1. Field of the Invention
This invention relates to high pressure cryogenic pumps and more particularly relates to a double-acting, reciprocating piston, high pressure (about 2,000 psi and greater) cryogenic fluid pump that provides venting of blow-by vapors between two sets of high pressure seals on a double-acting piston.
2. Background Information
The generation and accumulation of fluid vapors from blow-by leakage in high pressure cryogenic pumps is a significant problem unless the vapors are collected and condensed in cold low pressure liquid. This invention is directed to a method and apparatus for collecting, mixing, and condensing blow-by leakage vapors with cold suction liquid.
One type of double-acting, reciprocating, piston cryogenic fluid pumps is disclosed and described in U.S. Pat. No. 5,411,374 of A. Gram issued May 2, 1995. This patent describes a double-acting, reciprocating piston, cryogenic fluid pump mechanically coupled to a double-acting hydraulic piston motor. The double-acting, reciprocating piston, cryogenic fluid pump shown in the figures and described in the text does not contain any reference to a dual set of piston seals nor does it describe a venting provision relative to the seals. Another U.S. Pat. No. 3,456,595 of C. F. Gottzmann issued Jul. 22, 1969 discloses a double-acting, reciprocating, piston pump for low pressure pumping and metering cryogenic fluids.
None of these patents teach or suggest an effective method for venting of blow-by vapors in double-acting pump. It would therefore be advantageous if a method could be conceived to handle this particular problem.
It is therefore one object of the invention to provide a sealing system as well as a venting system for a double-acting, high pressure reciprocating piston pump for pumping cryogenic fluids.
Another object of the present invention is to disclose a double-acting, high pressure reciprocating piston pump for cryogenic fluids that has a significantly reduced peak torque when compared with conventional single-acting pump of similar capacity and pressure rise.
Yet another object of the present invention is to provide a double-acting reciprocating piston pump that has smoother suction and discharge flows and less heat leak into the cryogenic fluid when compared with single-acting, reciprocating piston pump of similar capacity and pressure rise.
Still another object of the present invention is to disclose a double-acting, reciprocating piston, cryogenic fluid pump having a significantly improved suction performance due to the smoother inlet suction flow and less heat leak into the cryogenic fluid when compared with a single-acting, reciprocating piston pump of similar capacity and pressure rise.
Yet another object of the present invention is to disclose a multi-cylinder, double-acting, reciprocating piston, cryogenic fluid pump with improved venting of blow-by vapors.
The invention disclosed and described herein relates to the sealing system and accompanying blow-by venting system for double-acting, reciprocating piston, high pressure, cryogenic fluid pumps. Experience with single-acting reciprocating, high pressure, cryogenic fluid pumps has demonstrated a need to vent and recover blow-by vapors. Double-acting, high pressure, reciprocating piston cryogenic fluid pumps need a system for venting and recovering blow-by vapors also.
The double-acting reciprocating piston pump of the present invention disclosed herein has a unique combination equivalent to two in-line single-acting piston pumps each with a separate set of high pressure seals and a common venting system.
In one embodiment of the invention, the double-acting pump has a piston with two piston heads and two sets of seals on either side of a venting system. A venting passageway between the two sets of seals vents blow-by through a passageway that exits through the top of the piston rod or shaft. Thus as the piston reciprocates blow-by vapors are vented through the passageways in the piston head out through the central passageway in the piston shaft back to the source.
In a second embodiment of the invention, a pair of piston heads are formed on a piston shaft having spaced apart separate seals. The diameter of the piston shaft between the two piston heads is such that a manifold or passageway is formed for venting blow-by vapors. The blow-by vapors exit through passageways on either side of the pump cylinder housing. As the piston reciprocates, blow-by vapors are vented out through the passageways in the pump housing back to the source.
A double-acting, reciprocating piston, high pressure, cryogenic fluid pump has significant inherent advantages over conventional single-acting, reciprocating piston, high pressure, cryogenic fluid pumps. These advantages stem from the fact that each stroke of the double-acting piston is a pumping stroke. Thus there are two output strokes per turn of the crankshaft. Whereas a conventional, single-acting, single cylinder, cryogenic fluid pump has only a single output stroke per turn of its crankshaft. The suction inflow and discharge outflow of double-acting pumps are therefore nearly continuous. The suction inflow and discharge outflow for the single-acting pump are intermittent flows each requiring about one-half a turn of its crankshaft.
Also a double-acting pump having the same capacity as a single-acting pump is significantly smaller in physical size. This feature is very important for cryogenic fluid pumps because less liquid and less cool down time are required for system cool down, i.e., preparation for system startup. The nearly continuous flows to and from the double-acting pump allows a reduction in diameter of the suction and discharge piping. This factor may reduce heat leak into the cryogenic liquid. The smoother and reduced maximum rate of inflow to the double-acting pump reduces suction pipe fluid pressure drop due to decreased acceleration of the cryogenic fluid. Hence, decreased net positive suction pressure required for pump operation. The improved suction performance can eliminate the requirement for a boost pump and associated piping.
The peak torque required for double-acting pump operation is also about one-half that of a comparable output single-acting pump. Thus, the selection of the size of the drive motor and motor starting gear is correspondingly reduced. It should be noted that the inertia torque in high pressure pumping units is very small compared with the torque required for pumping.
Another advantage is that increased capacity can be obtained by using multi-cylinder, double-acting, reciprocating piston, cryogenic fluid pumps. By this it is meant that multiple, double-acting, reciprocating piston, cryogenic fluid pumps can be operated in parallel to increase capacity.
Summarizing, a double-acting, reciprocating piston, cryogenic fluid pump is essentially two, single-acting pumps cleverly packaged into a single cylinder machine. Although the following detailed description may contain many specifics, these should not be construed as limiting the scope of the invention but merely providing illustrations of the presently preferred embodiments of the invention.
The above and other objects, advantages, and novel features of the invention will be more fully understood from the following detailed description and the accompanying drawings, in which:
There are two embodiments of the double-acting, high pressure, cryogenic pump disclosed. In one embodiment, blow-by is vented through the piston rod while in the second embodiment, blow-by is vented through the pump cylinder housing.
Referring to
Double-acting, high pressure, cryogenic pump 100 has a left side pump chamber 124 and a right side pump chamber 126. Left side pump chamber 124 as illustrated is at discharge pressure and cryogenic fluid is being discharged via open discharge valve 120. Pump fluid discharges from cold end 100 via discharge port 138. At this time, right side pump chamber 126 is increasing in volume. Fluid is flowing into chamber 126 by suction via open suction valve 118. Suction fluid is supplied from a storage tank (not shown) through suction pipe 136.
A unique feature of the invention is double-acting piston 110 includes a pair of seals 128 adjacent left pump chamber 124 and 130 adjacent right pump chamber 126 on spaced apart piston heads 111 and 113. Blow-by fluid that leaks past either of seals 128 and 130 flows axially and circumferentially along cylinder 112 through passageways 133 and 132 axially out of port 140 at the end of piston rod 114. Thus, blow-by vapors and fluids exiting from port 140 mix and condense in source liquid inside insulated enclosure 134.
The operation of the double-acting, high pressure, cryogenic pump 100 of
An optional second embodiment of the double-acting, high pressure cryogenic pump is illustrated in
Double-acting piston 210 as illustrated in
A venting system for venting cryogenic fluid or vapors that creep or leak past seals 228 and 230 in piston heads 211 and 213 communicates with manifold or passageway 232 around piston rod 214. Blow-by fluid and vapor that leaks past seals 228 and 230 flows into manifold 232 around piston rod 214 and is vented through passageways 240 and 241 on opposite sides of cylinder housing 212. These exiting blow-by vapors and fluids mix and condense in suction source liquid inside insulated housing 234.
The operation of the double-acting, high pressure, cryogenic fluid pump 200 of
An application of the embodiments of either
This invention is not to be limited by the embodiment shown in the drawings and described in the description which is given by way of example and not of limitation, but only in accordance with the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3181473 | Duron | May 1965 | A |
3456595 | Gottzmann | Jul 1969 | A |
4376377 | Duron et al. | Mar 1983 | A |
4559786 | Schuck | Dec 1985 | A |
4639197 | Tornare et al. | Jan 1987 | A |
5411374 | Gram | May 1995 | A |
5477690 | Gram | Dec 1995 | A |
20020085921 | Gram et al. | Jul 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050163642 A1 | Jul 2005 | US |