell receptor complex on T cells. By their design, BiTE® molecules are uniquely suited to transiently connect T cells with target cells and, at the same time, potently activate the inherent cytolytic potential of T cells against target cells. See e.g., WO 99/54440, WO 2005/040220, and WO 2008/119567.


Accordingly, in some embodiments, the anti-DLL3 agent described comprises two binding domains: the first domain binds DLL3 (preferably human DLL3), and the second domain binds CD3 (preferably human CD3). Preferably, the first domain binds to an epitope of DLL3 comprised within the amino acid sequence of SEQ ID NO: 260. More preferably, the first domain binds to an epitope of DLL3 comprised within the amino acid sequence of SEQ ID NO: 258.


In certain embodiments, the DLL3-binding domain comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36.


In certain embodiments, the DLL3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38. In certain preferred embodiments, the DLL3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO:436.


In some embodiments, the VH and VL are joined by a linker to form a single chain Fv (scFv). In some embodiments, the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3) (e.g., SEQ ID NOs: 292, 293).


In certain embodiments, the DLL3-binding domain comprises the amino acid sequence of SEQ ID NO: 39. In certain preferred embodiments, the DLL3-binding domain comprises the amino acid sequence of SEQ ID NO: 437.


In certain embodiments, the CD3-binding domain comprises: (a) a VH that comprises: a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and a VL that comprises: a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.


In certain embodiments, the CD3-binding domain comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430. In some embodiments, the VH and VL are joined by a linker to form a single chain Fv (scFv). In some embodiments, the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3).


In certain embodiments, the CD3-binding domain comprises the amino acid sequence of SEQ ID NO: 431.


In certain embodiments, the DLL3-binding domain and the CD3-binding domain are joined by a linker. In some embodiments, the linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g., 2 or 3).


In certain embodiments, the anti-DLL3 agent disclosed herein comprises two domains. The first domain binds to DLL3 (preferably human DLL3) and comprises (a) a heavy chain variable region (VH) that comprises: (i) a VH complementarity determining region one (CDR-H1) comprising the amino acid sequence of SEQ ID NO:31; (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:32; and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:33; and (b) a light chain variable region (VL) that comprises: (i) a VL complementarity determining region one (CDR-L1) comprising the amino acid sequence of SEQ ID NO:34; (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:35; and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:36. The second domain binds to CD3 (preferably human CD3), and comprises (a) a VH that comprises: (i) a CDR-H1 comprising the amino acid sequence of SEQ ID NO:426, (ii) a CDR-H2 comprising the amino acid sequence of SEQ ID NO:427, and (iii) a CDR-H3 comprising the amino acid sequence of SEQ ID NO:428; and (b) a VL that comprises: (i) a CDR-L1 comprising the amino acid sequence of SEQ ID NO:423, (ii) a CDR-L2 comprising the amino acid sequence of SEQ ID NO:424, and (iii) a CDR-L3 comprising the amino acid sequence of SEQ ID NO:425.


In certain embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:37, and a VL that comprises the amino acid sequence of SEQ ID NO:38; and (b) the second domain binds CD3 (preferably human CD3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430. In certain preferred embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:435, and a VL that comprises the amino acid sequence of SEQ ID NO: 436; and (b) the second domain binds CD3 (preferably human CD3) and comprises: a VH that comprises the amino acid sequence of SEQ ID NO:429, and a VL that comprises the amino acid sequence of SEQ ID NO:430.


In certain embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 39, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431. In certain embodiments, the anti-DLL3 agent described herein comprises two domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 437, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431.


In certain embodiments, the anti-DLL3 agent described herein comprises the amino acid sequence of SEQ ID NO: 40. In certain embodiments, the anti-DLL3 agent described herein comprises the amino acid sequence of SEQ ID NO: 438.


In certain embodiments, anti-DLL3 agent described herein further comprises a third domain that extends or enhance the serum half-life of the anti-DLL3 agent. In certain embodiments, the third domain comprises two polypeptides joined by a linker, each peptide comprising a hinge, a CH2 and a CH3 domain of human IgG. In certain embodiments, the third domain comprises, in an N- to C-terminal order: hinge-CH2-CH3-linker-hinge-CH2-CH3. In some embodiments, the linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g., 6). In certain embodiments, the third domain comprises the amino acid sequence selected from any one of SEQ ID NOs: 541-548.


In certain embodiments, the DLL3-binding domain and the CD3-binding domain are joined by a first linker to form a peptide, which is joined to the third domain by a second linker. In certain embodiments, the first linker is a peptide linker comprising a sequence selected from any one of SEQ ID NOs: 285-293, and the second linker comprises a sequence selected from any one of SEQ ID NO: 285, 286, 288, 289, 290, 292 and 293. In some embodiments, the first linker is a GS liker, such as Gly-Gly-Gly-Gly-Ser (G4S, SEQ ID NO: 286), or polymers thereof, i.e. (Gly4Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3), and the second linker comprises a sequence selected from any one of SEQ ID NO: 285, 286, 288, 289, 290, 292 and 293.


In certain embodiments, the anti-DLL3 agent described herein comprises three domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 39, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431, and (c) the third domain comprises an amino acid sequence selected from any one of SEQ ID NOs: 541-548. In certain embodiments, the anti-DLL3 agent described herein comprises three domains: (a) the first domain binds DLL3 (preferably human DLL3) and comprises the amino acid sequence of SEQ ID NO: 437, (b) the second domain binds CD3 (preferably human CD3) and comprises the amino acid of SEQ ID NO: 431, and (c) the third domain comprises any one of the amino acid sequence selected from SEQ ID NOs: 541-548.


In certain embodiments, the anti-DLL3 agent described herein comprises the amino acid sequence of SEQ ID NO: 520.


3. Dosing of Anti-DLL3 Agents

Disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, at a dose of from about 0.3 mg to about 100 mg, from about 3 mg to about 200 mg, or about 100 mg, once every two weeks. In certain embodiments, the DLL3-positive cancer is small cell lung cancer (SCLC). In certain embodiments, the SCLC is relapsed/refractory SCLC (RR SCLC) or extensive disease SCLC (ED SCLC). In certain embodiments, the subject is a human having SCLC, e.g., RR SCLC or ED SCLC.


In certain embodiments, the anti-DLL3 agent is administered once every two weeks at a dose of: from about 0.3 mg to about 100 mg, from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, or from about 30 mg to about 40 mg.


In certain embodiments, the anti-DLL3 agent is administered once every two weeks at a dose of: from about 3 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, or from about 100 mg to about 120 mg.


In certain embodiments, the anti-DLL3 agent is administered once every two weeks at a dose of about 3 mg, 10 mg, 30 mg, or 100 mg.


In certain embodiments, the anti-DLL3 agent is administered on day 1 and day 15 of a 28-day cycle.


As described Example 2, the starting dose for the FIH study was based on the Minimum Anticipated Biological Effect Level (MABEL), which was identified as the EC50 of AMG 757-mediated CD69 upregulation in SHP-77 cells (Study 123564). A starting dose of 0.003 mg was selected based on human PK predictions and is predicted to generate maximum serum concentrations equivalent to the MABEL (0.61 ng/mL). The dose of AMG 757 in the Phase 1 clinical study is 0.003 mg and higher and is administered as intravenous (IV) infusions once every two weeks (Q2W) in patients with SCLC. This regimen is believed to achieve adequate exposures in target tissues (e.g., lung) throughout the entire dosing interval, while minimizing peak-to-trough ratios after multiple treatment cycles of AMG 757.


Predicted human PK parameters were used to predict AMG 757 concentrations in the lung, which was designated as the representative site of action and was assumed to achieve approximately 1% of serum exposures (Vugmeyster et al, 2010). Early signs of efficacy were predicted at 10 mg every 2 weeks based on trough coverage of the average EC90 of cell killing in SHP-77 cells (assuming 1% lung exposure), see e.g., Example 2.


There was one confirmed response at 0.3 mg administered as IV infusion once every two weeks (Cohort 5) in the clinical study. This observed efficacy of AMG 757 is surprising because it is significantly lower than the dose of 10 mg Q2W that was predicted to be efficacious based on pre-clinical results. Additional confirmed responses were observed in higher dose cohorts. It is believed that efficacious dose of AMG 757 can be at least 0.3 mg (e.g., from about 0.3 mg to about 100 mg or from about 3 mg to about 200 mg) administered once every two weeks.


The anti-DLL3 agent can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, intranasal, and/or intralesional administration. Parenteral administration includes intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In some embodiments, the anti-DLL3 agent is administered by intravenous (IV) infusion, such as a short IV infusion (approximately 60 minutes), once every two weeks.


3.1 Step Dosing

Due to its mechanism of action, subjects may be at an increased risk for first dose effects (e.g., cytokine release syndrome) following initial infusion of AMG 757. It is believed that an optimal maximal tolerated dose (MTD) may require a step dosing approach (e.g., initial dose on day 1, step dose on Day 8, and subsequent dose starting on day 15 and thereafter). In certain aspects, two MTDs may be estimated or established, one for the initial dosing (MTD1, run-in dose) and one for the subsequent dosing (MTD2). In certain aspects, multiple MTDs may be estimated or established, one for the initial run-in dose (MTD1) and one for each step dose(s) and the subsequent dose, as applicable.


If a first dose effect (e.g., cytokine release syndrome (CRS)) is experienced by a subject, an appropriate first dose (MTD1) not exceeding the dose at which a CRS event is observed can be determined and implemented. A second dose and a subsequent dose can also be determined and implemented. In addition, a second dose, a third dose, a fourth dose and a subsequent dose can be determined and implemented, depending on the number of steps in a step dosing schedule. In certain embodiments, the second dose and the subsequent dose are the same, and are higher than the first dose. In certain embodiments, the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose. In certain embodiments, the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth and subsequent doses are the same, and are higher than the third dose. These doses and dosing schedules can be guided by modeling and simulation of clinical data (e.g., pharmacokinetics, safety data, etc.) to ensure that systemic exposures of AMG 757 may not exceed those associated with doses at which first dose effects were seen (e.g., CRS) due to the increased dosing frequency of a step dosing regimen and potential for drug accumulation.


Exemplary step dosing schedules of anti-DLL3 agents (e.g., AMG 757) in a 28-day cycle are shown in the table below (cycle 1 only), the anti-DLL3 agent is administered once every two weeks thereafter.


Exemplary Single and Multiple Step Dosing Schedules (Cycle 1 only)













Anti-DLL3 agent (AMG 757)
Day 1
Day 4
Day 8
Day 15




One-step
Run-in dose
N/A
Step dose (equal to target dose)
Target dose


Two-step (Option 1)
Run-in dose
Step dose
Step dose (equal to target dose)
Target dose


Two-step (Option 2)
Run-in dose
N/A
Step dose
Step dose (equal to target dose)


Three-step
Run-in dose
Step dose
Step dose
Step dose (equal to target dose)






Accordingly, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to a one-step dosing schedule.


In certain embodiments, disclosed herein is a method of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to the following schedule: a) a first dose of from 0.3 mg to 100 mg (run-in dose) on day 1, b) a second dose of from 0.3 mg to 100 mg (step dose) on day 8, and c) one or more subsequence doses of from 0.3 mg to 100 mg (target dose), starting on day 15 and once every two weeks thereafter, and wherein the second and subsequent doses are the same, and are higher than the first dose.


In certain embodiments, disclosed herein is a method of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 200 mg on day 8, and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second and subsequent doses are the same, and are higher than the first dose.


In certain embodiments of the one-step dosing schedule, the second and the subsequent doses are the same and are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, at least 100-fold, or at least 120-fold, at least 150-fold, or at least 200-fold higher than the first dose.


In certain embodiments of the one-step dosing schedule, the second and the subsequent doses are the same and are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, or at least 100-fold higher than the first dose, and each of the first, second and subsequent doses of the anti-DLL3 agent can be any one of the following: from about 0.3 mg to about 100 mg, from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 100 mg, from about 1 mg to about 90 mg, from about 1 mg to about 80 mg, from about 1 mg to about 70 mg, from about 1 mg to about 60 mg, from about 1 mg to about 50 mg, from about 1 mg to about 40 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 1 mg to about 10 mg, from about 1 mg to about 3 mg, from about 3 mg to about 100 mg, from about 3 mg to about 90 mg, from about 3 mg to about 80 mg, from about 3 mg to about 70 mg, from about 3 mg to about 60 mg, from about 3 mg to about 50 mg, from about 3 mg to about 40 mg, from about 3 mg to about 30 mg, from about 3 mg to about 20 mg, from about 3 mg to about 10 mg, from about 3 mg to about 12 mg, from about 3 mg to about 15 mg, from about 10 mg to about 100 mg, from about 10 mg to about 90 mg, from about 10 mg to about 80 mg, from about 10 mg to about 70 mg, from about 10 mg to about 60 mg, from about 10 mg to about 50 mg, from about 10 mg to about 40 mg, from about 10 mg to about 30 mg, from about 10 mg to about 20 mg, from about 10 mg to about 15 mg, from about 20 mg to about 100 mg, from about 20 mg to about 90 mg, from about 20 mg to about 80 mg, from about 20 mg to about 70 mg, from about 20 mg to about 60 mg, from about 20 mg to about 50 mg, from about 20 mg to about 40 mg, from about 20 mg to about 30 mg, from about 30 mg to about 100 mg, from about 30 mg to about 90 mg, from about 30 mg to about 80 mg, from about 30 mg to about 70 mg, from about 30 mg to about 60 mg, from about 30 mg to about 50 mg, and from about 30 mg to about 40 mg.


In certain embodiments of the one-step dosing schedule, the first dose of the anti-DLL3 agent is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or about 1 mg; the second and subsequent doses are the same, and are at least 3-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, at least 60-fold, at least 70-fold, at least 80-fold, at least 90-fold, at least 100-fold, at least 120-fold, at least 150-fold, or at least 200-fold, higher than the first dose, and each of the second and subsequent doses can be any one of the following: from about 3 mg to about 200 mg, from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200, from about 70 mg to about 180, from about 70 mg to about 150, from about 70 mg to about 120 mg, from about 90 mg to about 200, from about 90 mg to about 180, from about 90 mg to about 120 mg, or about 100 mg.


In certain embodiments of the one-step dosing schedule, the first dose of the anti-DLL3 agent is 1 mg, the second and subsequent doses are the same and are 3 mg, 10 mg, 30 mg, or 100 mg.


In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to a two-step dosing schedule.


In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to one of the following two schedules:


Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose; or


Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 8, c) a third dose (step dose) of from 3 mg to 200 mg on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third dose and subsequent doses are the same, and are higher than the second dose.


In certain embodiments of the two-step dosing schedule, the second dose is at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, at least 60-fold, at least 70-fold, at least 80-fold, or at least 90-fold, higher than the first dose, and the third and subsequent doses are the same and are at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold, higher than the second dose.


In certain embodiments of the two-step dosing schedule, the second dose is from about 20-fold to about 100-fold, from about 20-fold to about 90-fold, from about 20-fold to about 70-fold, from about 20-fold to about 50-fold, from about 25-fold to about 50-fold, from about 30-fold to about 100-fold, from about 30-fold to about 90-fold, from about 30-fold to about 70-fold, or from about 30-fold to about 50-fold, higher than the first dose, and the third and subsequent doses are the same and are from about 2-fold to about 10-fold, from about 2-fold to about 8-fold, from about 2-fold to about 6-fold, from about 2-fold to about 4-fold, from about 4-fold to about 8-fold, or from about 4-fold to about 6-fold, higher than the second dose.


In certain embodiments of the two-step dosing schedule, the first dose is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg, and the third and subsequent doses are the same and are from about 3 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg.


In certain embodiments of the two-step dosing schedule, the first dose is 1 mg, the second dose is from about 25 mg to about 50 mg, and the third and subsequent doses are the same and are 100 mg. In certain embodiments of the two-step dosing schedule, the first dose is 1 mg, the second dose is from about 45 mg to about 70 mg, and the third and subsequent doses are the same and are 100 mg.


In certain embodiments of the two-step dosing schedule, the first dose is 1 mg on day 1, the second dose is 25 mg or 50 mg on day 4, the third dose is 100 mg on day 8, and the one or more subsequent doses are 100 mg, starting on day 15 and once every two weeks thereafter.


In certain embodiments of Schedule I, target dose is administered on day 4. In such embodiments, the anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose, equal to target dose) of from 3 mg to 200 mg on day 4, c) a third dose (target dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose. In certain embodiments, the first dose is from 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second, the third dose and the subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, from 100 mg to 200 mg, or 100 mg. It is believed that such dosing schedule (which target dose is administered on day 4, 8 and 15 of the first cycle), is beneficial in that it helps to reach the desired serum level of the anti-DLL3 agent quickly.


In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to a three-step dosing schedule.


In certain embodiments, disclosed herein are methods of treating DLL3-positive cancer comprising administering to a subject in need thereof an anti-DLL3 agent, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose) of from 3 mg to 100 mg on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are higher than the third dose.


In certain embodiments of the three-step dosing schedule, the second dose is at least 5-fold, at least 10-fold, at least 20-fold, at least 30-fold, at least 40-fold, or at least 50-fold, higher than the first dose, the third dose is at least 0.5-fold, at least 1-fold, at least 2-fold, at least 3-fold, or at least 5-fold, higher than the second dose, the fourth and subsequent doses are the same and are at least 1-fold, at least 2-fold, at least 3-fold, or at least 5-fold, higher than the third dose.


In certain embodiments of the three-step dosing schedule, the second dose is from about 5-fold to about 70-fold, from about 20-fold to about 70-fold, from about 20-fold to about 60-fold, for rom about 25-fold to about 50-fold, higher than the first dose, the third dose is from about 0.5-fold to about 4-fold, from about 0.5-fold to about 2.5-fold, from about 1-fold to about 4-fold, or from about 1-fold to about 2-fold, higher than the second dose, and the fourth and subsequent doses are the same and are from about 1-fold to about 4-fold or from about 2-fold to about 3-fold, higher than the third dose.


In certain embodiments of the three-step dosing schedule, the first dose is from about 0.5 mg to about 10 mg, from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg, the second dose is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 10 mg to about 40 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 20 mg to about 40 mg, or about 25 mg, the third dose is from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from 10 mg to about 60 mg, from about 20 mg to about 100 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 30 mg to about 100 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 40 mg to about 100 mg, from about 40 mg to about 80 mg, from about 40 mg to about 60 mg, or about 50 mg, and the fourth and subsequent doses are the same and are from about 3 mg to about 10 mg, from about 10 mg to about 200 mg, from about 10 mg to about 150 mg, from about 30 mg to 200 mg, from about 30 mg to about 150 mg, from about 30 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg.


In certain embodiments of the three-step dosing schedule, the first dose is 1 mg, the second dose is 25 mg, the third dose is 50 mg and the fourth and subsequent doses are the same and are 100 mg.


In certain embodiments of the three-step dosing schedule, target dose is administered on day 8. In such embodiments, the anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose, equal to target dose) of from 3 mg to 200 mg on day 8, d) a fourth dose (target dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same as the third dose. In certain embodiments, the first dose is from 0.5 mg to 8 mg, from 0.5 mg to 6 mg, from 0.5 mg to 4 mg, from 0.5 mg to 2 mg, or 1 mg, the second dose is from 3 mg to 10 mg, from 10 mg to 80 mg, from 10 mg to 60 mg, from 20 mg to 80 mg, from 20 mg to 60 mg, from 20 mg to 40 mg, 25 mg, or 50 mg, and the third, the fourth and subsequence doses are each from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, 100 mg to 200 mg, or 100 mg. It is believed that such dosing schedule is beneficial in that it helps to reach the desired serum level of the anti-DLL3 agent quickly.


The anti-DLL3 agent can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, intranasal, and/or intralesional administration. Parenteral administration includes intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In some embodiments, the anti-DLL3 agent is administered by intravenous (IV) infusion.


In certain embodiments, the DLL3-positive cancer is small cell lung cancer (SCLC). In certain embodiments, the SCLC is relapsed/refractory SCLC (RR SCLC) or extensive disease SCLC (ED SCLC). In certain embodiments, the subject is a human having SCLC, e.g., RR SCLC or ED SCLC.


3.2 Co-Administration

In some embodiments, the compositions and methods of the invention provide for the use of an anti-DLL3 agent in combination with one or more additional therapeutic agents. In certain embodiments, the one or more additional therapeutic agents is an agent that mitigates CRS of anti-DLL3 agents (e.g., AMG 757). In certain embodiments, the one or more additional therapeutic agents include an anti-inflammatory agent, a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab) or an anti-TNF agent (e.g., etanercept). In certain embodiments, the methods disclosed herein comprise the administration of an anti-DLL3 agent (e.g., AMG 757) in combination with one or more of an anti-inflammatory agent, a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab) and an anti-TNF agent (e.g., etanercept).


In some embodiments, the one or more additional therapeutic agents may be an anti-inflammatory agent (for example, to prophylactically treat CRS). The anti-inflammatory agent may be administered prior to, concurrently, or after the administration of the anti-DLL3 agent. Exemplary anti-inflammatory agent includes acetaminophen, naproxen sodium, ibuprofen, tramadol, aspirin, celecoxib, valdecoxib, indomethacin, or other Non-steroidal anti-inflammatory drugs (NSAIDs). Other anti-inflammatory agent includes, e.g., beclomethasone, hydroxycortisone, betamethasone, methylprednisolone, budesonide, prednisolone, cortisone, prednisone, dexamethasone, and triamcinolone, or other glucocorticoids. In certain embodiments, the anti-inflammatory agent is a corticosteroid. In certain embodiments, the corticosteroid is dexamethasone. In certain embodiments, the anti-inflammatory agent is acetaminophen. In certain embodiments, the anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone or acetaminophen) is administered before the administration of the anti-DLL3 agent. In certain embodiments, dexamethasone is administered intravenously, e.g., prior to cycle 1 doses of AMG 757. In certain embodiments, dexamethasone is administered orally.


In some embodiments, the one or more additional therapeutic agents that mitigate CRS are a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab) or an anti-TNF agent (e.g., etanercept). Each of these agents may be administered prior to, concurrently, or after the administration of the anti-DLL3 agent. In certain embodiments, saline is administered (e.g., by IV administration) after the administration of the anti-DLL3 agent. In certain embodiments, the anti-IL6 antibody (e.g., tocilizumab) or the anti-TNF agent (e.g., etanercept) is administered prior to the administration of the anti-DLL3 agent.


When a steroid (such as dexamethasone) is used, higher doses of anti-DLL3 agent may be needed. Accordingly, in some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof a steroid (such as a corticosteroid, e.g., dexamethasone), and an anti-DLL3 agent, wherein the anti-DLL3 agent is administered at a dose of from about 0.3 mg to 100 mg once every two weeks (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg, once every two weeks).


In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof a steroid (such as a corticosteroid, e.g., dexamethasone), and an anti-DLL3 agent, wherein the anti-DLL3 agent is administered at a dose of from about 0.3 mg to 100 mg or from about 3 mg to about 200 mg, once every two weeks (such as from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 3 mg, 10 mg, 30 mg, or 100 mg, once every two weeks). In certain embodiments, the anti-DLL3 agent is administered in a 28-day cycle. In certain embodiments, the steroid is administered in the first cycle the anti-DLL3 agent is administered.


In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof a steroid (such as a corticosteroid, e.g., dexamethasone), and an anti-DLL3 agent, wherein the anti-DLL3 agent is administered according to the following schedule: (a) a first dose of from 0.3 mg to 100 mg on day 1 (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg, on day 1), (b) a second dose of from 0.3 mg to 100 mg on day 8 (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg, on day 8), and (c) one or more subsequence doses of from 0.3 mg to 100 mg (such as from about 0.3 mg to about 90 mg, from about 0.3 mg to about 80 mg, from about 0.3 mg to about 70 mg, from about 0.3 mg to about 60 mg, from about 0.3 mg to about 50 mg, from about 0.3 mg to about 40 mg, from about 0.3 mg to about 30 mg, from about 0.3 mg to about 20 mg, from about 0.3 mg to about 10 mg, from about 0.3 mg to about 3 mg, from about 0.3 mg to about 1 mg, or from about 1 mg to about 30 mg, from about 1 mg to about 20 mg, from about 3 mg to about 15 mg, or from about 3 mg to about 12 mg), starting on day 15 and once every two weeks thereafter, and wherein the second and the one or more subsequent doses are the same, and are higher than the first dose. In certain embodiments, the second and the one or more subsequent doses are at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 55-fold, at least 60-fold, at least 65-fold, at least 70-fold, at least 75-fold, at least 80-fold, at least 85-fold, at least 90-fold, at least 95-fold, or at least 100-fold higher than the first dose.


In certain embodiments, an anti-DLL3 agent (e.g., AMG 757) is administered in a 28-day cycle to a subject having DLL3 positive cancer (e.g., SCLC), wherein the anti-DLL3 agent is administered together with an anti-inflammatory agent, a fluid (e.g., saline), an anti-IL6 antibody (e.g., tocilizumab), an anti-TNF agent (e.g., etanercept), or a combination thereof in the first cycle. In certain embodiments, a corticosteroid (e.g., dexamethasone) is further administered together with the anti-DLL3 agent and the anti-inflammatory agent, fluid (e.g., saline), anti-IL6 antibody (e.g., tocilizumab), anti-TNF agent (e.g., etanercept), or a combination thereof in the first cycle. In certain embodiments, the corticosteroid (e.g., dexamethasone) is administered by IV infusion in cycle 1 of AMG 757 administration.


In certain embodiments, a fluid such as saline is administered by IV infusion after the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, one-liter saline is administered by IV infusion after the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, one-liter saline is administered by IV infusion after the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, the one-liter saline is administered by IV infusion over about 4-5 hours after the administration of the anti-DLL3 agent.


In certain embodiments, an anti-inflammatory agent is administered prior to the administration of the anti-DLL3 agent in the firs cycle. In certain embodiments, the anti-inflammatory agent is a corticosteroid (e.g., dexamethasone) and is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, dexamethasone is administered orally, in other embodiments, dexamethasone is administered intravenously.


In certain embodiments, the anti-inflammatory agent is acetaminophen and is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, acetaminophen is administered orally.


In certain embodiments, the anti-IL6 antibody is tocilizumab and is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle.


In certain embodiments, the anti-TNF agent is etanercept (e.g., Enbrel®) and is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered 2 days prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 50 mg etanercept is administered subcutaneously 2 days prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 50 mg etanercept is administered subcutaneously 2 days prior to the run-in dose and step dose(s) of the anti-DLL3 agent, except the step dose on day 4 with two-step or three-step dosing schedule, in the first cycle.


Exemplary CRS mitigation strategies for anti-DLL3 agents (e.g., AMG 757) using an anti-inflammatory agent (e.g., dexamethasone or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept) are shown in the tables below. In certain embodiments, a corticosteroid (e.g., dexamethasone) is further administered (e.g., by IV infusion) in cycle one of AMG 757 administration (e.g., administered prior to cycle 1 doses of AMG 757) in addition to the CRS mitigation strategies listed below.


Exemplary CRS Mitigation Strategies (One-step Dosing, Cycle 1 only)















Day -2 (2 Days Before Day 1)
Day 1
Day 6
Day 8
Day 15




Anti-DLL3 agent (AMG 757) One-step Dosing

Run-in dose

Step dose (equal to target dose)
Target dose


Prophylaxis with IV hydration
N/A
1 L saline over 4-5 hours immediately following AMG 757
N/A
1 L saline over 4-5 hours immediately following AMG 757
N/A


Additional corticosteroid with oral dexamethasone
N/A
6-16 hours prior to AMG 757
N/A
6-16 hours prior to AMG 757
N/A


Tocilizumab
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757
N/A


Etanercept*
On Day -2
N/A
2 days prior to step dose
N/A
N/A


Acetaminophen
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757
N/A


*: etanercept may be administered within ± 12 hours from the scheduled doses in the table above.






Exemplary CRS Mitigation Strategies (Two-step dosing, Option 1, cycle 1 only)
















Day -2 (2 Days Before Day 1)
Day 1
Day 4
Day 6
Day 8
Day 15




Anti-DLL3 agent (AMG 757) Two-step Dosing

Run-in dose
Step dose

Step dose (equal to target dose)
Target dose


Prophylaxis with IV hydration
N/A
1 L saline over 4-5 hours immediately following AMG 757
1 L saline over 4-5 hours immediately following AMG 757

1 L saline over 4-5 hours immediately following AMG 757
N/A


Additional corticosteroid with oral dexamethasone
N/A
6-16 hours prior to AMG 757
6-16 hours prior to AMG 757

6-16 hours prior to AMG 757
N/A


Tocilizumab
N/A
1 hour prior to AMG 757
1 hour prior to AMG 757

1 hour prior to AMG 757
N/A


Etanercept*
On Day -2
N/A
N/A
2 days prior to step dose
N/A
N/A


Acetaminophen
N/A
1 hour prior to AMG 757
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757
N/A


*: etanercept may be administered within ± 12 hours from the scheduled doses in the table above.






Exemplary CRS Mitigation Strategies (Two-step dosing, Option 2, cycle 1 only)
















Day -2 (2 Days Before Day 1)
Day 1
Day 6
Day 8
Day 13
Day 15




Anti-DLL3 agent (AMG 757) Two-step Dosing

Run-in dose

Step dose

Step dose (equal to target dose)


Prophylaxis with IV hydration
N/A
1 L saline over 4-5 hours immediately following AMG 757
N/A
1 L saline over 4-5 hours immediately following AMG 757
N/A
1 L saline over 4-5 hours immediate ly following AMG 757


Additional corticosteroid with oral dexamethasone
N/A
6-16 hours prior to AMG 757
N/A
6-16 hours prior to AMG 757
N/A
6-16 hours prior to AMG 757


Tocilizumab
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757


Etanercept*
On Day -2
N/A
2 days prior to Step dose
N/A
2 days prior to Step dose
N/A


Acetaminophen
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757


*: etanercept may be administered within ± 12 hours from the scheduled doses in the table above.






Exemplary CRS Mitigation Strategies (Three-step dosing, cycle 1 only)

















Day -2 (2 Days Before Day 1)
Day 1
Day 4
Day 6
Day 8
Day 13
Day 15




Anti-DLL3 agent (AMG 757) Three-step Dosing

Run-in dose
Step dose

Step dose

Step dose (equal to target dose)


Prophylaxis with IV hydration
N/A
1 L saline over 4-5 hours immediately following AMG 757
1 L saline over 4-5 hours immediately following AMG 757
N/A
1 L saline over 4-5 hours immediately following AMG 757
N/A
1 L saline over 4-5 hours immediately following AMG 757


Additional corticosteroid with oral dexamethasone
N/A
6-16 hours prior to AMG 757
6-16 hours prior to AMG 757
N/A
6-16 hours prior to AMG 757
N/A
6-16 hours prior to AMG 757


Tocilizumab
N/A
1 hour prior to AMG 757
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757


Etanercept*
On Day -2
N/A
N/A
2 days prior to Step dose
N/A
2 days prior to Step dose
N/A


Acetaminophen
N/A
1 hour prior to AMG 757
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757
N/A
1 hour prior to AMG 757


*: etanercept may be administered within ± 12 hours from the scheduled doses in the table above.






In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), and wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following one-step schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or about 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 200 mg (such as from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200, from about 70 mg to about 180, from about 70 mg to about 150, from about 70 mg to about 120 mg, from about 90 mg to about 200, from about 90 mg to about 180, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg) on day 8, and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg (such as from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200, from about 70 mg to about 180, from about 70 mg to about 150, from about 70 mg to about 120 mg, from about 90 mg to about 200, from about 90 mg to about 180, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg), starting on day 15 and once every two weeks thereafter, wherein the second and subsequent doses are the same, and are higher than the first dose, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, the second and subsequent doses are the same and are at least 3-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, at least 60-fold, at least 70-fold, at least 80-fold, at least 90-fold, at least 100-fold, at least 120-fold, at least 150-fold, or at least 200-fold, higher than the first dose.


In some embodiments of the one-step schedule, the method comprising administering the anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose and subsequent doses of the anti-DLL3 agent are the same and are 3 mg, 10 mg, 30 mg, or 100 mg, wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such one-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.


In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg) on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose, and the third and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such two-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.


In certain embodiments, the method comprises administering to a subject in need thereof an anti-DLL3 agent (e.g., AMG 757) and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: the first dose is 1 mg on day 1, the second dose is 25 mg or 50 mg on day 4, the third dose is 100 mg on day 8, and the one or more subsequent doses are 100 mg, starting on day 15 and once every two weeks thereafter, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered on the same day or prior to the day the run-in and step dose(s) of AMG 757 in cycle 1. In certain embodiments, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.


In certain embodiments of Schedule I, target dose is administered on day 4. In such embodiments, the method comprises administering to a subject in need thereof an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 200 mg on day 4, c) a third dose (target dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose, and the second, third and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, dexamethasone, acetaminophen, saline, or tocilizumab is administered on day 1 and 4, or on day 1, 4 and 8, of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1 and day 8 of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1 of AMG 757 administration in cycle 1. In certain embodiments, the method further comprises administering dexamethasone by IV infusion in cycle 1 of AMG 757 administration.


In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following two-step schedule: Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 25 mg to about 50 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 30 mg to about 40 mg, from about 40 mg to about 80 mg, or from about 40 mg to about 60 mg), on day 8, c) a third dose (step dose) of from 3 mg to 200 mg, on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third dose and subsequent doses are the same, and are higher than the second dose, the third and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 180 mg, from about 10 mg to about 150 mg, from about 10 mg to about 120 mg, from about 30 mg to about 200 mg, from about 30 mg to about 180 mg, from about 30 mg to about 150 mg, from about 30 mg to about 120 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 150 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, from about 100 mg to about 180 mg, from about 100 mg to about 150 mg, from about 100 mg to about 120 mg, or about 100 mg, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such two-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.


In some embodiments of the two-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is from about 25 mg to about 50 mg, and the third and subsequent doses of the anti-DLL3 agent are the same and are 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.


In some embodiments of the two-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is from about 45 mg to about 70 mg, and the third and subsequent doses of the anti-DLL3 agent are the same and are 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.


In certain embodiments of the two-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg on day 1, the second dose of the anti-DLL3 agent is 25 mg or 50 mg on day 4, the third is 100 mg on day 8, and subsequent doses of the anti-DLL3 agent is 100 mg, starting on day 15 and once every two weeks thereafter, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.


In some aspect, the invention provides a method of treating SCLC, or an DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent and an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept), and wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following three step schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from about 10 mg to about 60 mg, from about 10 mg to about 40 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 20 mg to about 40 mg, or about 25 mg) on day 4, c) a third dose (step dose) of from 3 mg to 100 mg (such as from about 3 mg to about 10 mg, from about 10 mg to about 100 mg, from about 10 mg to about 80 mg, from 10 mg to about 60 mg, from about 20 mg to about 100 mg, from about 20 mg to about 80 mg, from about 20 mg to about 60 mg, from about 30 mg to about 100 mg, from about 30 mg to about 80 mg, from about 30 mg to about 60 mg, from about 40 mg to about 100 mg, from about 40 mg to about 80 mg, from about 40 mg to about 60 mg, or about 50 mg) on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are higher than the third dose, and the fourth and subsequent doses can be any one of the following: from about 3 mg to about 100 mg, from about 10 mg to about 150 mg, from about 30 mg to 200 mg, from about 50 mg to about 200 mg, from about 50 mg to about 180 mg, from about 50 mg to about 150 mg, from about 50 mg to about 120 mg, from about 70 mg to about 200 mg, from about 70 mg to about 180 mg, from about 70 mg to about 120 mg, from about 90 mg to about 200 mg, from about 90 mg to about 180 mg, from about 90 mg to about 150 mg, from about 90 mg to about 120 mg, or about 100 mg, and wherein the anti-inflammatory agent, saline, anti-IL6 antibody, or anti-TNF agent is administered in the first cycle in which the anti-DLL3 agent is administered. In some embodiments of such three-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.


In some embodiments of the three-step dosing schedule, the method comprising administering to a subject an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the first dose of the anti-DLL3 agent is 1 mg, the second dose of the anti-DLL3 agent is 25 mg, the third dose of the anti-DLL3 agent is 50 mg and the fourth and subsequent doses of the anti-DLL3 agent are the same and are 100 mg, and wherein the dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered.


In certain embodiments of the three-step dosing schedule, target dose is administered on day 8. In such embodiments, the method comprises administering to a subject in need thereof an anti-DLL3 agent and dexamethasone, acetaminophen, saline, tocilizumab, or etanercept, wherein the anti-DLL3 agent is administered in a 28-day cycle according to the following three-step schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (such as from about 0.5 mg to about 8 mg, from about 0.5 mg to about 6 mg, from about 0.5 mg to about 4 mg, from about 0.5 mg to about 2 mg, or 1 mg) on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (such as from 3 mg to 10 mg, from 10 mg to 80 mg, from 10 mg to 60 mg, from 20 mg to 80 mg, from 20 mg to 60 mg, from 20 mg to 40 mg, 25 mg, or 50 mg) on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, d) a fourth dose (target dose) of from 3 mg to 200 mg on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose, the fourth dose and the subsequent doses are the same and are is higher than the second dose, and the third dose, the fourth dose, and the subsequent dose each can be any of the following: from 3 mg to 100 mg, from 10 mg to 150 mg, from 30 mg to 200 mg, from 30 mg to 100 mg, from 50 mg to 150 mg, from 70 mg to 120 mg, from 90 mg to 120 mg, 100 mg to 200 mg, or 100 mg, and wherein dexamethasone, acetaminophen, saline, tocilizumab, or etanercept is administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, dexamethasone, acetaminophen, saline, or tocilizumab is administered on day 1, 4 and 8, or on day 1, 4, 8 and 15, of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1, day 8, and day 15 of AMG 757 administration in cycle 1. In certain embodiments, etanercept is administered two days prior to day 1 and day 8 of AMG 757 administration in cycle 1. In some embodiments of such three-step schedule, dexamethasone is further administered by IV infusion in cycle 1 of AMG 757 administration.


In certain embodiments of any one of the step dosing schedules, saline (e.g., about 1 liter) is administered by IV infusion after the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, one-liter saline is administered by IV infusion after the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, the one-liter saline is administered by IV infusion over about 4-5 hours after the administration of the anti-DLL3 agent.


In certain embodiments of any one of the step dosing schedules, the anti-inflammatory agent is a corticosteroid (e.g., dexamethasone) and is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, 8 mg dexamethasone is administered from about 6 to about 16 hours prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, dexamethasone is administered orally.


In certain embodiments any one of the step dosing schedules, the anti-inflammatory agent is acetaminophen and is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 650 mg acetaminophen is administered about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle. In some embodiments, acetaminophen is administered orally.


In certain embodiments any one of the step dosing schedules, the anti-IL6 antibody tocilizumab is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 8 mg/kg tocilizumab is administered to the subject by IV infusion about one hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent in the first cycle.


In certain embodiments any one of the step dosing schedules, the anti-TNF agent etanercept (e.g., Enbrel®) is administered prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, etanercept is administered from about 36 hour to about 60 hour prior to the run-in dose and step dose(s) of the anti-DLL3 agent, except the step dose on day 4 with two-step or three-step dosing schedule, in the first cycle. In certain embodiments, about 50 mg etanercept is administered 2 days prior to the administration of the anti-DLL3 agent in the first cycle. In certain embodiments, about 50 mg etanercept is administered subcutaneously 2 days prior to the run-in dose and step dose(s) of the anti-DLL3 agent, except the step dose on day 4 with two-step or three-step dosing schedule, in the first cycle.


In certain embodiments of any one of the step dosing schedules, the subject is a human.


4. Articles of Manufacture

Disclosed herein are articles of manufacture comprising: (a) a container comprising an anti-DLL3 agent; and (b) a package insert with instructions for treating DLL3-positive cancer (or treating SCLC) in a subject, wherein the instructions specifies that a dose of from about 0.3 mg to about 100 mg, from about 3 mg to about 200 mg, or 100 mg (or any of the dose ranges disclosed herein) of the anti-DLL3 agent be administered to the subject once every two weeks, such as on day 1 and day 15 of a 28-day cycle. The instructions may also specify that the anti-DLL3 agent be administered according to the following schedule: a) a first dose of from 0.3 mg to 100 mg (or any of the dose ranges disclosed herein) on day 1, b) a second dose of from 0.3 mg to 100 mg (or any of the dose ranges disclosed herein) on day 8, and c) one or more subsequence doses of from 0.3 mg to 100 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second and one or more subsequent doses are the same, and are higher than the first dose.


The instructions may also specify that the anti-DLL3 agent be administered according to the following schedule: a) a first dose of from 0.5 mg to 10 mg or from (or any of the dose ranges disclosed herein) on day 1, b) a second dose of from 3 mg to 200 mg (or any of the dose ranges disclosed herein) on day 8, and c) one or more subsequence doses of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second and one or more subsequent doses are the same, and are higher than the first dose.


In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according to one of the following two schedules: Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose; or Schedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 8, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 15 and c) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, the third dose and subsequent doses are the same, and are higher than the second dose.


In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 8, and d) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are the same as the second dose.


In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 29 and once every two weeks thereafter, wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are higher than the third dose.


In certain embodiments, the instruction specifies that the anti-DLL3 agent be administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg (or any of the dose ranges disclosed herein), on day 1, b) a second dose (step dose) of from 3 mg to 100 mg (or any of the dose ranges disclosed herein), on day 4, c) a third dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 8, d) a fourth dose (step dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), on day 15, and e) one or more subsequence doses (target dose) of from 3 mg to 200 mg (or any of the dose ranges disclosed herein), starting on day 29 and once every two weeks thereafter, wherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are the same as the third dose.


In certain embodiments, the instruction specifies that an anti-inflammatory agent (e.g., a corticosteroid such as dexamethasone, or acetaminophen), saline, an anti-IL6 antibody (e.g., tocilizumab), or an anti-TNF agent (e.g., etanercept) is also administered in the first cycle in which the anti-DLL3 agent is administered. In certain embodiments, the instruction specifies that dexamethasone is further administered in the first cycle in which the anti-DLL3 agent is administered (e.g., by IV administration prior to cycle doses of the anti-DLL3 agent).


EXAMPLES
Example 1 Prediction of Human AMG 757 Pharmacokinetics and First-inHuman Dose Selection

The human PK parameters of AMG 757 were predicted using allometric scaling of PK parameters obtained from studies in cynomolgus monkeys at doses ranging from 12 to 4500 µg/kg. A two-compartment model with linear elimination was used to characterize the pharmacokinetics of AMG 757 from the pooled cynomolgus monkey data, excluding data from animals that were identified as positive for anti-drug antibodies after the administration of the first dose. The model was parameterized using linear clearance (CL), volume of distribution of central compartment (Vc), distribution clearance (CLD), and peripheral volume of distribution (VT). Allometry was used to predict human AMG 757 PK using exponents of 0.75 and 1 for clearance and volume parameters, respectively. The human and cynomolgus monkey body weights were assumed to be 60 kg and 3 kg, respectively. Derived monkey and predicted human AMG 757 PK parameters are provided in Table 1.





TABLE 1








Cynomolgus Monkey and Predicted Human Pharmacokinetic Parameters Used for Human AMG 757 Exposure Predictions


Parameter (Units)
Cynomolgus Monkey
Human(Scaled)*
Reference


Cynomolgus Monkey
Human (Scaled)




CL (mL/h/kg)
0.480
0.249
Fitted
Allometric scaling


CLD (mL/h/kg)
1.85
0.991
Fitted
Allometric scaling


VC (mL/kg)
70.6
70.6
Fitted
Allometric scaling


VT (mL/kg)
112
112
Fitted
Allometric scaling


THL (h)
258
560
Calculated
Calculated


CL = system clearance, CLD = distribution clearance, THL = terminal half-life, VC = central volume of distribution, VT = periphial volume of distribution


* assuming a monkey body weight of 3 kg


* assuminga human body weight of 60 kg






In combination with these PK predictions, the FIH starting dose was selected based on the identified in vitro Minimum Anticipated Biological Effect Level (MABEL). This concentration was determined by assessing the most sensitive marker of AMG 757 activity in the most sensitive DLL3-expressing cell line (Study 123564). In conjunction with animal exposures from the GLP toxicology studies, the predicted human exposures were used to calculate the exposure margins using standard ratio calculations based on AUCtau (168 hours for cynomolgus monkeys in the GLP toxicology study and 336 hours for humans) and Cmax for the proposed doses in the FIH study.


The FIH study evaluates the safety, tolerability, and pharmacokinetics of AMG 757 in patients with small cell lung cancer. The predicted human PK parameters described above were used to simulate predicted exposures at the proposed FIH doses (FIG. 1). The doses of AMG 757 for the FIH study are 0.003 mg, 0.01 mg, 0.03 mg, 0.1 mg, 0.3 mg, 1 mg, 3 mg, 10 mg, 30 mg, 100 mg, and higher administered as short-term IV infusions (approximately 1 hour) once every two weeks in patients with small cell lung cancer (SCLC) (Study 20160323). This regimen ensures that adequate exposures over the in vitro EC90 for AMG 757-mediated cell killing (5.2 ng/mL) are achieved in lung while minimizing peak-to-trough ratios during multiple treatment cycles of AMG 757.


The selection of the starting dose for the FIH study was based on the in vitro MABEL. Briefly, the EC50 values of AMG 757-mediated cell killing of SHP-77 tumor cells and induction of T cell activation (de novo expression of CD69 and CD25) from human peripheral blood mononuclear cells (PBMCs) were compared, and AMG 757-induced de novo expression of CD69 on T cells was identified as the most sensitive parameter of AMG 757 activity. Based on the assessment of individual dose-response curves from 12 different PBMC donors, the MABEL (mean EC50) was calculated to be 0.61 ng/mL (5.8 pM; Study 123564).


The use of the in vitro EC50 as the MABEL and basis for the FIH starting dose is supported by the previous and safe implementation of this strategy to identify the maximum recommended starting doses of previous BiTE® molecules in clinical development.


Example 2 Prediction of Minumumly Effecious Exposures of AMG 757 in Humans

Efficacious exposures of AMG 757 were predicted based on in vitro data generated in Study 122717, which evaluated the in vitro pharmacology of AMG 757. Concentrations for half-maximal effect (EC50) and 90% of maximal effect (EC90) of AMG 757-mediated cell killing in SHP-77 cells (human DLL3-expressing cell line) were used to estimate a concentration range in which efficacy may be expected.


The lungs were used as the representative site of action for AMG 757 and were assumed to achieve exposures of approximately 1% of free serum exposures (Vugmeyser et al., J Pharm Sci. 99:1028-1045 (2010)). Based on this assumption, doses of AMG 757 to provide trough coverage of the EC50 of AMG 757-mediated cell killing in SHP-77 cells were considered to be minimally efficacious. Early signs of efficacy were predicted at 10 mg IV once every two weeks based on trough coverage of the average EC90 of cell killing in SHP-77 cells (assuming 1 % lung exposure) for the entire treatment cycle (FIG. 2).


Example 3 Phase 1 Study Evaluating the Safety, Tolerability And Pharmacokinetics of AMG 757 IN Subjects With SCLC
Background

Small Cell Lung Cancer (SCLC), accounting for 10-15% of lung cancer (Rudin et al, J Clin Oncol. 33:4106-4111(2015)), is an aggressive lung cancer subtype with neuroendocrine differentiation and strongly associated with smoking (Koinis et al, Transl Lung Cancer Res. 5:39-50 (2016)). It displays a distinct natural history characterized by a high growth fraction, rapid doubling time and early establishment of widespread metastatic lesions (Gustafsson et al, Cancer.113:5-21(2008)). While 30% of patients present with disease confined to one hemithorax [limited disease (LD)], the majority of cases have disease not encompassed by one radiotherapy field [extended disease (ED)]. SCLC is exquisitely sensitive to first-line chemotherapy (approximately 60%-70% response rates) and to radiation which is stark contrast to subsequent resistance to second-line and subsequent therapies after disease recurrence (Byers et al, Cancer.121:664 672(2015)). Patients with ED develop drug resistance and die as a result of disease at a median time of 10 to 12 months from diagnosis (Rudin et al, 2015). For patients with ED SCLC, first line treatment is platinum-based chemotherapy. Most patients in the United States receive platinum-etoposide (EP) chemotherapy (with either carboplatin or cisplatin), and some patients receive platinum-irinotecan as an alternative, especially outside the United States. In March 2019, atezolizumab was approved by the United States Food and Drug Administration (US FDA) in combination with carboplatin and etoposide for the first-line treatment of adult patients with ED-SCLC (Tecentriq® United States Prescribing Information [USPI], 2019). After relapse, topotecan is the only second-line drug approved by the US FDA. However, despite its indication in this setting, topotecan has produced disappointing response rates (Byers et al, Cancer.121:664 672(2015)).


AMG 757 is a half-life extended (HLE) BiTE® molecule targeting DLL3 as a tumor-specific antigen and T-cell receptor-associated complex cluster of differentiation 3 (CD3) on T-cells. AMG 757 is developed for the treatment of SCLC and is a potent molecule acting by formation of an immunological synapse between CD3-positive T cells and cancer cells expressing the DLL3 protein. The resulting proximity triggers the redirected lysis of DLL3-positive target cells by the T cells. AMG 757 monotherapy significantly inhibited growth of subcutaneously implanted DLL3 expressing human melanoma WM266-4 cells and induced regression of orthotopic SHP-77-Luc lung tumors.


Study Design

Study 20160323 is an open-label, ascending, multiple dose, phase 1 study evaluating AMG 757 administered as a short term intravenous (IV) infusion every 2 weeks (with or without Day 8 step dosing for example) in subjects with small cell lung cancer. There are two indications for this Study: A: Relapsed/refractory small cell lung cancer (RR SCLC) and B: Extensive disease SCLC (ED SCLC).


Due to its known mechanism of action, subjects are at an increased risk of CRS during initiation of AMG 757 treatment.


The study contains three parts:

  • (1) Part A: Evaluate AMG 757 in subjects with relapsed/refractory small cell lung cancer (RR SCLC). Part A contains two phases: (A1) Dose Exploration phase to determine maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D) of AMG 757, and (A2) Dose Expansion phase to confirm the safety and tolerability of the selected dose.
  • (2) Part B: Evaluate AMG 757 in subjects with Extensive disease SCLC (ED SCLC). Part B commences once MTD or RP2D is identified in Part A.
  • (3) Part C (evaluation of additional CRS mitigation strategies): AMG 757 monotherapy for subjects with RR SCLC who progressed after at least 1 platinum-based regimen. To mitigate the risk of CRS, one or more of the following prophylactic measures may be implemented (during cycle 1 only): IV hydration, additional corticosteroid prophylaxis with oral dexamethasone administration of tocilizumab prophylaxis, etanercept prophylaxis, or acetaminophen prophylaxis.


The primary objectives for both Part A and Part B of the study are to evaluate the safety and tolerability of AMG 757 and to determine MTD or RP2D of AMG 757. The secondary objectives of both Part A and Part B of the study are to characterize the pharmacokinetics (PK) of AMG 757 and to evaluate preliminary anti-tumor activity of AMG 757.


Part A1: Dose Exploration Phase

AMG 757 is administered as a short IV infusion (approximately 60 minutes). Pre-specified doses for use in the dose escalation (planned dose levels for investigation) are: 0.003 mg (Cohort 1), 0.01 mg (Cohort 2), 0.03 mg (Cohort 3), 0.1 mg (Cohort 4), 0.3 mg (Cohort 5), 1 mg (Cohort 6), 3 mg (Cohort 7), 10 mg (Cohort 8), 30 mg (Cohort 9), and 100 mg (Cohort 10), administered once every two weeks. Dosing schedule in first cycle may be adjusted to include one or more step doses as described below. If compelling clinical responses are observed during the escalation period, further dose escalation can be stopped. Alternative dose levels or dosing schedule(s) of AMG 757 may be explored based on emerging pharmacokinetic (PK), pharmacodynamic (PD) and safety data. Higher doses may be explored if MTD is not reached at planned dose cohort levels (Cohorts 1-10) and supported by safety and PK/PD data.


Step Dosing: subjects may experience first dose effects (e.g., cytokine release syndrome with associated manifestations and any other potentially evolving and unknown first dose effects) following the initial infusion of AMG 757. It is believed that an optimal MTD may require a step dosing approach (e.g., initial dose on day 1 and step dose on Day 8). Two MTDs may be estimated, one for the initial dosing (MTD1) and one for the subsequent dosing (MTD2).


At any point during the study, the first time a subject experiences a first dose effect (e.g., CRS event of any grade), the safety data need to be reviewed to determine the appropriate dose to be implemented as an initial dose (MTD1), which does not exceed the dose where a CRS of Grade 2 or higher is observed. These doses and dosing schedules are guided by modeling and simulation of emerging clinical data (e.g., pharmacokinetics, safety data, etc.) to ensure that systemic exposures of AMG 757 do not exceed those associated with doses at which first dose effects were seen. Increased dosing frequency of a step dosing regimen and potential for drug accumulation need to be taken into account.


For all subjects enrolled in subsequent cohorts throughout the study, dose escalation continues with a constant dose for the first dose of the first cycle of AMG 757 (MTD1) and only the step dose will be escalated according to the pre-specified doses in the dose escalation to determine MTD2. An example of step dosing is shown in FIG. 3.


Step dosing schedules are summarized below. The dosing schedule may be adapted to include one or more of the following measures, as per DLRT recommendation based on emerging safety data.

  • Single-step dosing involving a run-in dose on day 1, followed by a step dose on day 8 (equal to the target dose) and the target dose on day 15 and then Q2W.
  • Two-step dosing (option 1) involving a run-in dose on day 1, followed by a step dose on day 4, a step dose on day 8 (equal to target dose) and the target dose on day 15 then Q2W.
  • Two-step dosing (option 2) involving a run-in dose on day 1, followed by a step dose on day 8, a step dose on day 15 (equal to the target dose) and the target dose on cycle 2 day 1 then Q2W.
  • Three-step dosing involving a run-in dose on day 1, followed by a step dose on day 4, a step dose on day 8, a step dose on day 15 (equal to the target dose) and the target dose on cycle 2 day 1 then Q2W.

Part A2: Dose expansion phase. Part A2 commences once the MTD or RP2D is selected based on dose exploration phase (Part A1).


Part B: Part B will commence once a preliminary MTD or RP2D in Indication A (Part A1) is established.


Part C: One or more additional CRS mitigation strategies as outlined below may be evaluated, as per DLRT recommendation based on emerging safety data. Part C will commence while Part A1 is ongoing.

  • Prophylaxis with IV hydration 1 L normal saline over 4-5 hours immediately following the run-in dose and step dose(s) in cycle 1
  • Additional corticosteroid prophylaxis with dexamethasone 8 mg PO 6-16 hour prior to the run-in dose and step dose(s) in cycle 1
  • Tocilizumab 8 mg/kg IV 1 hour prior to the run-in dose and step dose(s) in cycle 1
  • Etanercept 50 mg SQ on day -2 and then 2 days prior to the run-in dose and step dose(s) in cycle 1 (with the exception of the step dose on Day 4 with two-step or three-step dosing)
  • Acetaminophen 650 mg po 1 hour prior to the run-in dose and step dose(s) in cycle 1


The above CRS mitigation strategies will initially be administered with IV dexamethasone. Based on the emerging safety profile, IV dexamethasone may be discontinued while continuing with one of the above CRS strategies alone to assess the safety profile without steroid premedication.


Each subject enrolled in Part C will receive only one of the above additional CRS mitigation strategies in addition to their AMG 757 therapy as described above. Subjects will start with a dose of AMG 757 that has been deemed safe and tolerable. If based on emerging safety data the incidence of CRS is reduced, then one or more of the above strategies may be implemented into Parts A or B.


Table 2 summaries the Eligibility Criteria for Study 20160323





TABLE 2





Key Eligibility Criteria


Key inclusion criteria
Key exclusion criteria




Male or female ≥ 18 years of age with Histologically or cytologically confirmed Small Cell Lung Cancer (SCLC)
History of other malignancy within the past 2 years prior to first dose of AMG 757 with exceptions


Part A: RR SCLC who progressed or recurred following platinum-based chemotherapy
Major surgery within 28 days of first dose AMG 757


Part B: ED SCLC with ongoing clinical benefit (stable disease [SD], partial response [PR], or complete response [CR]) following no more than 6 cycles of first-line platinum-based chemotherapy with the last dose of chemotherapy greater than or equal to 28 days prior to the study day 1 (first-line consolidation setting)
Untreated or symptomatic brain metastases and leptomeningeal disease


Eastern Cooperative Oncology Group (ECOG) performance status of 0-2
Prior anti-cancer therapy: at least28 days must have elapsed between any prior anti-cancer therapy and first dose of AMG 757


Subjects with treated brain metastases are eligible provided they meet defined criteria



Adequate organ function as defined in protocol







Example 4 Study Endpoints of Trial 20160323

The hypothesis of Study 20160323 is that AMG 757 is safe and tolerated in subjects with Indications A and B.


Primary Endpoints: Dose limiting toxicities (DLTs), treatment-emergent adverse events (AEs), treatment-related AEs, and clinically significant changes in vital signs, ECG, physical examinations, and clinical laboratory tests.


Secondary Endpoints: For Indications A and B: (1) PK parameters for AMG 757 following intravenous administration including but not limited to maximum observed concentration (Cmax), minimum observed concentration (Cmin), area under the concentration-time curve (AUC) over the 2 week dosing interval, accumulation following multiple dosing, and, if feasible, half-life (t½), (2) Objective Response (OR) per modified Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, (3) Duration of Response (DOR), and (4) 1-year Progression-Free Survival (PFS), and (5)1-year Overall Survival (OS). For Indication B only: Relapse Free Survival (RFS).


Exploratory Endpoints: For Indications A and B: (1) Incidence of anti-AMG 757 antibody formation, (2) Changes in protein, nucleic acid and cellular biomarkers in blood (e.g., cytokines, lymphocyte status, CTCs, sDLL3), (3) Cell surface protein expression (e.g., DLL3) and tumor infiltrating lymphocyte status in tumor tissue at baseline. For Indication B only: Effect of prior chemotherapy on T cell cytokine production pre-AMG 757 treatment. For Par C only: incidence of CRS.


Example 5 Effects in Humans

Pharmacokinetics in humans: Preliminary AMG 757 PK analysis using noncompartmental approach was conducted for subjects in cohorts 1 to 5. Preliminary PK results show that AMG 757 exposures increased with dose from 0.003 mg to 0.3 mg. Estimated terminal half-life (t½) is approximately a week across doses after multiple Q2W dosing. No significant accumulation was observed (< 2-fold).


There was one confirmed response at 0.3 mg IV Q2W (cohort 5).


The following is a summary of AMG 757 dose and dosing schedule that were used in the different cohorts in the study.











Cohort
Dose and regimen of AMG 757
# of subjects




1
0.003 mg IV every 2 weeks
1


2
0.01 mg IV every 2 weeks
1


3
0.03 mg IV every 2 weeks
1


4
0.1 mg IV every 2 weeks
1


5
0.3 mg IV every 2 weeks
12


6
1 mg IV every 2 weeks
8


7
1 mg on C1D1, 3 mg on C1D8, 3 mg on C1D15 then 3 mg IV every 2 weeks
10


8
1 mg on C1D1, 10 mg on C1D8, 10 mg on C1D15 then 10 mg IV every 2 weeks
10


9
1 mg on C1D1, 30 mg on C1D8, 30 mg on C1D15 then 30 mg IV every 2 weeks
8


10
1 mg on C1D1, 100 mg on C1D8, 100 mg on C1D15 then 100 mg IV every 2 weeks
7






Antitumor activity was assessed using modified Response Evaluation Criteria in Solid Tumors (RECIST) 1.1; assessments were performed at screening and every 8 ± 1 weeks after AMG 757 treatment until disease progression, withdrawal of consent, or start of new anticancer therapy.


40 patients (median age [range], 64 years [44-80]; ECOG PS: 0-1, n=39 [97.5%], median prior lines: 2.0 [1-6]; prior PD-⅟PD-L1 treatment: n=17 [42.5%]) enrolled at eight dose levels (DL) received ≥1 dose of AMG 757. Median treatment duration was 6.1 weeks (0.1-59.4). Adverse events (AEs) occurred in 39 (97.5%) patients, resulting in discontinuation in 4 (10.0%); 32 (80.0%) were treatment-related, including 7 (17.5%) grade ≥3 and 1 (2.5%) grade 5 (pneumonitis; DL5 [0.3 mg]). Cytokine release syndrome (CRS) was reported in 18 (45.0%) patients; grade 2 CRS in 5 (12.5%); no grade ≥3 CRS. CRS presented mainly as fever ± hypotension, was reversible, did not lead to treatment interruption or discontinuation, occurred mostly within 24 hours of the first two doses of AMG 757, and was managed with supportive care, corticosteroids, and/or anti-IL-6 treatment. 6 (17.6%) patients developed treatment-emergent anti-AMG 757 binding antibodies. The anti-AMG 757 antibodies were not associated with AEs and had no clear effect on drug exposure. Mean (+SD) steady state serum Concentration-Time profiles of AMG 757 are shown in FIG. 5. AMG 757 showed dose proportional increase in exposures (FIG. 5).


Confirmed partial response (PR) was reported for 6 (15.8%) patients (1/12 [8.3%] in DL5, ⅛ [12.5%] in DL6, 3/7 [42.9%] in DL7, and ⅐ [14.3%] in DL8 [FIG. 4]). Stable disease was reported for 11 (28.9%), including 1 patient with ongoing unconfirmed PR in DL8. Patients with confirmed PR had a median of 2 (1-4) prior lines of therapy and duration of response of 1.9+ to 9.4+ months. DLL3 expression at any level was observed in 31/32 (96.9%) patient tumor samples, with overall H-score 40-300. Tumor shrinkage occurred across a wide range of DLL3 expression (H-score, 55-300). The results show that AMG 757 has acceptable safety at doses of up to 10 mg and shows anti-tumor activity in patients with SCLC.


59 patients enrolled in ten dose levels (DL) received ≥1 dose of AMG 757. Summary of Objective Response of the patients who met the overall response rate (ORR) analysis criteria at the relevant data cut off day is shown in FIG. 6. Confirmed partial response (PR) was reported for 7 (14.6%) patients (1/12 [8.3%] in DL5, ⅛ [12.5%] in DL6, 3/7 [42.9%] in DL7, 2/10 [20%] in DL8, and 0/7 [0%] in DL 9 [FIG. 6]). Stable disease was reported for 12 (25%) including two in Cohort 9 (2/7 [28.6%]). One grade 3 CRS was observed in one patient in cohort 9 and was managed with supportive care, corticosteroids, and vasopressor treatment. The results show that AMG 757 has acceptable safety at doses of up to 30 mg and shows anti-tumor activity in patients with SCLC.


Seven patients enrolled in Cohort 10 received ≥1 dose of AMG 757 with 4 subjects received 100 mg (on day 8) at least once. No new safety signals were observed in these patients compared to earlier cohorts.


The specification is most thoroughly understood in light of the teachings of the references cited within the specification. The embodiments within the specification provide an illustration of embodiments of the invention and should not be construed to limit the scope of the invention. The skilled artisan readily recognizes that many other embodiments are encompassed by the invention. All publications, patents, and sequences cited in this disclosure are incorporated by reference in their entirety. To the extent the material incorporated by reference contradicts or is inconsistent with this specification, the specification will supersede any such material. The citation of any references herein is not an admission that such references are prior art to the present invention.


Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following embodiments.





TABLE 3








Sequences Table


SEQ ID NO
DLL3 epitope
Designation
Format/ Source
Amino acid sequence




1

DLL3-1
VH CDR1
DYGIH


2

DLL3-1
VH CDR2
VISYHGSNKYYARSVKG


3

DLL3-1
VH CDR3
EIPFGMDV


4

DLL3-1
VL CDR1
RSSQSLLHSDGYNYLD


5

DLL3-1
VL CDR2
LGSNRAS


6

DLL3-1
VL CDR3
MQALQTPLT


7

DLL3-1
VH
QVQLVESGGGVVQSGRSLRLSCAASGFTFSDYGIHWVRQAPGKGLEWVAVISYHGSNKYYARSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREIPFGMDVWGQGTTVTVSS


8

DLL3-1
VL
DIVMTQTPLSLPVTPGEPASISCRSSQSLLHSDGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLTISRVEAEDVGVYYCMQALQTPLTFGGGTKVDIK


9
N-term.
DLL3-1
scFv
QVQLVESGGGVVQSGRSLRLSCAASGFTFSDYGIHWVRQAPGKGLEWVAVISYHGSNKYYARSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREIPFGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSDGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLTISRVEAEDVGVYYCMQALQTPLTFGGGTKVDIK


10

DLL3-1 xI2C
bispecific molecule
QVQLVESGGGVVQSGRSLRLSCAASGFTFSDYGIHWVRQAPGKGLEWVAVISYHGSNKYYARSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREIPFGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSDGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLTISRVEAEDVGVYYCMQALQTPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


11

DLL3-2
VH CDR1
GYYMH


12

DLL3-2
VH CDR2
WINPNSGDTNYAQKFQG


13

DLL3-2
VH CDR3
DANIAALDAFEI


14

DLL3-2
VL CDR1
RASQSISSYLN


15

DLL3-2
VL CDR2
AASSLQS


16

DLL3-2
VL CDR3
QQSYSTPLT


17

DLL3-2
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGDTNYAQKFQGRVTMTRDTSISTAYMELSRLTSDDTAVYYCARDANIAALDAFEIWGQGTMVTVSS


18

DLL3-2
VL
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK


19
N-term.
DLL3-2
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGDTNYAQKFQGRVTMTRDTSISTAYMELSRLTSDDTAVYYCARDANIAALDAFEIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK


20

DLL3-2 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGDTNYAQKFQGRVTMTRDTSISTAYMELSRLTSDDTAVYYCARDANIAALDAFEIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


21

DLL3-3
VH CDR1
SYGMH


22

DLL3-3
VH CDR2
VISYHGRDTYYARSVKG


23

DLL3-3
VH CDR3
DGATVTSYYYSGMDV


24

DLL3-3
VL CDR1
RASQGISNYLA


25

DLL3-3
VL CDR2
LASSLQS


26

DLL3-3
VL CDR3
QQYNFYPFT


27

DLL3-3
VH
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYHGRDTYYARSVKGRFTISRDNSKNTLYLHMNSLRAEDTAVYYCARDGATVTSYYYSGMDVWGQGTTVTVSSK


28

DLL3-3
VL
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIYLASSLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYNFYPFTFGPGTKVDIK


29
EGF-1
DLL3-3
scFv
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYHGRDTYYARSVKGRFTISRDNSKNTLYLHMNSLRAEDTAVYYCARDGATVTSYYYSGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIYLASSLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYNFYPFTFGPGTKVDIK


30

DLL3-3 xI2C
bispecific molecule
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYHGRDTYYARSVKGRFTISRDNSKNTLYLHMNSLRAEDTAVYYCARDGATVTSYYYSGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIYLASSLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYNFYPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTC GSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


31

DLL3-4
VH CDR1
SYYWS


32

DLL3-4
VH CDR2
YVYYSGTTNYNPSLKS


33

DLL3-4
VH CDR3
IAVTGFYFDY


34

DLL3-4
VL CDR1
RASQRVNNNYLA


35

DLL3-4
VL CDR2
GASSRAT


36

DLL3-4
VL CDR3
QQYDRSPLT


37

DLL3-4
VH
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSS


38

DLL3-4
VL
EIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIK


39
EGF-3
DLL3-4
scFv
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIK


40

DLL3-4 xI2C
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


41

DLL3-5
VH CDR1
SYYWS


42

DLL3-5
VH CDR2
YIYYSGRTNYYPSLKS


43

DLL3-5
VH CDR3
IAVAGFFFDY


44

DLL3-5
VL CDR1
RASQSVNKNYLA


45

DLL3-5
VL CDR2
GASSRAT


46

DLL3-5
VL CDR3
QQYDRSPLT


47

DLL3-5
VH
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGRTNYYPSLKSRVTISIDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSS


48

DLL3-5
VL
EIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIK


49
EGF-3
DLL3-5
scFv
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGRTNYYPSLKSRVTISIDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIK


50

DLL3-5 xI2C
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGRTNYYPSLKSRVTISIDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLV


51

DLL3-6
VH CDR1
SFYWS


52

DLL3-6
VH CDR2
YIYYSGTTNYNPSLKS


53

DLL3-6
VH CDR3
IAVAGFFFDY


54

DLL3-6
VL CDR1
RASQSVNKNYLA


55

DLL3-6
VL CDR2
GASSRAT


56

DLL3-6
VL CDR3
QQYDRSPLT


57

DLL3-6
VH
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSS


58

DLL3-6
VL
EIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIK


59
EGF-3
DLL3-6
scFv
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIK


60

DLL3-6 xI2C
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


61

DLL3-7
VH CDR1
SFYWS


62

DLL3-7
VH CDR2
YIYYSGTTNYNPSLKS


63

DLL3-7
VH CDR3
IAVAGFFFDY


64

DLL3-7
VL CDR1
RASQSVNKNYLA


65

DLL3-7
VL CDR2
GASSRAT


66

DLL3-7
VL CDR3
QQYDRSPLT


67

DLL3-7
VH
QVQLQESGPGLVKPSQTLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSS


68

DLL3-7
VL
EIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIK


69
EGF-3
DLL3-7
scFv
QVQLQESGPGLVKPSQTLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIK


70

DLL3-7 xI2C
bispecific molecule
QVQLQESGPGLVKPSQTLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


71

DLL3-8
VH CDR1
SFYWS


72

DLL3-8
VH CDR2
YIYYSGTTNYNPSLKS


73

DLL3-8
VH CDR3
IAVAGFFFDY


74

DLL3-8
VL CDR1
RASQSVNKNYLA


75

DLL3-8
VL CDR2
GASSRAT


76

DLL3-8
VL CDR3
QQYDRSPLT


77

DLL3-8
VH
QVQLQEWGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQLSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSK


78

DLL3-8
VL
EIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVDIK


79
EGF-3
DLL3-8
scFv
QVQLQEWGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQLSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVDIK


80

DLL3-8 xI2C
bispecific molecule
QVQLQEWGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQLSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


81

DLL3-9
VH CDR1
SFYWS


82

DLL3-9
VH CDR2
YIYYSGTTNYNPSLKS


83

DLL3-9
VH CDR3
IAVAGFFFDY


84

DLL3-9
VL CDR1
RASQSVNKNYLA


85

DLL3-9
VL CDR2
GASSRAT


86

DLL3-9
VL CDR3
QQYDRSPLT


87

DLL3-9
VH
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSS


88

DLL3-9
VL
EIVLTQSPGTLSLSPGESATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTRLEIK


89
EGF-3
DLL3-9
scFv
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGESATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPL TFGGGTRLEIK


90

DLL3-9 xI2C
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGESATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPL TFGGGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


91

DLL3-10
VH CDR1
SYYWS


92

DLL3-10
VH CDR2
YIFYNGITNYNPSLKS


93

DLL3-10
VH CDR3
IHSGSFSFDY


94

DLL3-10
VL CDR1
RASQSVSRGYLA


95

DLL3-10
VL CDR2
GASSRAT


96

DLL3-10
VL CDR3
QQYDTSPIT


97

DLL3-10
VH
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYNGITNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAKYYCARIHSGSFSFDYWDQGTLVTVSS


98

DLL3-10
VL
EIVMTQSPGTLSLSPGERATLSCRASQSVSRGYLAWYQQKPGQAPRLLIYGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDTSPITFGQGTKVEIK


99
EGF-3
DLL3-10
scFv
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYNGITNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAKYYCARIHSGSFSFDYWDQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPGTLSLSPGERATLSCRASQSVSRGYLAWYQQKPGQAPRLLIYGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDTSPITFGQGTKVEIK


100

DLL3-10 xI2C
bispecific molecule
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYNGITNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAKYYCARIHSGSFSFDYWDQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPGTLSLSPGERATLSCRASQSVSRGYLAWYQQKPGQAPRLLIYGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDTSPITFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


101

DLL3-11
VH CDR1
NAGMS


102

DLL3-11
VH CDR2
RIKNKIDGGTTDFAAPVKG


103

DLL3-11
VH CDR3
RGWYGDYFDY


104

DLL3-11
VL CDR1
RSSQSLLHSNGYNYLD


105

DLL3-11
VL CDR2
LGSNRAS


106

DLL3-11
VL CDR3
MQALQTPFT


107

DLL3-11
VH
EVQLVESGGGLVKPGGSLRLSCAASGFIFNNAGMSWVRQAPGKGLEWVGRIKNKIDGGTTDFAAPVKGRFTISRDDSKNTLYLQMNSLKAEDTAVYYCTARGWYGDYFDYWGQGTLVTVSS


108

DLL3-11
VL
DIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGIYYCMQALQTPFTFGPGTKVEIK


109
EGF-3
DLL3-11
scFv
EVQLVESGGGLVKPGGSLRLSCAASGFIFNNAGMSWVRQAPGKGLEWVGRIKNKIDGGTTDFAAPVKGRFTISRDDSKNTLYLQMNSLKAEDTAVYYCTARGWYGDYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGIYYCMQALQTPFTFGPGTKVEIK


110

DLL3-11 xI2C
bispecific molecule
EVQLVESGGGLVKPGGSLRLSCAASGFIFNNAGMSWVRQAPGKGLEWVGRIKNKIDGGTTDFAAPVKGRFTISRDDSKNTLYLQMNSLKAEDTAVYYCTARGWYGDYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGIYYCMQALQTPFTFGPGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


111

DLL3-12
VH CDR1
SYDIH


112

DLL3-12
VH CDR2
VISSHGSNKNYARSVKG


113

DLL3-12
VH CDR3
DGYSGNDPFYYYYHGMDV


114

DLL3-12
VL CDR1
RASQSISSYLN


115

DLL3-12
VL CDR2
AASSLQS


116

DLL3-12
VL CDR3
QQSFTTPLT


117

DLL3-12
VH
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDIHWVRQAPGKGLEWVAVISSHGSNKNYARSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCARDGYSGNDPFYYYYHGMDVWGQGTTVTVSS


118

DLL3-12
VL
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSFTTPLTFGGGTKVEIK


119
EGF-3/ [4]
DLL3-12
scFv
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDIHWVRQAPGKGLEWVAVISSHGSNKNYARSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCARDGYSGNDPFYYYYHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSFTTPLTFGGGTKVEIK


120

DLL3-12 xI2C
bispecific molecule
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDIHWVRQAPGKGLEWVAVISSHGSNKNYARSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCARDGYSGNDPFYYYYHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSFTTPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


121

DLL3-13
VH CDR1
SYYMH


122

DLL3-13
VH CDR2
IINPSDGSTNYAQNFQG


123

DLL3-13
VH CDR3
GGNSAFYSYYDMDV


124

DLL3-13
VL CDR1
RSSQSLVYRDGNTYLS


125

DLL3-13
VL CDR2
KVSNWQS


126

DLL3-13
VL CDR3
MQGTHWPPT


127

DLL3-13
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSDGSTNYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


128

DLL3-13
VL
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIK


129
EGF-4
DLL3-13
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSDGSTNYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIK


130

DLL3-13 xI2C
bispeci fic molecul e
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSDGSTNYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


131

DLL3-14
VH CDR1
NYYMH


132

DLL3-14
VH CDR2
IINPSDGSTSYAQKFQG


133

DLL3-14
VH CDR3
GGNSAFYSYYDMDV


134

DLL3-14
VL CDR1
RSSQSLVYRDGNTYLS


135

DLL3-14
VL CDR2
KVSNWQS


136

DLL3-14
VL CDR3
MQGTHWPPT


137

DLL3-14
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


138

DLL3-14
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


139
EGF-4
DLL3-14
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


140

DLL3-14 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


141

DLL3-15
VH CDR1
GYYIH


142

DLL3-15
VH CDR2
IINPSDGSTSYGQNFQG


143

DLL3-15
VH CDR3
GGNSAFYSYYDMDV


144

DLL3-15
VL CDR1
RSSQSLAYRDGNTYLS


145

DLL3-15
VL CDR2
KVSNWQS


146

DLL3-15
VL CDR3
MQGTHWPPT


147

DLL3-15
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYIHWVRQAPGQGLEWMGIINPSDGSTSYGQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


148

DLL3-15
VL
DVVMTQSPLSLPVTLGQPASISCRSSQSLAYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIK


149
EGF-4
DLL3-15
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYIHWVRQAPGQGLEWMGIINPSDGSTSYGQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLAYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIK


150

DLL3-15 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYIHWVRQAPGQGLEWMGIINPSDGSTSYGQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLAYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


151

DLL3-16
VH CDR1
GHYMH


152

DLL3-16
VH CDR2
IINPSDGSTNYAQKFQG


153

DLL3-16
VH CDR3
GTTVVHYSYYDMDV


154

DLL3-16
VL CDR1
RSSQSLVYRDGNTYLT


155

DLL3-16
VL CDR2
KVSNWQS


156

DLL3-16
VL CDR3
MQGTHWPPT


157

DLL3-16
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGHYMHWVRQAPGQGLEWMGIINPSDGSTNYAQKFQGRVTMTRDTSTSTVYMELRSLRSEDTAVYYCTRGTTVVHYSYYDMDVWGQGTTVTVSS


158

DLL3-16
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLTWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGGGTKVEIK


159
EGF-4
DLL3-16
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGHYMHWVRQAPGQGLEWMGIINPSDGSTNYAQKFQGRVTMTRDTSTSTVYMELRSLRSEDTAVYYCTRGTTVVHYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLTWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGGGTKVEIK


160

DLL3-16 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGHYMHWVRQAPGQGLEWMGIINPSDGSTNYAQKFQGRVTMTRDTSTSTVYMELRSLRSEDTAVYYCTRGTTVVHYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLTWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


161

DLL3-17
VH CDR1
NYFMH


162

DLL3-17
VH CDR2
IINPSDGSTSYAQNFQG


163

DLL3-17
VH CDR3
GGNSAFYSYYDMDV


164

DLL3-17
VL CDR1
RSSQSLVYRDGNTYLS


165

DLL3-17
VL CDR2
RVSNWQS


166

DLL3-17
VL CDR3
MQGTYWPPT


167

DLL3-17
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYFMHWVRQAPGLGLEWMGIINPSDGSTSYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


168

DLL3-17
VL
DVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYRVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTYWPPTFGQGTKVDIK


169
EGF-4
DLL3-17
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYFMHWVRQAPGLGLEWMGIINPSDGSTSYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYRVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTYWPPTFGQGTKVDIK


170

DLL3-17 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYFMHWVRQAPGLGLEWMGIINPSDGSTSYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYRVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTYWPPTFGQGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


171

DLL3-18
VH CDR1
NYGMH


172

DLL3-18
VH CDR2
VISHHGSSKYYARSVKG


173

DLL3-18
VH CDR3
DWWELVFDY


174

DLL3-18
VL CDR1
KSSQSLLHSDGKTFLY


175

DLL3-18
VL CDR2
EVSNRFS


176

DLL3-18
VL CDR3
LQGIHLPFT


177

DLL3-18
VH
QVQLVESGGGAVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVISHHGSSKYYARSVKGRFTISRDNSKNTLYLEMNSLRAEDTAVYYCARDWWELVFDYWGQGTLVTVSS


178

DLL3-18
VL
DIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTFLYWYLQKPGQPPQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCLQGIHLPFTFGPGTKVEIK


179
EGF-5/ [6]
DLL3-18
scFv
QVQLVESGGGAVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVISHHGSSKYYARSVKGRFTISRDNSKNTLYLEMNSLRAEDTAVYYCARDWWELVFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTFLYWYLQKPGQPPQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCLQGIHLPFTFGPGTKVEIK


180

DLL3-18 xI2C
bispecific molecule
QVQLVESGGGAVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVISHHGSSKYYARSVKGRFTISRDNSKNTLYLEMNSLRAEDTAVYYCARDWWELVFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTFLYWYLQKPGQPPQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCLQGIHLPFTFGPGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


181

DLL3-19
VH CDR1
NSRMGVS


182

DLL3-19
VH CDR2
HIFSNDGKSYSTSLKS


183

DLL3-19
VH CDR3
YNYDSSGYYYSFFDY


184

DLL3-19
VL CDR1
RASQSISSYLN


185

DLL3-19
VL CDR2
AASSLQS


186

DLL3-19
VL CDR3
QQGYSSPFT


187

DLL3-19
VH
QVTLKESGPMLVKPTETLTLTCTVSGFSLSNSRMGVSWIRQPPGRALEWLAHIFSNDGKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYNYDSSGYYYSFFDYWGQGTLVTVSS


188

DLL3-19
VL
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYSSPFTFGGGTKVEIK


189
EGF-5/ [6]
DLL3-19
scFv
QVTLKESGPMLVKPTETLTLTCTVSGFSLSNSRMGVSWIRQPPGRALEWLAHIFSNDGKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYNYDSSGYYYSFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ GYSSPFTFGGGTKVEIK


190

DLL3-19 xI2C
bispecific molecule
QVTLKESGPMLVKPTETLTLTCTVSGFSLSNSRMGVSWIRQPPGRALEWLAHIFSNDGKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYNYDSSGYYYSFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ GYSSPFTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


191

DLL3-20
VH CDR1
NARMGVS


192

DLL3-20
VH CDR2
HIFSTDEKSYSTSLKS


193

DLL3-20
VH CDR3
YYYDSSGYYYSFFDY


194

DLL3-20
VL CDR1
RASQSIRSYLN


195

DLL3-20
VL CDR2
GASNLQS


196

DLL3-20
VL CDR3
QQSYSSPFT


197

DLL3-20
VH
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWLRQPPGKALEWLAHIFSTDEKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYYYDSSGYYYSFFDYWGQGTLVTVSS


198

DLL3-20
VL
DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLIYGASNLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSSPFTFGGGTKVEIK


199
EGF-5/ [6]
DLL3-20
scFv
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWLRQPPGKALEWLAHIFSTDEKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYYYDSSGYYYSFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLIYGASNLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ SYSSPFTFGGGTKVEIK


200

DLL3-20 xI2C
bispecific molecule
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWLRQPPGKALEWLAHIFSTDEKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYYYDSSGYYYSFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLIYGASNLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ SYSSPFTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


201

DLL3-21
VH CDR1
SYYIH


202

DLL3-21
VH CDR2
IINPSGGSKSYAQKFRG


203

DLL3-21
VH CDR3
SMSTVTSDAFDI


204

DLL3-21
VL CDR1
RASQSISNYLN


205

DLL3-21
VL CDR2
AASSLQS


206

DLL3-21
VL CDR3
QQSYSAPLT


207

DLL3-21
VH
QVQLVQSGAEVKKPGASVKVSCKASGYAFTSYYIHWVRQAPGQGLEWMGIINPSGGSKSYAQKFRGRVTMTRDTSTSTVYMELSSLTSEDTAVYYCARSMSTVTSDAFDIWGQGTMVTVSS


208

DLL3-21
VL
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSAPLTFGGGTKVDIK


209
EGF-5/ [6]
DLL3-21
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYAFTSYYIHWVRQAPGQGLEWMGIINPSGGSKSYAQKFRGRVTMTRDTSTSTVYMELSSLTSEDTAVYYCARSMSTVTSDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSAPLTFGGGTKVDIK


210

DLL3-21 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYAFTSYYIHWVRQAPGQGLEWMGIINPSGGSKSYAQKFRGRVTMTRDTSTSTVYMELSSLTSEDTAVYYCARSMSTVTSDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSAPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


211
EGF-3
DLL3-4 xF12Q
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


212
EGF-3
DLL3-5 xF12Q
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGRTNYYPSLKSRVTISIDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


213
EGF-3
DLL3-6 xF12Q
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


214
EGF-3
DLL3-7 xF12Q
bispecific molecule
QVQLQESGPGLVKPSQTLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


215
EGF-3
DLL3-8 xF12Q
bispecific molecule
QVQLQEWGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQLSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


216
EGF-3
DLL3-9 xF12Q
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGESATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPL TFGGGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


217
EGF-3
DLL3-10 xF12Q
bispecific molecule
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYNGITNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAKYYCARIHSGSFSFDYWDQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPGTLSLSPGERATLSCRASQSVSRGYLAWYQQKPGQAPRLLIYGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDTSPITFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


218
EGF-4
DLL3-13 xF12Q
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSDGSTNYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


219
EGF-4
DLL3-14 xF12Q
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


220
EGF-4
DLL3-15 xF12Q
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYIHWVRQAPGQGLEWMGIINPSDGSTSYGQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLAYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


221
N-term.
DLL3-1 xI2C -HALB variant 1
bispecific molecule -HALB variant 1
QVQLVESGGGVVQSGRSLRLSCAASGFTFSDYGIHWVRQAPGKGLEWVAVISYHGSNKYYARSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREIPFGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSDGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLTISRVEAEDVGVYYCMQALQTPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKV PQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAGTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAAMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


222
N-term.
DLL3-2 xI2C -HALB variant 1
bispecific molecule -HALB variant 1
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGDTNYAQKFQGRVTMTRDTSISTAYMELSRLTSDDTAVYYCARDANIAALDAFEIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAGTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAAMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


223
EGF-1
DLL3-3 xI2C -HALB
bispecific molecule -HALB
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYHGRDTYYARSVKGRFTISRDNSKNTLYLHMNSLRAEDTAVYYCARDGATVTSYYYSGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWFQQKPGKAPKSLIYLASSLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYNFYPFTFGPGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTC GSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKK YLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


224
EGF-3
DLL3-4 xI2C -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


225
EGF-3
DLL3-5 xI2C -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGRTNYYPSLKSRVTISIDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


226
EGF-3
DLL3-6 xI2C -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


227
EGF-3
DLL3-7 xI2C -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSQTLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


228
EGF-3
DLL3-8 xI2C -HALB
bispecific molecule -HALB
QVQLQEWGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQLSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


229
EGF-3
DLL3-9 xI2C -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGESATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPL TFGGGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


230
EGF-3
DLL3-10 xI2C -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYNGITNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAKYYCARIHSGSFSFDYWDQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPGTLSLSPGERATLSCRASQSVSRGYLAWYQQKPGQAPRLLIYGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDTSPITFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


231
EGF-3
DLL3-11 xI2C -HALB
bispecific molecule -HALB
EVQLVESGGGLVKPGGSLRLSCAASGFIFNNAGMSWVRQAPGKGLEWVGRIKNKIDGGTTDFAAPVKGRFTISRDDSKNTLYLQMNSLKAEDTAVYYCTARGWYGDYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGIYYCMQALQTPFTFGPGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFL KKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


232
EGF-3/ [4]
DLL3-12 xI2C -HALB
bispecific molecule -HALB
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYDIHWVRQAPGKGLEWVAVISSHGSNKNYARSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCARDGYSGNDPFYYYYHGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSFTTPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


233
EGF-4
DLL3-13 xI2C -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSDGSTNYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


234
EGF-4
DLL3-14 xI2C -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


235
EGF-4
DLL3-15 xI2C -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYIHWVRQAPGQGLEWMGIINPSDGSTSYGQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLAYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEET FLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


236
EGF-4
DLL3-16 xI2C -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGHYMHWVRQAPGQGLEWMGIINPSDGSTNYAQKFQGRVTMTRDTSTSTVYMELRSLRSEDTAVYYCTRGTTVVHYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLTWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


237
EGF-4
DLL3-17 xI2C -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYFMHWVRQAPGLGLEWMGIINPSDGSTSYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYRVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTYWPPTFGQGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEET FLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


238
EGF-5/ [6]
DLL3-18 xI2C -HALB
bispecific molecule -HALB
QVQLVESGGGAVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVISHHGSSKYYARSVKGRFTISRDNSKNTLYLEMNSLRAEDTAVYYCARDWWELVFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTFLYWYLQKPGQPPQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCLQGIHLPFTFGPGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKY LYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


239
EGF-5/ [6]
DLL3-19 xI2C -HALB
bispecific molecule -HALB
QVTLKESGPMLVKPTETLTLTCTVSGFSLSNSRMGVSWIRQPPGRALEWLAHIFSNDGKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYNYDSSGYYYSFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ GYSSPFTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKL DELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


240
EGF-5/ [6]
DLL3-20 xI2C -HALB
bispecific molecule -HALB
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNARMGVSWLRQPPGKALEWLAHIFSTDEKSYSTSLKSRLTISKDTSKSQVVLTMTNMDPVDTATYYCARYYYDSSGYYYSFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLIYGASNLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ SYSSPFTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKL DELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


241
EGF-5/ [6]
DLL3-21 xI2C -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYAFTSYYIHWVRQAPGQGLEWMGIINPSGGSKSYAQKFRGRVTMTRDTSTSTVYMELSSLTSEDTAVYYCARSMSTVTSDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQSYSAPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


242
EGF-3
DLL3-4 xF12Q -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


243
EGF-3
DLL3-5 xF12Q -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGRTNYYPSLKSRVTISIDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


244
EGF-3
DLL3- xF12Q -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


245
EGF-3
DLL3-7 xF12Q -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSQTLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


246
EGF-3
DLL3-8 xF12Q -HALB
bispecific molecule -HALB
QVQLQEWGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQLSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVDIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


247
EGF-3
DLL3-9 xF12Q -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGESATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPL TFGGGTRLEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


248
EGF-3
DLL3-10 xF12Q -HALB
bispecific molecule -HALB
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIFYNGITNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAKYYCARIHSGSFSFDYWDQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPGTLSLSPGERATLSCRASQSVSRGYLAWYQQKPGQAPRLLIYGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDTSPITFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


249
EGF-4
DLL3-13 xF12Q -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSDGSTNYAQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


250
EGF-4
DLL3-14 xF12Q -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


251
EGF-4
DLL3-15 xF12Q -HALB
bispecific molecule -HALB
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYIHWVRQAPGQGLEWMGIINPSDGSTSYGQNFQGRVTMTRDTSTNTVYMELSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCRSSQSLAYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLPGGGGSDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEET FLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGLHHHHHH


252
-
Human DLL3
human
MVSPRMSGLLSQTVILALIFLPQTRPAGVFELQIHSFGPGPGPGAPRSPCSARLPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPGAPAPDLPLPDGLLQVPFRDAWPGTFSFIIETWREELGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQRAGAWELRFSYRARCEPPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTVPVSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLLPPALGLLVAAGVAGAALLLVHVRRRGHSQDAGSRLLAGTPEPSVHALPDALNNLRTQEGSGDGPSSSVDWNRPEDVDPQGIYVISAPSIYAREVATPLFPPLHTGRAGQRQHLLFPYPSSILSVK


253
-
Human DLL3 ECD
human
MVSPRMSGLLSQTVILALIFLPQTRPAGVFELQIHSFGPGPGPGAPRSPCSARLPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPGAPAPDLPLPDGLLQVPFRDAWPGTFSFIIETWREELGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQRAGAWELRFSYRARCEPPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTVPVSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYL


254
-
Hu DLL3 N-term.
human
MVSPRMSGLLSQTVILALIFLPQTRPAGVFELQIHSFGPGPGPGAPRSPCSARLPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPGAPAPDLPLPDGLLQVPFRDAWPGTFSFIIETWREELGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQRAGAWELRFSYR


255
-
Hu DLL3 DSL dom
human
ARCEPPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECE


256
-
Hu DLL3 EGF-1
human
APLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCT


257
-
Hu DLL3 EGF-2
human
GPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCE


258
-
Hu DLL3 EGF-3
human
SGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCE


259
-
Hu DLL3 EGF-4
human
RVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCE


260
-
Hu DLL3 EGF-3+4
human
SGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCE


261
-
Hu DLL3 EGF-5
human
DLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCR


262
-
Hu DLL3 EGF-6
human
RADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCE


263
-
Human DLL3 ECD x EpCAM
artificial
MVSPRMSGLLSQTVILALIFLPQTRPAGVFELQIHSFGPGPGPGAPRSPCSARLPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPGAPAPDLPLPDGLLQVPFRDAWPGTFSFIIETWREELGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQRAGAWELRFSYRARCEPPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTVPVSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


264
-
V5 x hu DLL3-DSL x EpCAM
artificial
MGWSCIILFLVATATGVHSGKPIPNPLLGLDSTSGARCEPPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTVPVSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLD LGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


265
-
V5 x hu DLL3-EGF1 x EpCAM
artificial
MGWSCIILFLVATATGVHSGKPIPNPLLGLDSTSGAPLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTVPVSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


266
-
V5 x hu DLL3-EGF2 x EpCAM
artificial
MGWSCIILFLVATATGVHSGKPIPNPLLGLDSTSGGPGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


267
-
V5 x hu DLL3-EGF3 x EpCAM
artificial
MGWSCIILFLVATATGVHSGKPIPNPLLGLDSTSGSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


268
-
V5 x hu DLL3-EGF4 x EpCAM
artificial
MGWSCIILFLVATATGVHSGKPIPNPLLGLDSTSGRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


269
-
V5 x hu DLL3-EGF5 x EpCAM
artificial
MGWSCIILFLVATATGVHSGKPIPNPLLGLDSTSGDLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


270
-
V5 x hu DLL3-EGF6 x EpCAM
artificial
MGWSCIILFLVATATGVHSGKPIPNPLLGLDSTSGRADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


271
-
Macaqu e DLL3
cyno
MVSPRMSRLLSQTVILALIFIPQARPAGVFELQIHSFGPGPGPGAPRSPCSARGPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPEAPAPDLPLPNGLLQVPFRDAWPGTFSLIIETWREELGDQIGGPAWSLLARVTRRRRLAAGGPWARDIQRAGAWELRFSYRARCELPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPPVCRAGCSLEHGFCEQPGECRCLEGWTGPLCMVPASTSSCLGLRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPGSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHNLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGSRCEFPVHPDGVSALPAAPPGLRPGDPQRYLLPPALGLLVAAGVAGAALLLVHVRRRGHAQDAGSRLLAGTPEPSVHALPDALNNQRTQEGPGDVPSSSVDWNRPEDVDSRGIYVISAPSIYAREA


272
-
Macaque DLL3 ECD
cyno
MVSPRMSRLLSQTVILALIFIPQARPAGVFELQIHSFGPGPGPGAPRSPCSARGPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPEAPAPDLPLPNGLLQVPFRDAWPGTFSLIIETWREELGDQIGGPAWSLLARVTRRRRLAAGGPWARDIQRAGAWELRFSYRARCELPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPPVCRAGCSLEHGFCEQPGECRCLEGWTGPLCMVPASTSSCLGLRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPGSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHNLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGSRCEFPVHPDGVSALPAAPPGLRPGDPQRYL


273
-
Ma DLL3 N-term.
cyno
MVSPRMSRLLSQTVILALIFIPQARPAGVFELQIHSFGPGPGPGAPRSPCSARGPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPEAPAPDLPLPNGLLQVPFRDAWPGTFSLIIETWREELGDQIGGPAWSLLARVTRRRRLAAGGPWARDIQRAGAWELRFSYR


274
-
Ma DLL3 DSL dom.
cyno
ARCELPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECE


275
-
Ma DLL3 EGF-1
cyno
APPVCRAGCSLEHGFCEQPGECRCLEGWTGPLCM


276
-
Ma DLL3 EGF-2
cyno
GPGPCDGNPCANGGSCSETPGSFECTCPRGFYGLRCE


277
-
Ma DLL3 EGF-3
cyno
SGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCE


278
-
Ma DLL3 EGF-4
cyno
RVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCE


279
-
Ma DLL3 EGF-3+4
cyno
SGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCE


280
-
Ma DLL3 EGF-5
cyno
NLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCR


281
-
Ma DLL3 EGF-6
cyno
RADPCAARPCAHGGRCYAHFSGLVCACAPGYMGSRCE


282
-
Ma DLL3 ECD x EpCAM
artificial
MVSPRMSRLLSQTVILALIFIPQARPAGVFELQIHSFGPGPGPGAPRSPCSARGPCRLFFRVCLKPGLSEEAAESPCALGAALSARGPVYTEQPEAPAPDLPLPNGLLQVPFRDAWPGTFSLIIETWREELGDQIGGPAWSLLARVTRRRRLAAGGPWARDIQRAGAWELRFSYRARCELPAVGTACTRLCRPRSAPSRCGPGLRPCAPLEDECEAPPVCRAGCSLEHGFCEQPGECRCLEGWTGPLCMVPASTSSCLGLRGPSSATTGCLVPGPGPCDGNPCANGGSCSETPGSFECTCPRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHNLDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLVCACAPGYMGSRCEFPVHPDGVSALPAAPPGLRPGDPQRYLSGGGGSGAGVIAVIVVVVIAIVAGIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA


283
-
Human DLL1
human
MGSRCALALAVLSALLCQVWSSGVFELKLQEFVNKKGLLGNRNCCRGGAGPPPCACRTFFRVCLKHYQASVSPEPPCTYGSAVTPVLGVDSFSLPDGGGADSAFSNPIRFPFGFTWPGTFSLIIEALHTDSPDDLATENPERLISRLATQRHLTVGEEWSQDLHSSGRTDLKYSYRFVCDEHYYGEGCSVFCRPRDDAFGHFTCGERGEKVCNPGWKGPYCTEPICLPGCDEQHGFCDKPGECKCRVGWQGRYCDECIRYPGCLHGTCQQPWQCNCQEGWGGLFCNQDLNYCTHHKPCKNGATCTNTGQGSYTCSCRPGYTGATCELGIDECDPSPCKNGGSCTDLENSYSCTCPPGFYGKICELSAMTCADGPCFNGGRCSDSPDGGYSCRCPVGYSGFNCEKKIDYCSSSPCSNGAKCVDLGDAYLCRCQAGFSGRHCDDNVDDCASSPCANGGTCRDGVNDFSCTCPPGYTGRNCSAPVSRCEHAPCHNGATCHERGHRYVCECARGYGGPNCQFLLPELPPGPAVVDLTEKLEGQGGPFPWVAVCAGVILVLMLLLGCAAVVVCVRLRLQKHRPPADPCRGETETMNNLANCQREKDISVSIIGATQIKNTNKKADFHGDHSADKNGFKARYPAVDYNLVQDLKGDDTAVRDAHSKRDTKCQPQGSSGEEKGTPTTLRGGEASERKRPDSGCSTSKDTKYQSVYVISEEKDECVIATEV


284
-
Human DLL4
human
MAAASRSASGWALLLLVALWQQRAAGSGVFQLQLQEFINERGVLASGRPCEPGCRTFFRVCLKHFQAVVSPGPCTFGTVSTPVLGTNSFAVRDDSSGGGRNPLQLPFNFTWPGTFSLIIEAWHAPGDDLRPEALPPDALISKIAIQGSLAVGQNWLLDEQTSTLTRLRYSYRVICSDNYYGDNCSRLCKKRNDHFGHYVCQPDGNLSCLPGWTGEYCQQPICLSGCHEQNGYCSKPAECLCRPGWQGRLCNECIPHNGCRHGTCSTPWQCTCDEGWGGLFCDQDLNYCTHHSPCKNGATCSNSGQRSYTCTCRPGYTGVDCELELSECDSNPCRNGGSCKDQEDGYHCLCPPGYYGLHCEHSTLSCADSPCFNGGSCRERNQGANYACECPPNFTGSNCEKKVDRCTSNPCANGGQCLNRGPSRMCRCRPGFTGTYCELHVSDCARNPCAHGGTCHDLENGLMCTCPAGFSGRRCEVRTSIDACASSPCFNRATCYTDLSTDTFVCNCPYGFVGSRCEFPVGLPPSFPWVAVSLGVGLAVLLVLLGMVAVAVRQLRLRRPDDGSREAMNNLSDFQKDNLIPAAQLKNTNQKKELEVDCGLDKSNCGKQQNHTLDYNLAPGPLGRGTMPGKFPHSDKSLGEKAPLRLHSEKPECRISAICSPRDSMYQSVCLISEERNECVIATEV


285
-
linker 1
artificial
GGGG


286
-
linker 2
artificial
GGGGS


287
-
linker 3
artificial
GGGGQ


288
-
linker 4
artific ial
SGGGGS


289
-
linker 5
artificial
PGGGGS


290
-
linker 6
artificial
PGGDGS


291
-
linker 7
artificial
GGGGSGGGS


292
-
linker 8
artificial
GGGGSGGGGS


293

linker 9
artificial
GGGGSGGGGSGGGGS


294
-
Hexa-his
artificial
HHHHHH


295
-
Ab156
artificial
RDWDFDVFGGGTPVGG


296
-
linear FcRn BP
artificial
QRFVTGHFGGLXPANG


297
-
linear FcRn BP-Y
artificial
QRFVTGHFGGLYPANG


298
-
linear FcRn BP-H
artificial
QRFVTGHFGGLHPANG


299

core FcRn BP-H
artificial
TGHFGGLHP


300

cyclic FcRn BP-H
artificial
QRFCTGHFGGLHPCNG


301
-
HALB
human
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL


302
-
HALB variant 1
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAGTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAAMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL


303
-
HALB variant 2
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


304
-
HALB variant 3
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPHLVAASKAALGL


305
-
HALB variant 4
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALGVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


306
-
HALB variant 5
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


307
-
HALB variant 6
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPHLVAASQAALGL


308
-
HALB variant 7
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPHLVAASKAALGL


309
-
HALB variant 8
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASKAALGL


310
-
HALB variant 9
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPKLVAASKAALGL


311
-
HALB variant 10
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL


312
-
HALB variant 11
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAGTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAAMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL


313
-
HALB variant 12
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


314
-
HALB variant 13
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPHLVAASKAALGL


315
-
HALB variant 14
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALGVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


316
-
HALB variant 15
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


317
-
HALB variant 16
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPHLVAASQAALGL


318
-
HALB variant 17
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPHLVAASKAALGL


319
-
HALB variant 18
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASKAALGL


320
-
HALB variant 19
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPKLVAASKAALGL


321
-
HALB variant 20
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL


322
-
HALB variant 21
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAGTFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAAMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL


323
-
HALB variant 22
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


324
-
HALB variant 23
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPHLVAASKAALGL


325
-
HALB variant 24
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALGVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


326
-
HALB variant 25
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASQAALGL


327
-
HALB variant 26
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPHLVAASQAALGL


328
-
HALB variant 27
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPHLVAASKAALGL


329
-
HALB variant 28
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDKFAAFVEKCCKADDKETCFAEEGPKLVAASKAALGL


330
-
HALB variant 29
artificial
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQAPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALDVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGPKLVAASKAALGL


331
-
Cross body 1 HC
artificial
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


332
-
Cross body 1 LC
artificial
GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


333
-
Cross body 2 HC
artificial
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


334
-
Cross body 2 LC
artificial
GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


335
-
Hetero -Fc binder Fc
artificial
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


336
-
Hetero -Fc partner Fc
artificial
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


337
-
Maxi-body 1 target Fc
artificial
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK


338
-
Maxi-body 1 CD3 Fc
artificial
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK


339
-
Maxi-body 2 target Fc
artificial
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRKEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK


340
-
Maxi-body 2 CD3 Fc
artificial
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK


341
-
Mono Fc
artificial
APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVTTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


342
-
CDR-L1 of F6A
artificial
GSSTGAVTSGYYPN


343

CDR-L2 of F6A
artificial
GTKFLAP


344

CDR-L3 of F6A
artificial
ALWYSNRWV


345

CDR-H1 of F6A
artificial
IYAMN


346

CDR-H2 of F6A
artificial
RIRSKYNNYATYYADSVKS


347

CDR-H3 of F6A
artificial
HGNFGNSYVSFFAY


348

VH of F6A
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNIYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKSRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYVSFFAYWGQGTLVTVSS


349

VL of F6A
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


350

VH-VL of F6A
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNIYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKSRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYVSFFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


351

CDR-L1 of H2C
artificial
GSSTGAVTSGYYPN


352

CDR-L2 of H2C
artificial
GTKFLAP


353

CDR-L3 of H2C
artificial
ALWYSNRWV


354

CDR-H1 of H2C
artificial
KYAMN


355

CDR-H2 of H2C
artificial
RIRSKYNNYATYYADSVKD


356

CDR-H3 of H2C
artificial
HGNFGNSYISYWAY


357

VH of H2C
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTED TAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS


358

VL of H2C
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


359

VH-VL of H2C
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


360

CDR-L1 of H1E
artificial
GSSTGAVTSGYYPN


361

CDR-L2 of H1E
artificial
GTKFLAP


362

CDR-L3 of H1E
artificial
ALWYSNRWV


363

CDR-H1 of H1E
artificial
SYAMN


364

CDR-H2 of H1E
artificial
RIRSKYNNYATYYADSVKG


365

CDR-H3 of H1E
artificial
HGNFGNSYLSFWAY


366

VH of H1E
artificial
EVQLVESGGGLEQPGGSLKLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYLSFWAYWGQGTLVTVSS


367

VL of H1E
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


368

VH-VL of H1E
artificial
EVQLVESGGGLEQPGGSLKLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYLSFWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


369

CDR-L1 of G4H
artificial
GSSTGAVTSGYYPN


370

CDR-L2 of G4H
artificial
GTKFLAP


371

CDR-L3 of G4H
artificial
ALWYSNRWV


372

CDR-H1 of G4H
artificial
RYAMN


373

CDR-H2 of G4H
artificial
RIRSKYNNYATYYADSVKG


374

CDR-H3 of G4H
artificial
HGNFGNSYLSYFAY


375

VH of G4H
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNRYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYLSYFAYWGQGTLVTVSS


376

VL of G4H
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


377

VH-VL of G4H
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNRYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYLSYFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


378

CDR-L1 of A2J
artificial
RSSTGAVTSGYYPN


379

CDR-L2 of A2J
artificial
ATDMRPS


380

CDR-L3 of A2J
artificial
ALWYSNRWV


381

CDR-H1 of A2J
artificial
VYAMN


382

CDR-H2 of A2J
artificial
RIRSKYNNYATYYADSVKK


383

CDR-H3 of A2J
artificial
HGNFGNSYLSWWAY


384

VH of A2J
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNVYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKKRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYLSWWAYWGQGTLVTVSS


385

VL of A2J
artificial
QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTSGYYPNWVQQKPGQAPRGLIGATDMRPSGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


386

VH-VL of A2J
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNVYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKKRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYLSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCRSSTGAVTSGYYPNWVQQKPGQAPRGLIGATDMRPSGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


387

CDR-L1 of E1L
artificial
GSSTGAVTSGYYPN


388

CDR-L2 of E1L
artificial
GTKFLAP


389

CDR-L3 of E1L
artificial
ALWYSNRWV


390

CDR-H1 of E1L
artificial
KYAMN


391

CDR-H2 of E1L
artificial
RIRSKYNNYATYYADSVKS


392

CDR-H3 of E1L
artificial
HGNFGNSYTSYYAY


393

VH of E1L
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKSRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYTSYYAYWGQGTLVTVSS


394

VL of E1L
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


395

VH-VL of E1L
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKSRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYTSYYAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


396

CDR-L1 of E2M
artificial
RSSTGAVTSGYYPN


397

CDR-L2 of E2M
artificial
ATDMRPS


398

CDR-L3 of E2M
artificial
ALWYSNRWV


399

CDR-H1 of E2M
artificial
GYAMN


400

CDR-H2 of E2M
artificial
RIRSKYNNYATYYADSVKE


401

CDR-H3 of E2M
artificial
HRNFGNSYLSWFAY


402

VH of E2M
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNGYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKERFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHRNFGNSYLSWFAYWGQGTLVTVSS


403

VL of E2M
artificial
QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTSGYYPNWVQQKPGQAPRGLIGATDMRPSGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


404

VH-VL of E2M
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNGYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKERFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHRNFGNSYLSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCRSSTGAVTSGYYPNWVQQKPGQAPRGLIGATDMRPSGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


405

CDR-L1 of F70
artificial
GSSTGAVTSGYYPN


406

CDR-L2 of F70
artificial
GTKFLAP


407

CDR-L3 of F70
artificial
ALWYSNRWV


408

CDR-H1 of F70
artificial
VYAMN


409

CDR-H2 of F70
artificial
RIRSKYNNYATYYADSVKK


410

CDR-H3 of F70
artificial
HGNFGNSYISWWAY


411

VH of F70
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNVYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKKRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISWWAYWGQGTLVTVSS


412

VL of F70
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


413

VH-VL of F70
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNVYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKKRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNRWVFGGGTKLTVL


414

CDR-L1 of F12Q
artificial
GSSTGAVTSGNYPN


415

CDR-L2 of F12Q
artificial
GTKFLAP


416

CDR-L3 of F12Q
artificial
VLWYSNRWV


417

CDR-H1 of F12Q
artificial
SYAMN


418

CDR-H2 of F12Q
artificial
RIRSKYNNYATYYADSVKG


419

CDR-H3 of F12Q
artificial
HGNFGNSYVSWWAY


420

VH of F12Q
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSS


421

VL of F12Q
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


422

VH-VL of F12Q
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


423

CDR-L1 of I2C
artificial
GSSTGAVTSGNYPN


424

CDR-L2 of I2C
artificial
GTKFLAP


425

CDR-L3 of I2C
artificial
VLWYSNRWV


426

CDR-H1 of I2C
artificial
KYAMN


427

CDR-H2 of I2C
artificial
RIRSKYNNYATYYADSVKD


428

CDR-H3 of I2C
artificial
HGNFGNSYISYWAY


429

VH of I2C
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSS


430

VL of I2C
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


431

VH-VL of I2C
artificial
EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


432

VH of F12q
artificial
EVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSS


433

VL of F12q
artificial
QTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


434

VH-VL of F12q
artificial
EVQLVESGGGLVQPGGSLRLSCAASGFTFNSYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCVRHGNFGNSYVSWWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


435

DLL3-4-001 (G44C)
VH
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSS


436

DLL3-4-001 (G234C )
VL
EIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKLEIK


437

DLL3-4-001 (G44C-G243C)
scFv
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKLEIK


438

DLL3-4-001 (CC) xI2C
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


439

DLL3-14 -D55E
VH-CDR2
IINPSEGSTSYAQKFQG


440

DLL3-14 -G56A
VH-CDR2
IINPSDASTSYAQKFQG


441

DLL3-14 -D171E
VL-CDR1
RSSQSLVYREGNTYLS


442

DLL3-14 -G172A
VL-CDR1
RSSQSLVYRDANTYLS


443

DLL3-14 -N173Q
VL-CDR1
RSSQSLVYRDGQTYLS


444

DLL3-14 -T174A
VL-CDR1
RSSQSLVYRDGNAYLS


445

DLL3-14 -L43Q
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


446

DLL3-14 -D55E
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


447

DLL3-14 -G56A
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


448

DLL3-14 -L43Q-D55E
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


449

DLL3-14 -L43Q-G56A
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVS


450

DLL3-14 -G44C
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


451

DLL3-14 -L43Q-G44C
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


452

DLL3-14 -G44C-D55E
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


453

DLL3-14 -G44C-G56A
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


454

DLL3-14 -L43Q-G44C- D55E
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


455

DLL3-14 -L43Q-G44C-G56A
VH
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSS


456

DLL3-14 -D171E
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


457

DLL3-14 -G172A
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


458

DLL3-14 -N173Q
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGQTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


459

DLL3-14 -T174A
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNAYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


460

DLL3-14 -G208S
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


461

DLL3-14 -D171EG208S
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


462

DLL3-14 G172A-G208S
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


463

DLL3-14 -Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


464

DLL3-14 -D171E-Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


465

DLL3-14 -G172A-Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


466

DLL3-14 -N173Q Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGQTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


467

DLL3-14 -T174A-Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNAYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


468

DLL3-14 -G208S-Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


469

DLL3-14 -D171EG208S-Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


470

DLL3-14 -G172A-G208S-Q243C
VL
DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


471

DLL3-14 -001
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


472

DLL3-14 -002
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


473

DLL3-14 -003
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGS DVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGQTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


474

DLL3-14 -004
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNAYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


475

DLL3-14 -005
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


476

DLL3-14 -006
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


477

DLL3-14 -007
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


478

DLL3-14 -008
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


479

DLL3-14 -009
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


480

DLL3-14 -010
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


481

DLL3-14 -011
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIK


482

DLL3-14 -012 (CC)
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


483

DLL3-14 -013
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


484

DLL3-14 -014
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


485

DLL3-14 -015
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGQTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


486

DLL3-14 -016
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNAYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


487

DLL3-14 -017
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


488

DLL3-14 -018
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


489

DLL3-14 -019
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


490

DLL3-14 -020
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


491

DLL3-14 -021
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


492

DLL3-14 -022
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


493

DLL3-14 -023
scFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIK


494

DLL3-14 -001 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


495

DLL3-14 -002 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


496

DLL3-14 -003 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGQTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


497

DLL3-14 -004 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNAYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


498

DLL3-14 -005 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


499

DLL3-14 -006 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


500

DLL3-14 -007 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


501

DLL3-14 -008 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


502

DLL3-14 -009 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


503

DLL3-14 -010 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


504

DLL3-14 -011 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


505

DLL3-14 -012 (CC) xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


506

DLL3-14 -013 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


507

DLL3-14 -014 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


508

DLL3-14 -015 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGQTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


509

DLL3-14 -016 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNAYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


510

DLL3-14 -017 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


511

DLL3-14 -018 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


512

DLL3-14 -019 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


513

DLL3-14 -020 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


514

DLL3-14 -021 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


515

DLL3-14 -022 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSEGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYREGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


516

DLL3-14 -023 xI2C
bispecific molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQCLEWMGIINPSDASTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDANTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


517

DLL3-4 xI2C -scFc
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


518

DLL3-4 xI2C -scFc_d elGK
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


519

DLL3-4-001 (CC) xI2C -scFc
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


520

DLL3-4-001 (CC) xI2C -scFc _delGK
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKCLEWIGYVYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASIAVTGFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERVTLSCRASQRVNNNYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKLEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


521

DLL3-6 xI2C -scFc
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


522

DLL3-6 xI2C -scFc_d elGK
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGGGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


523

DLL3-6-001 (CC) xI2C -scFc
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


524

DLL3-6-001 (CC) xI2C -scFc_d elGK
bispecific HLE molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


525

DLL3-14 xI2C -scFc
bispecific HLE molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


526

DLL3-14 xI2C -scFc_d elGK
bispecific HLE molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLGLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGQGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


527

DLL3-14 -012 (CC) xI2C -scFc
bispecific HLE molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


528

DLL3-14 -012 (CC) xI2C-scFc_d elGK
bispecific HLE molecule
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGLCLEWMGIINPSDGSTSYAQKFQGRVTMTRDTSTNTVYMDLSSLRSEDTAVYYCARGGNSAFYSYYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGSDVVMTQTPLSLPVTLGQPASISCRSSQSLVYRDGNTYLSWFQQRPGQSPRRLIYKVSNWQSGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCMQGTHWPPTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTV TLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


529

DLL3-6-001 (CC)
VH
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSS


530

DLL3-6-001 (CC)
VL
EIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKVEIK


531

DLL3-6-001 (CC)
scFv
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKVEIK


532

DLL3-6-001 (CC) xI2C
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGASISSFYWSWIRQPPGKCLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARIAVAGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVNKNYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYDRSPLTFGCGTKVEIKSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVL


533

Fc monome r-1 +c/-g

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


534

Fc monome r-2 +c/-g/ delGK

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


535

Fc monome r-3 -c/+g

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


536

Fc monome r-4 -c/+g/ delGK

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


537

Fc monome r-5 -c/-g

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


538

Fc monome r-6 -c/-g/ delGK

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


539

Fc monome r-7 +c/+g

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


540

Fc monome r-8 +c/+g/ delGK

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


541

scFc-1

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


542

scFc-2

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYGSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


543

scFc-3

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


544

scFc-4

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


545

scFc-5

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


546

scFc-6

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


547

scFc-7

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


548

scFc-8

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGS GGGGSGGGGSGGGGSGGGGSGGGGSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPCEEQYNSTYRCVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP


549

(G4S) 4 linker

GGGGSGGGGSGGGGSGGGGS


550

(G4S) 5 linker

GGGGSGGGGSGGGGSGGGGSGGGGS


551

(G4S) 6 linker

GGGGSGGGGSGGGGSGGGGSGGGGSGGGGS


552

(G4S) 7 linker

GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGS


553

(G4S) 8 linker

GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGS


554

DLL3-22
bispecific molecule
QVQLQESGPGLVKPSETLSLTCTVSGDSISSYYWTWIRQPPGKGLEWIGYIYYSGTTNYNPSLKSRVTISVDTSKSQFSLKLSSVTAADTAVYYCASIAVRGFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASTRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGTSPLTFGGGTKVEIKRSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKLTVLHHHHHH





Claims
  • 1. A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent comprising the amino acid sequence of SEQ ID NOs: 437 and 431, wherein the anti-DLL3 agent is administered at a dose of from 3 mg to 200 mg once every two weeks.
  • 2. The method of claim 1, wherein the anti-DLL3 agent is administered at a dose of from 3 mg to 100, once every two weeks.
  • 3. The method of claim 1, wherein the anti-DLL3 agent is administered at a dose of 10 mg, 30 mg, or 100 mg, once every two weeks.
  • 4. The method of claim 1, wherein the anti-DLL3 agent is administered on day 1 and day 15 of a 28-day cycle.
  • 5. The method of claim 1, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1,b) a second dose (step dose) of from 3 mg to 200 mg on day 8, andc) one or more subsequent doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, andwherein the second and subsequent doses are the same, and are higher than the first dose.
  • 6. (canceled)
  • 7. The method of claim 5, wherein the first dose is from from 0.5 mg to 4 mg ; and wherein the second dose, or the subsequent doses are from 3 mg to 100 mg .
  • 8. The method of claim 5, wherein the first dose is 1 mg, and the second dose and subsequent doses are each 10 mg, 30 mg, or 100 mg.
  • 9. A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent comprising the amino acid sequence of SEQ ID NOs: 437 and 431, wherein said anti-DLL3 agent is administered according to one of the following two schedules: Schedule I: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 4, c) a third dose (step dose) of from 3 mg to 200 mg on day 8, and d) one or more subsequent doses (target dose) of from 3 mg to 200 mg, starting on day 15 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third and subsequent doses are the same, and are higher than the second dose; orSchedule II: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1, b) a second dose (step dose) of from 3 mg to 100 mg on day 8, c) a third dose (step dose) of from 3 mg to 200 mg on day 15 and c) one or more subsequent doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, and wherein the second dose is higher than the first dose, and the third dose and subsequent doses are the same, and are higher than the second dose.
  • 10. (canceled)
  • 11. (canceled)
  • 12. A method of treating DLL3-positive cancer, comprising administering to a subject in need thereof an anti-DLL3 agent comprising the amino acid sequence of SEQ ID NOs: 437 and 431, wherein said anti-DLL3 agent is administered according to the following schedule: a) a first dose (run-in dose) of from 0.5 mg to 10 mg on day 1,b) a second dose (step dose) of from 3 mg to 100 mg on day 4,c) a third dose (step dose) of from 3 mg to 100 mg on day 8,d) a fourth dose (step dose) of from 3 mg to 200 mg on day 15, ande) one or more subsequent doses (target dose) of from 3 mg to 200 mg, starting on day 29 and once every two weeks thereafter, andwherein the second dose is higher than the first dose, the third dose is higher than the second dose, and the fourth dose and the subsequent doses are the same, and are higher than the third dose.
  • 13. (canceled)
  • 14. (canceled)
  • 15. The method of claim 1, wherein the anti-DLL3 agent comprises the amino acid sequence of SEQ ID NO: 438 or 520.
  • 16. The method of claim 5, wherein the anti-DLL3 agent is administered in a 28-day cycle, and the method further comprises administering saline, an anti-inflammatory agent, tocilizumab, or etanercept to the subject in a first cycle wherein the anti-DLL3 agent is administered.
  • 17. The method of claim 16, wherein one-liter saline is administered by IV infusion to the subject after the run-in dose and the step dose of the anti-DLL3 agent.
  • 18. The method of claim 16, wherein the anti-inflammatory agent is a corticosteroid or acetaminophen.
  • 19. The method of claim 18, wherein the corticosteroid is dexamethasone.
  • 20. The method of claim 16, wherein the anti-inflammatory agent or tocilizumab is administered to the subject prior to the run-in dose and the step doses of the anti-DLL3 agent.
  • 21. The method of claim 16, wherein the corticosteroid is administered to the subject 6-16 hour prior to the run-in dose and the step doses of the anti-DLL3 agent; oracetaminophen or tocilizumab is administered to the subject one hour prior to the run-in dose and step doses of the anti-DLL3 agent; oretanercept is administered 36-60 hours prior to the run-in dose and step doses of the anti-DLL3 agent; oretanercept is administered 2 days prior to the run-in dose and step doses of the anti-DLL3 agent.
  • 22-34. (canceled)
  • 35. The method of claim 1, wherein the method further comprises administering a corticosteroid prior to administering the anti-DLL3 agent in a first cycle.
  • 36. The method of claim 35, wherein is the corticosteroid is dexamethasone administered by IV infusion.
  • 37. The method of claim 1, wherein the cancer is small cell lung cancer (SCLC).
  • 38. The method of claim 1, wherein the cancer is relapsed/refractory SCLC (RR SCLC) or extensive disease SCLC (ED SCLC).
  • 39. The method of claim 1, wherein the anti-DLL3 agent is administered by IV infusion.
  • 40. The method of claim 1, wherein the subject is a human.
Priority Claims (1)
Number Date Country Kind
19208214.7 Nov 2019 EP regional
CROSS REFERENCE OF RELATED APPLICATION

This application is a national phase of International Patent Application No. PCT/US2020/059052, filed on Nov. 5, 2020, which claims the benefit of European Patent Application No. 19208214, filed on Nov. 10, 2019 and U.S. Provisional Application No. 63/078,131, filed Sep. 14, 2020. The content of these applications is incorporated in its entirety by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/059052 11/5/2020 WO
Provisional Applications (1)
Number Date Country
63078131 Sep 2020 US