Claims
- 1. A reciprocating pump and reversing mechanism therefor comprising in combination:
- (a) a pump housing including a pair of laterally spaced-apart chambers each of which has a diaphragm member therein dividing each chamber into a driving section and a discharge section, each of said discharge sections having an inlet port and an outlet port and each of said driving sections having inlet-outlet port means;
- (b) said diaphragm members being interconnected by a shaft mounted in said housing for reciprocating movement, whereby said shaft moves with said diaphragm members such that as the driving section of one chamber expands, forcing its discharge section to contract, the driving section of the other chamber contracts while its discharge section expands;
- (c) protrusion means fixedly connected to said shaft and extending transversely therefrom for use in coupling the movement of said shaft to the movement of the below-recited valve actuating member;
- (d) said housing also including a fluid outlet manifold interconnecting said outlet ports of said discharge sections, a fluid inlet manifold interconnecting said inlet ports of said discharge sections, and driving fluid manifold means for feeding driving fluid to and from said inlet-outlet port means of said driving sections;
- (e) inlet and outlet valves in said housing in fluid communication with said fluid inlet and outlet manifolds, respectively, for controlling the flow of fluid to be pumped to and from each of said discharge sections;
- (f) control valve means including valve housing means for housing said control valve means, said valve housing means being connected to said pump housing and including reciprocable spool valve element means in said valve housing means and being in fluid communication with said driving fluid manifold means and being movable between two alternate positions for alternately directing driving fluid to one of said two driving sections, while also alternately allowing driving fluid to flow from the other one of said two driving sections, said spool valve element means having first contact surface means for being contacted by the below-recited valve actuating member;
- (g) a valve actuating member mounted for reciprocating movement between two control valve-actuated end positions, said valve actuating member having second contact surface means positioned adjacent said first contact surface means of said spool valve element means for alternately snap contacting said first contact surface means to alternately snap said spool valve element means back and forth between its two positions, said valve actuating member also having third contact surface means for use in coupling the movement of said shaft to the movement of said valve actuating member, coupling means including said protrusion means and said third contact surface means for operatively coupling said protrusion means to said valve actuating means for alternately initiating each reciprocating stroke of said valve actuating member as said shaft reciprocates, the completion of each of said reciprocating strokes of said valve actuating member being carried out by the below-recited snap-acting means;
- (h) snap-acting means, including at least one pin, a helicoidal compression spring at least partially surrounding said pin and a pin mounting element, for completing the movement of said valve actuating member from one of its two positions to the other initiated by said coupling means, said pin mounting element being pivotably secured for at least partial rotation about an axis stationary with respect to one of said valve actuating member and said housing, said pin being slidably mounted to said pin mounting element for sliding motion in a direction perpendicular to said axis; and
- (i) wherein said pin mounting element is in the form of a tubular socket for receiving an end of said pin and at least a portion of said compression spring.
- 2. A reciprocating pump and reversing mechanism therefor comprising in combination:
- (a) a pump housing including a pair of laterally spaced-apart chambers each of which has a diaphragm member therein dividing each chamber into a driving section and a discharge section, each of said discharge sections having an inlet port and an outlet port and each of said driving sections having inlet-outlet port means;
- (b) said diaphragm members being interconnected by a shaft mounted in said housing for reciprocating movement, whereby said shaft moves with said diaphragm members such that as the driving section of one chamber expands, forcing its discharge section to contract, the driving section of the other chamber contracts while its discharge section expands;
- (c) a protrusion fixedly connected to said shaft and extending transversely therefrom;
- (d) said housing also including a fluid outlet manifold interconnecting said outlet ports of said discharge sections, a fluid inlet manifold interconnecting said inlet ports of said discharge sections, and a driving fluid manifold interconnecting said inlet-outlet port means of said driving sections;
- (e) inlet and outlet valves in said housing in fluid communication with said fluid inlet and outlet manifolds, respectively, for controlling the flow of fluid to be pumped to and from each of said discharge sections;
- (f) control valve means including a valve housing connected to said pump housing between said chambers and including a reciprocable spool valve element therein in fluid communication with said driving fluid manifold and movable between two alternate positions to alternately direct driving fluid to said two driving sections while also alternately allowing driving fluid to flow from the other one of said two driving sections, said spool valve element having a pair of opposite contact ends;
- (g) a yoke-shaped valve actuating member mounted for reciprocating movement between two control valve-actuated end positions, said valve actuating member having a pair of spaced-apart arms positioned one each adjacent respective ones of said opposite contact ends of said spool valve element for alternately snap contacting said opposite contact ends to alternately snap said spool valve element back and forth between its two positions, said valve actuating member also having a pair of spaced-apart surfaces positioned one each on opposite sides of said protrusion for alternately being contacted by said protrusion as said shaft reciprocates for initiating each reciprocating stroke of said valve actuating member, the completion of each of said reciprocating strokes being carried out by the below-recited snap-acting means;
- (h) snap-acting means connected to said valve actuating member for completing the movement of said valve actuating member from one of its two positions to the other initiated by said protrusion engaging one of said pair of surfaces of said valve actuating member, said snap-acting means including a pair of opposed spring means connected to said valve actuating member and being located on opposite sides thereof, each of said spring means including at least one pin, a helicoidal compression spring at least partially surrounding said pin and a pin mounting element, said pin mounting element being pivotably secured for at least partial rotation about an axis stationary with respect to one of said valve actuating member and said pump housing, said pin being slidably mounted adjacent one end thereof to said element for sliding motion in a direction perpendicular to said axis, and said pin being pivotably mounted adjacent its other end to the other of said control valve actuating member and said pump housing; and
- (i) wherein each of said pin mounting elements includes a bore therein having an axis perpendicular to said stationary axis for receiving both an end of a respective one of said pins and at least a portion of a respective one of said compression springs.
- 3. A reciprocating pump and reversing mechanism therefor comprising in combination:
- (a) a pump housing including a pair of laterally spaced-apart chambers each of which has a diaphragm member therein dividing each chamber into a driving section and a discharge section, each of said discharge sections having an inlet port and an outlet port and each of said driving sections having inlet-outlet port means;
- (b) said diaphragm members being interconnected by a shaft mounted in said housing for reciprocating movement, whereby said shaft moves with said diaphragm members such that as the driving section of one chamber expands, forcing its discharge section to contract, the driving section of the other chamber contracts while its discharge section expands;
- (c) protrusion means fixedly connected to said shaft and extending transversely therefrom for use in coupling the movement of said shaft to the movement of the below-recited valve actuating member;
- (d) said housing also including a fluid outlet manifold interconnecting said outlet ports of said discharge sections, a fluid inlet manifold interconnecting said inlet ports of said discharge sections, and driving fluid manifold means for feeding driving fluid to and from said inlet-outlet port means of said driving sections;
- (e) inlet and outlet valves in said housing in fluid communication with said fluid inlet and outlet manifolds, respectively, for controlling the flow of fluid to be pumped to and from each of said discharge sections;
- (f) control valve means including valve housing means for housing said control valve means, said valve housing means being connected to said pump housing and including movable valve element means therein in fluid communication with said driving fluid manifold means and movable between two alternate positions for alternately directing driving fluid to one of said two driving sections while also alternately allowing driving fluid to vent from the other one of said two driving sections, said valve element means having contact means for being contacted by the below-recited control valve actuating member for moving said valve element means back and forth between its two positions;
- (g) a control valve actuating member mounted for movement between two control valve-actuated positions, said control valve actuating member having contacting means for engaging said contact means, said contacting means being positioned adjacent said contact means of said valve element means for alternately moving said valve element means back and forth between its two positions, said control valve actuating member also having contact surface means for use in coupling the movement of said shaft to the movement of said valve actuating member, and coupling means including said protrusion means and said contact surface means for operatively coupling said protrusion means to said valve actuating means for initiating each reciprocating stroke of said control valve actuating member, the completion of each of said reciprocating strokes being carried out by the below-recited snap-acting means;
- (h) snap-acting means connected to said control valve actuating member for completing the movement of said control valve actuating member from one of its two positions to the other initiated by said coupling means, said snap-acting means including at least one pin, a helicoidal compression spring at least partially surrounding said pin and a pin mounting element, said pin mounting element being pivotably secured for at least partial rotation about an axis stationary with respect to one of said control valve actuating member and said pump housing, said pin being slidably mounted adjacent one end thereof to said pin mounting element for sliding motion in a direction perpendicular to said axis, and said pin being pivotably mounted adjacent its other end about an axis stationary with respect to the other of said control valve actuating member and said pump housing; and
- (i) wherein said pin mounting element includes a bore therein that is perpendicular to said pin mounting axis, said bore slidably receiving an end of said pin and receiving at least a portion of one end of said compression spring.
- 4. A reciprocating pump and reversing mechanism therefor comprising in combination:
- (a) a pump housing including a pair of laterally spaced-apart chambers each of which has a diaphragm member therein dividing each chamber into a driving section and a discharge section, each of said discharge sections having an inlet port and an outlet port and each of said driving sections having inlet-outlet port means;
- (b) said diaphragm members being interconnected by a shaft mounted in said housing for reciprocating movement, whereby said shaft moves with said diaphragm members such that as the driving section of one chamber expands, forcing its discharge section to contract, the driving section of the other chamber contracts while its discharge section expands;
- (c) protrusion means fixedly connected to said shaft and extending transversely therefrom for use in coupling the movement of said shaft to the movement of the below-recited valve actuating member;
- (d) said housing also including a fluid outlet manifold interconnecting said outlet ports of said discharge sections, a fluid inlet manifold interconnecting said inlet ports of said discharge sections, and driving fluid manifold means for feeding driving fluid to and from said inlet-outlet port means of said driving sections;
- (e) inlet and outlet valves in said housing in fluid communication with said fluid inlet and outlet manifolds, respectively, for controlling the flow of fluid to be pumped to and from each of said discharge sections;
- (f) control valve means including valve housing means for housing said control valve means, said valve housing means being connected to said pump housing and including reciprocable spool valve element means in said valve housing means and being in fluid communication with said driving fluid manifold means and being movable between two alternate positions for alternately directing driving fluid to one of said two driving sections, while also alternately allowing driving fluid to flow from the other one of said two driving sections, said spool valve element means having first contact surface means for being contacted by the below-recited valve actuating member;
- (g) a valve actuating member mounted for reciprocating movement between two control valve-actuated end positions, said valve actuating member having second contact surface means positioned adjacent said first contact surface means of said spool valve element means for alternately snap contacting said first contact surface means to alternately snap said spool valve element means back and forth between its two positions, said valve actuating member also having third contact surface means for use in coupling the movement of said shaft to the movement of said valve actuating member, coupling means including said protrusion means and said third contact surface means for operatively coupling said protrusion means to said valve actuating means for alternately initiating each reciprocating stroke of said valve actuating member as said shaft reciprocates, the completion of each of said reciprocating strokes of said valve actuating member being carried out by the below-recited snap-acting means;
- (h) snap-acting means, including at least one pin, a helicoidal compression spring at least partially surrounding said pin and a pin mounting element, for completing the movement of said valve actuating member from one of its two positions to the other initiated by said coupling means, said pin mounting element being pivotably secured for at least partial rotation about an axis stationary with respect to one of said valve actuating member and said housing, said pin being slidably mounted to said pin mounting element for sliding motion in a direction perpendicular to said axis; and
- (i) wherein said third contact surface means comprises a plurality of arms projecting from said valve actuating member on the opposite side thereof from said second contact surface means, and extending in the direction toward said protrusion means.
- 5. The reciprocating pump and reversing mechanism therefor as recited in claim 4 wherein said second contact surface means comprises a plurality of arms extending in a direction toward said first contact surface means.
- 6. A reciprocating pump and reversing mechanism therefor comprising in combination:
- (a) a pump housing including a pair of laterally spaced-apart chambers each of which has a diaphragm member therein dividing each chamber into a driving section and a discharge section, each of said discharge sections having an inlet port and an outlet port and each of said driving sections having inlet-outlet port means;
- (b) said diaphragm members being interconnected by a shaft mounted in said housing for reciprocating movement, whereby said shaft moves with said diaphragm members such that as the driving section of one chamber expands, forcing its discharge section to contract, the driving section of the other chamber contracts while its discharge section expands;
- (c) protrusion means fixedly connected to said shaft and extending transversely therefrom for use in coupling the movement of said shaft to the movement of the below-recited valve actuating member;
- (d) said housing also including a fluid outlet manifold interconnecting said outlet ports of said discharge sections, a fluid inlet manifold interconnecting said inlet ports of said discharge sections, and driving fluid manifold means for feeding driving fluid to and from said inlet-outlet port means of said driving sections;
- (e) inlet and outlet valves in said housing in fluid communication with said fluid inlet and outlet manifolds, respectively, for controlling the flow of fluid to be pumped to and from each of said discharge sections;
- (f) control valve means including valve housing means for housing said control valve means, said valve housing means being connected to said pump housing and including movable valve element means therein in fluid communication with said driving fluid manifold means and movable between two alternate positions for alternately directing driving fluid to one of said two driving sections while also alternately allowing driving fluid to vent from the other one of said two driving sections, said valve element means having contact means for being contacted by the below-recited control valve actuating member for moving said valve element means back and forth between its two positions;
- (g) a control valve actuating member mounted for movement between two control valve-actuated positions, said control valve actuating member having contacting means for engaging said contact means, said contacting means being positioned adjacent said contact means of said valve element means for alternately moving said valve element means back and forth between its two positions, said control valve actuating member also having contact surface means for use in coupling the movement of said shaft to the movement of said valve actuating member, and coupling means including said protrusion means and said contact surface means for operatively coupling said protrusion means to said valve actuating means for initiating each reciprocating stroke of said control valve actuating member, the completion of each of said reciprocating strokes being carried out by the below-recited snap-acting means;
- (h) snap-acting means connected to said control valve actuating member for completing the movement of said control valve actuating member from one of its two positions to the other initiated by said coupling means, said snap-acting means including at least one pin, a helicoidal compression spring at least partially surrounding said pin and a pin mounting element, said pin mounting element being pivotably secured for at least partial rotation about an axis stationary with respect to one of said control valve actuating member and said pump housing, said pin being slidably mounted adjacent one end thereof to said pin mounting element for sliding motion in a direction perpendicular to said axis, and said pin being pivotably mounted adjacent its other end about an axis stationary with respect to the other of said control valve actuating member and said pump housing; and
- (i) wherein said contact surface means comprises a plurality of arms projecting from said valve actuating member on the opposite side thereof from said contacting means and extending in the direction toward said protrusion means.
- 7. The reciprocating pump and reversing mechanism therefor as recited in claim 6 wherein said contacting mean comprises a plurality of arms extending in a direction toward said contact means.
- 8. A reciprocating pump and reversing mechanism therefor comprising in combination:
- (a) a pump housing including a pair of laterally spaced-apart chambers each of which has a diaphragm member therein dividing each chamber into a driving section and a discharge section, each of said discharge sections having an inlet port and an outlet port and each of said driving sections having inlet-outlet port means;
- (b) said diaphragm members being interconnected by a shaft mounted in said housing for reciprocating movement, whereby said shaft moves with said diaphragm members such that as the driving section of one chamber expands, forcing its discharge section to contract, the driving section of the other chamber contracts while its discharge section expands;
- (c) protrusion means fixedly connected to said shaft and extending transversely therefrom for use in coupling the movement of said shaft to the movement of the below-recited valve actuating member;
- (d) said housing also including a fluid outlet manifold interconnecting said outlet ports of said discharge sections, a fluid inlet manifold interconnecting said inlet ports of said discharge sections, and driving fluid manifold means for feeding driving fluid to and from said inlet-outlet port means of said driving sections;
- (e) inlet and outlet valves in said housing in fluid communication with said fluid inlet and outlet manifolds, respectively, for controlling the flow of fluid to be pumped to and from each of said discharge sections;
- (f) control valve means including valve housing means for housing said control valve means, said valve housing means being connected to said pump housing and including reciprocable spool valve element means in said valve housing means and being in fluid communication with said driving fluid manifold means and being movable between two alternate positions for alternately directing driving fluid to one of said two driving sections, while also alternately allowing driving fluid to flow from the other one of said two driving sections, said spool valve element means having first contact surface means for being contacted by the below-recited valve actuating member;
- (g) a valve actuating member mounted for reciprocating movement between two control valve-actuated end positions, said valve actuating member having second contact surface means positioned adjacent said first contact surface means of said spool valve element means for alternately snap contacting said first contact surface means to alternately snap said spool valve element means back and forth between its two positions, said valve actuating member also having third contact surface means for use in coupling the movement of said shaft to the movement of said valve actuating member, coupling means including said protrusion means and said third contact surface means for operatively coupling said protrusion means to said valve actuating means for alternately initiating each reciprocating stroke of said valve actuating member as said shaft reciprocates, the completion of each of said reciprocating strokes of said valve actuating member being carried out by the below-recited snap-acting means;
- (h) snap-acting means, including at least one pin, a helicoidal compression spring at least partially surrounding said pin and a pin mounting element, for completing the movement of said valve actuating member from one of its two positions to the other initiated by said coupling means, said pin mounting element being pivotably secured for at least partial rotation about an axis stationary with respect to one of said valve actuating member and said housing, said pin being slidably mounted to said pin mounting element for sliding motion in a direction perpendicular to said axis; and
- (i) wherein said pin mounting element is provided with an aperture traversed by said pin.
- 9. The reciprocating pump and reversing mechanism therefor as recited in claim 8 wherein said pin mounting element is pivotably mounted on said valve actuating member.
- 10. The reciprocating pump and reversing mechanism therefor as recited in claim 9 wherein said pin mounting element is in the form of a tubular socket for receiving an end of said pin and at least a portion of said compression spring.
- 11. A reciprocating pump and reversing mechanism therefor comprising in combination:
- (a) a pump housing including a pair of laterally spaced-apart chambers each of which has a diaphragm member therein dividing each chamber into a driving section and a discharge section, each of said discharge sections having an inlet port and an outlet port and each of said driving sections having inlet-outlet port means;
- (b) said diaphragm members being interconnected by a shaft mounted in said housing for reciprocating movement, whereby said shaft moves with said diaphragm members such that as the driving section of one chamber expands, forcing its discharge section to contract, the driving section of the other chamber contracts while its discharge section expands;
- (c) a protrusion fixedly connected to said shaft and extending transversely therefrom;
- (d) said housing also including a fluid outlet manifold interconnecting said outlet ports of said discharge sections, a fluid inlet manifold interconnecting said inlet ports of said discharge sections, and a driving fluid manifold interconnecting said inlet-outlet port means of said driving sections;
- (e) inlet and outlet valves in said housing in fluid communication with said fluid inlet and outlet manifolds, respectively, for controlling the flow of fluid to be pumped to and from each of said discharge sections;
- (f) control valve means including a valve housing connected to said pump housing between said chambers and including a reciprocable spool valve element therein in fluid communication with said driving fluid manifold and movable between two alternate positions to alternately direct driving fluid to said two driving sections while also alternately allowing driving fluid to flow from the other one of said two driving sections, said spool valve element having a pair of opposite contact ends;
- (g) a yoke-shaped valve actuating member mounted for reciprocating movement between two control valve-actuated end positions, said valve actuating member having a pair of spaced-apart arms positioned one each adjacent respective ones of said opposite contact ends of said spool valve element for alternately snap contacting said opposite contact ends to alternately snap said spool valve element back and forth between its two positions, said valve actuating member also having a pair of spaced-apart surfaces positioned one each on opposite sides of said protrusion for alternately being contacted by said protrusion as said shaft reciprocates for initiating each reciprocating stroke of said valve actuating member, the completion of each of said reciprocating strokes being carried out by the below-recited snap-acting means;
- (h) snap-acting means connected to said valve actuating member for completing the movement of said valve actuating member from one of its two positions to the other initiated by said protrusion engaging one of said pair of surfaces of said valve actuating member, said snap-acting means including a pair of opposed spring means connected to said valve actuating member and being located on opposite sides thereof, each of said spring means including at least one pin, a helicoidal compression spring at least partially surrounding said pin and a pin mounting element, said pin mounting element being pivotably secured for at least partial rotation about an axis stationary with respect to one of said valve actuating member and said pump housing, said pin being slidably mounted adjacent one end thereof to said element for sliding motion in a direction perpendicular to said axis, and said pin being pivotably mounted adjacent its other end to the other of said control valve actuating member and said pump housing; and
- (i) wherein each of said pin mounting elements includes a bore in which one end of a respective one of said pins is slidably received.
- 12. The reciprocating pump and reversing mechanism therefor as recited in claim 11 wherein each of said pin mounting elements is pivotably mounted on said control valve actuating member.
- 13. The reciprocating pump and reversing mechanism therefor as recited in claim 12 wherein each of said bores also receives at least a portion of a respective one of said springs.
- 14. The reciprocating pump and reversing mechansim therefor as recited in claim 11 wherein said control valve actuating member is located at least partially above said shaft and between said control valve means and said shaft.
- 15. The reciprocating pump and reversing mechanism therefor as recited in claim 14 wherein said snap-acting means is connected adjacent the bottom of said control valve actuating member.
- 16. The reciprocating pump and reversing mechanism therefor as recited in claim 15 wherein said pair of spring means exert equal and opposite forces on said valve actuating member in directions transverse to the axis of said shaft throughout all positions of movement of said valve actuating member on said shaft.
CROSS-REFERENCES TO RELATED APPLICATIONS
This application is a divisional of prior application Ser. No. 574,310, filed Jan. 26, l984, now U.S. Pat. No. 4,634,350 which was a divisional of prior application Ser. No. 320,584, filed Nov. 12, l98l, now U.S. Pat. No. 4,436,493 which was a continuation-in-part of prior application Ser. No. 077,544, filed Sept. 21, 1979, now abandoned.
US Referenced Citations (8)
Divisions (2)
|
Number |
Date |
Country |
Parent |
574310 |
Jan 1984 |
|
Parent |
320584 |
Nov 1981 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
77544 |
Sep 1979 |
|