The present disclosure pertains to vitrectomy probes, systems, and methods. More particularly, but not by way of limitation, the present disclosure pertains to vitrectomy probes, systems, and methods utilizing an ovalized tubular cross section and a fluid port contour providing enhanced fluid flow and a guiding surface.
Microsurgical procedures frequently require precision cutting and/or removing of various body tissues. For example, certain ophthalmic surgical procedures require cutting and removing portions of the vitreous humor, a transparent jelly-like material that fills the posterior segment of the eye. The vitreous humor, or vitreous, is composed of numerous microscopic fibrils that are often attached to the retina. Therefore, cutting and removing the vitreous must be done with great care to avoid traction on the retina, the separation of the retina from the choroid, a retinal tear, or, in the worst case, cutting and removal of the retina itself. In particular, delicate operations such as mobile tissue management (e.g. cutting and removal of vitreous near a detached portion of the retina or a retinal tear), vitreous base dissection, and cutting and removal of membranes are particularly difficult.
Microsurgical cutting probes used in posterior segment ophthalmic surgery may include a hollow outer cutting member, a hollow inner cutting member arranged coaxially with and movably disposed within the hollow outer cutting member, a port extending radially through the outer cutting member near the distal end of the outer cutting member, and a port extending radially through the inner cutting member near the distal end of the inner cutting member. Vitreous humor and/or membranes are aspirated into the open port of the outer cutting member and the inner member is actuated to distally extend the inner cutting member. As the inner cutting member extends distally, cutting surfaces on both the inner and outer cutting members cooperate to cut the vitreous and/or membranes, and the cut tissue is then aspirated away through the inner cutting member. Vitreous and/or membranes are then aspirated into the open ports of both the outer and inner cutting members and the inner member is actuated to proximally retract the inner cutting member. The inner and outer cutting members cooperate to again cut vitreous and/or membranes and aspirate the cut tissue away. The actuated extension and retraction of the inner cutting member is repeated at dynamic cycle rates between several tens to several hundred times per second.
These microsurgical cutting probes may compromise traction transmitted to the retina due, for example, to existence of an annular space existing between the outer cutting member and the inner cutting member that can cause incarceration or incomplete shearing of vitreous. In addition, vitreous and/or membranes tend to resist flow through small orifices and lumens such as those in these microsurgical cutting probes. Finally, microsurgical cutting probes' inner cutting member is typically bent near its distal end to bias the distal cutting surface toward the port in the outer cutting member, which provides a flexural side load to facilitate shearing. This can result in the inner cutting member protruding too far out of the port in the outer cutting member as the inner cutting member moves across the outer port, causing irregular high-speed dynamic shearing motion, thus increasing wear of the probe which can lead to incarceration or incomplete shearing of vitreous.
In an exemplary aspect, the present disclosure is directed to a vitrectomy probe including a hand-graspable body and an outer tube extending from the hand-graspable body and sized to penetrate an eye of a patient during an ocular surgery. The outer tube may include a closed distal end and a first port sized to receive vitreous material. The vitrectomy probe also includes an inner tube disposed at least partially within the outer tube. The inner tube has a second port that is selectively alignable with a portion of the first port in a manner that allows fluid to flow through the first port and into the second port. The second port has a proximal edge and a distal edge, and the inner tube also has a distal tip that forms a first cutting edge facing in a distal direction. The distal edge of the second port forms a second cutting edge that faces in a proximal direction. The inner tube has a first diameter at the proximal end of the second port and a second diameter at the distal tip, where the first diameter is greater than the second diameter.
In an aspect, the second port of the inner tube comprises a guiding surface at the proximal edge of the second port projecting in the distal direction to form a distally extending portion. The guiding surface is arranged to slidably bear on an internal surface of the outer tube while the inner tube moves relative to the outer tube, the first diameter comprising a diameter of the inner tube at the guiding surface.
In another exemplary aspect, the second port of the inner tube comprises a first side lobe and a second side lobe each at opposite sides of the guiding surface along a circumference of the inner tube. The first and second side lobes are configured to enhance fluid flow through the second port when the guiding surface is at least partially aligned with the first port.
In another exemplary aspect, the present disclosure is directed to a vitrectomy probe including a hand-graspable body and an outer tube extending from the hand-graspable body and sized to penetrate an eye of a patient during an ocular surgery. The outer tube may include a closed distal end and a first port sized to receive vitreous material. The vitrectomy probe also includes an inner tube disposed at least partially within the outer tube. The inner tube has a second port that has a proximal end and a distal end along a side of a circumference of the inner tube near a distal end of the inner tube. The second port comprises a guiding surface at the proximal end extending in the distal direction, a first side lobe, and a second side lobe. Each of the first and second side lobes is formed in part by the guiding surface and disposed at opposite sides of the guiding surface along the circumference of the inner tube to enhance fluid flow through the second port when the guiding surface is at least partially aligned with the first port. The distally extending guiding surface is a guide for the inner tube disposed within the outer tube as the inner tube oscillates in the outer tube.
In another exemplary aspect, the present disclosure is directed to a method of operating a vitrectomy probe. The method may include axially sliding an inner tube in a distal direction within an outer tube having a first port to make a cut with a distally facing cutting edge at a distal end of a distal tip of the inner tube, the inner tube having a second port with a proximal end and a distal end. The method may also include guiding the sliding in the distal direction with a guiding surface at the proximal end of the second port, the inner tube having a first diameter at the guiding surface that is greater than a second diameter of the inner tube at the tip.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory in nature and are intended to provide an understanding of the present disclosure without limiting the scope of the present disclosure. In that regard, additional aspects, features, and advantages of the present disclosure will be apparent to one skilled in the art from the following detailed description.
The accompanying drawings illustrate embodiments of the devices and methods disclosed herein and, together with the description, serve to explain the principles of the present disclosure.
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is intended. Any alterations and further modifications to the described systems, devices, and methods, and any further application of the principles of the present disclosure are fully contemplated as would normally occur to one skilled in the art to which the disclosure relates. In particular, it is fully contemplated that the systems, devices, and/or methods described with respect to one embodiment may be combined with the features, components, and/or steps described with respect to other embodiments of the present disclosure. For the sake of brevity, however, the numerous iterations of these combinations will not be described separately. For simplicity, in some instances the same reference numbers are used throughout the drawings to refer to the same or like parts.
The present disclosure is directed to surgical devices, systems, and methods for performing ophthalmic surgeries. The devices, systems, and methods are arranged and configured to increase a cut rate and/or an aspiration rate during a vitrectomy procedure and reduce sliding wear on the vitrectomy probe over time. To accomplish this, the system incorporates a hollow inner cutting member that includes a port with a port contour that increases vitreous flow. The port contour defines a guiding surface at a proximal end of the port in the inner cutting member, including a side lobe at each side of the guiding surface. The guiding surface defined by the port contour provides a long-wearing sliding interface between the hollow inner cutting member and a hollow outer cutting member, such as a needle. The guiding surface may slide along an inner surface of the outer cutting member, even while a portion or all of the port of the inner cutting member is aligned with the port of the outer cutting member. Increased vitreous flow is possible due to the side lobes of the inner cutting member's port. For example, the interaction of the guiding surface with the inner surface of the outer cutting member prevents the inner cutting member from protruding too far out of the port in the outer cutting member as the inner cutting member moves distally across the outer port, thus preventing irregular dynamic shearing motion and wear of the shearing edges of the inner and outer cutting members.
In addition, a tip of the inner cutting member may be imparted with a substantially oval cross section (in comparison to a circular cross-section of other portions the inner cutting member at the proximal side of the inner cutting member's port). This unique shape for the tip of the inner cutting member may provide a closer match between curvature radii of the shearing edges of the inner and outer cutting members. With a closer curvature match of the edges, smoother shearing is possible, which may reduce the amount of traction on the vitreous which is transmitted to the retina. Various aspects of these features will be discussed further below.
In an embodiment, the vitrectomy probe system's pneumatic driver 122 (
In operation, pneumatic pressure is directed alternately from the source 120 to the first and second ports 140, 142 to operate the vitrectomy probe 112. The on-off pneumatic driver 122 alternates between its two positions very rapidly to alternatingly provide pneumatic pressure to the first and second ports 140, 142. Although shown with a single pneumatic driver 122, other embodiments include two pneumatic drivers, one associated with each of the two ports 140, 142. These embodiments operate similar to the manner described, with the drivers being configured to independently receive operating signals from the controller 126 (
Returning to
Generally, the inner cutting tube 154 oscillates within the outer cutting tube 152 in response to the probe actuator. In an embodiment, the inner cutting tube 154 is driven by air pressure directed on opposing sides of the diaphragm 156. In one example of operation, if air pressure is increased at the first port 140, the diaphragm 156 will move distally, displacing the inner cutting tube 154 relative to the outer cutting tube 152, thereby moving a first cutting edge on a distal end of the inner cutting tube 154 in the distal direction and cutting tissue. This cuts any vitreous material which may have been aspirated into a tissue-receiving outer port of the outer cutting tube 152. The vitreous may be aspirated away at a distal end of the inner cutting tube 154, such as distal port 802 of
In alternative embodiments, the probe actuator may include a piston motor in place of a diaphragm. In this type of embodiment, the cutter 150 is arranged so that movement of the piston also moves the inner cutting tube 154 of the cutter 150. Yet other embodiments include other types of pneumatic or electric motors that drive the inner cutting tube 154, as will be recognized by those skilled in the relevant art(s).
The outer cutting tube 152 has a closed end at the distal end 166 and an outer port 408 that may receive various material, such as tissue. In an embodiment, the tissue may be ophthalmic tissue such as vitreous and/or membrane. The outer port 408 has a distal portion, nearest the distal end 166, and a proximate portion. Each of the distal and proximate portions of the outer port 408 may include a cutting edge.
In an embodiment, the tip 406 may be crimped slightly, such that a horizontal diameter D1 of the tip 406 (the diameter that extends in a direction perpendicular from the direction towards the inner port 404) is greater than a vertical diameter D2 of the tip 406 (the diameter of the tip 406 that extends radially towards the inner port 404). This is demonstrated in
In embodiments where the tip 406 of the inner cutting tube 154 has been slightly bent to provide bias toward the outer port 408, this different cross section at the tip 406 provides better matched shearing edges between the inner cutting tube 154 and the outer cutting tube 152. This better match facilitates smooth, progressive shearing of vitreous/membranes and reduces wear to the vitrectomy probe 112 over time. This is due at least in part to the substantially oval cross section at the tip 406 distributing the sliding wear at the tip 406 over a greater surface area that comes in contact with the inner surface of the distal end of the outer cutting tube 152. The substantially oval cross section of the tip 406 also decreases the size of the annular space between the tip 406 and the inner surface of the distal end of the outer cutting tube 152, which may decrease the potential for vitreous incarceration and vitreoretinal traction.
Returning to
As a result, in embodiments where the inner cutting tube 154 has been bent to provide a flexural side load, the guiding surface 402 remains in contact with the inner surface of the outer cutting tube 152 while the inner cutting tube 154 axially moves in the distal direction. This contact between the guiding surface 402 and the inner surface of the outer cutting tube 152 may prevent the inner cutting tube 154 from protruding too far out of the outer port 408, thereby decreasing the chance of tortuous or impeded cutter motion and reducing wear on the vitrectomy probe 112. The guiding surface 402 may be formed from the rest of the inner cutting tube 154. Alternatively, the guiding surface may be separately formed and secured in place at a proximal side of the inner port 404 using welding, brazing, cements, adhesives, friction fits, or other methods.
The side lobes 410 extend the surface area of the inner port 404, thereby allowing more fluid flow via the inner port 404 than would be available to a port with a conventional contour (e.g., without side lobes) in the inner cutting tube 154. In an embodiment, addition of the side lobes 410 to the vitrectomy probe 112 in embodiments of the present disclosure enables operation of the vitrectomy probe 112 at reduced vacuum settings while still providing equivalent vitreous flow and reduced traction transmitted to the retina relative to conventional vitrectomy probes. In an embodiment, the length of each side lobe 410 along the longitudinal axis of the inner cutting tube 154 is less than a width of the inner port 404 between the tip 406 and the proximal portion where the guiding surface 402 is located. In an alternative embodiment, the length of each side lobe 410 along the longitudinal axis of the inner cutting tube 154 is greater than a width of the inner port 404 between the tip 406 and the proximal portion where the guiding surface 402 is located.
The size of the side lobes 410 impacts how much additional fluid flow is possible above and beyond what is already available were the inner port 404 shaped in a conventional configuration, e.g. in a round or oval shape. This is because the vitreous humor, as well as tractional and vascular membranes that are commonly removed by surgical use of vitrectomy probes, are non-homogenous, non-Newtonian substances that tend to resist flow through small orifices and lumens such as those in conventional vitrectomy probes. Further, balanced saline solution—which is commonly used as an adjunct during vitreoretinal surgery—is a low viscosity Newtonian fluid that is much more able to flow through smaller passages. As a result, aspiration flow in cutter ports of conventional vitrectomy probes may result in a disproportionately high amount of balanced saline solution instead of vitreous/membranes. The larger inner port size afforded by the side lobes 410 in embodiments of the present disclosure facilitates the more efficient removal of vitreous/membranes without excessive flow of balanced saline solution.
The flare of the guiding surface 402 in
As discussed above with respect to
The proximate and distal portions of the outer port 408 may each also include a cutting edge. For example, a cutting edge on the distal portion of the outer port 408 may cooperate with the cutting edge 504 to perform shearing of vitreous or other tissue while the inner cutting tube 154 moves axially in the distal direction. Further, a cutting edge on the proximal portion of the outer port 408 may cooperate with the cutting edge 502 to perform shearing of vitreous or other tissue while the inner cutting tube 154 moves axially in the proximal direction.
An inner bore of the inner cutting tube 154, depicted in
As shown in
As the tip 406 of the inner cutting tube 154 traverses the open area of the outer port 408, the guiding surface 402 slidably bears on an inner surface of the outer cutting tube 152 at a proximal side of the outer port 408. In this manner, the unique contour of the guiding surface 402 may guide the inner cutting tube 154 so that the tip 406 does not protrude too far beyond a diameter of the outer cutting tube 152. Further, the unique tubular cross section of the tip 406 may cause the cutting edge 504 to more closely align to the inner diameter of the outer cutting tube 152, increasing the surface area that comes into contact between the two surfaces resulting in smooth, progressive shearing of tissue.
The inner cutting tube 154 moves distally until the cutting edge 504 is beyond the outer port 408, as shown in
As shown in
The side lobes 410 of the inner cutting tube 154 increase the size along the periphery of the inner port 404, thereby decreasing resistance to tissue (such as vitreous) flow when the guiding surface 402 is aligned at least partially with the outer port 408. This facilitates the more efficient removal of vitreous/membranes without excessive flow of balanced saline solution. Further, during the proximal motion 418 the guiding surface 402 slidably bears on the inner surface of the outer cutting tube 152 at the proximal side of the outer port 408, again guiding the inner cutting tube 154 while the tip 406 traverses the gap of the outer port 408 in the proximal direction.
Because the cutting action occurs as the inner cutting tube 154 moves in both the proximal and the distal directions, the cutting edges perform a dual-action cutting cycle. This may double the cut rate of the vitrectomy probe 112. For example, while still operating the motor of the vitrectomy probe 112 at 10000 cycles/min., the effective cut rate is 20000 cycles/min since each cycle provides both an anterior cut and a posterior cut.
At 1002, the vitrectomy probe 112 causes the inner cutting tube 154 to slide in a distal direction, such as shown by the distal motion 416 in
At 1004, the guiding surface 402 of the inner cutting tube 154 guides the distal sliding motion of the inner cutting tube 154 as the tip 406 of the inner cutting tube 154 traverses the gap of the outer port 408 in the distal direction. The guiding surface 402 guides the sliding motion, for example, by slidably bearing on an inner surface of the outer cutting tube 152 at a proximal side of the outer port 408. The guiding motion assists in preventing the tip 406 from protruding too far beyond a diameter of the outer cutting tube 152 as a result of the bend in the inner cutting tube 154.
At 1006, the vitrectomy probe 112 aspirates any cut tissue from the distal end of the inner cutting tube 154, for example via the distal port 802. The aspiration may be via the suction port 162 that connects the vitrectomy probe 112 to an aspiration system on the base housing 102. This may occur, for example, when the inner cutting tube 154 has been fully extended in the distal direction, in the “closed” position such that the inner port 404 and the outer port 408 are at least partially aligned.
At 1008, the vitrectomy probe 112 causes the inner cutting tube 154 to slide in the proximal direction, such as shown by the proximal motion 418 in
At 1010, the guiding surface 402 guides the proximal sliding motion of the inner cutting tube 154 as the tip 406 traverses the gap of the outer port 408 in the proximal direction. The guiding surface 402 guides the sliding motion, for example, by slidably bearing on an inner surface of the outer cutting tube 152 at a proximal side of the outer port 408.
At 1012, the vitrectomy probe 112 aspirates any cut tissue and/or fluids from the area of the inner port 404. The aspiration may again be via the suction port 162. At least some of the cut tissue and/or fluids is aspirated at step 1012 via one or both of the side lobes 410, since the side lobes 410 of the inner cutting tube 154 increase the size along the periphery of the inner port 404 from which tissue may enter the inner bore of the inner cutting tube 154. This facilitates the more efficient removal of vitreous/membranes without excessive flow of balanced saline solution. While described as a discrete aspiration step, it is worth noting that the aspiration system may draw a constant or continuous vacuum pressure at the suction port 162 and the bore (lumen) of the inner cutting tube 154.
1002 through 1012 may continue throughout the duration of operation of the vitrectomy probe 112, resulting in a dual-action cutting cycle of the vitrectomy probe 112 with improved fluid flow and reduced sliding wear on the vitrectomy probe 112 over time. This may result in a longer lasting vitrectomy probe, a smoother cutting cycle, and greater cut rates while decreasing risks of traction on the retina.
The systems, devices, and method described herein may improve surgical outcome by increasing cut rates and aspiration rates while reducing wear to enable increased probe reliability and longevity.
Persons of ordinary skill in the art will appreciate that the embodiments encompassed by the present disclosure are not limited to the particular exemplary embodiments described above. In that regard, although illustrative embodiments have been shown and described, a wide range of modification, change, and substitution is contemplated in the foregoing disclosure. It is understood that such variations may be made to the foregoing without departing from the scope of the present disclosure. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3618594 | Banko | Nov 1971 | A |
3736938 | Evvard et al. | Jun 1973 | A |
3815604 | O'Malley et al. | Jun 1974 | A |
3906954 | Baehr et al. | Sep 1975 | A |
3941122 | Jones | Mar 1976 | A |
3982541 | L'Esperance, Jr. | Sep 1976 | A |
4011869 | Seiler, Jr. | Mar 1977 | A |
4014342 | Staub et al. | Mar 1977 | A |
4099529 | Peyman | Jul 1978 | A |
4111207 | Seiler, Jr. | Sep 1978 | A |
4210146 | Banko | Jul 1980 | A |
4428748 | Peyman et al. | Jan 1984 | A |
4513745 | Amoils | Apr 1985 | A |
4525842 | Myers | Jun 1985 | A |
4577629 | Martinez | Mar 1986 | A |
4583539 | Karlin et al. | Apr 1986 | A |
4655743 | Hyde | Apr 1987 | A |
4671273 | Lindsey | Jun 1987 | A |
4694828 | Eichenbaum | Sep 1987 | A |
4696298 | Higgins et al. | Sep 1987 | A |
4811734 | McGurk-Burleson et al. | Mar 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4909249 | Akkas et al. | Mar 1990 | A |
4940468 | Petillo | Jul 1990 | A |
4963142 | Loertscher | Oct 1990 | A |
5019035 | Missirlian et al. | May 1991 | A |
5047008 | de Juan, Jr. et al. | Sep 1991 | A |
5106364 | Hayafuji et al. | Apr 1992 | A |
5176628 | Charles et al. | Jan 1993 | A |
5226910 | Kajiyama | Jul 1993 | A |
5275607 | Lo et al. | Jan 1994 | A |
5284472 | Sussman et al. | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5423844 | Miller | Jun 1995 | A |
5458112 | Weaver | Oct 1995 | A |
5474532 | Steppe | Dec 1995 | A |
5547473 | Peyman | Aug 1996 | A |
5630827 | Vijfvinkel | May 1997 | A |
5688264 | Ren et al. | Nov 1997 | A |
5720760 | Becker et al. | Feb 1998 | A |
5772627 | Acosta et al. | Jun 1998 | A |
5782849 | Miller | Jul 1998 | A |
5788667 | Stoller | Aug 1998 | A |
5843111 | Vijfvinkel | Dec 1998 | A |
5980546 | Hood | Nov 1999 | A |
5984916 | Lai | Nov 1999 | A |
6004284 | Sussman et al. | Dec 1999 | A |
6024751 | Lovato et al. | Feb 2000 | A |
6027493 | Donitzky et al. | Feb 2000 | A |
6156049 | Lovato et al. | Dec 2000 | A |
6258111 | Ross et al. | Jul 2001 | B1 |
6270471 | Hechel et al. | Aug 2001 | B1 |
6325792 | Swinger et al. | Dec 2001 | B1 |
6352535 | Lewis et al. | Mar 2002 | B1 |
6383203 | Makihara | May 2002 | B1 |
6485499 | Oberkamp et al. | Nov 2002 | B1 |
6514268 | Finlay et al. | Feb 2003 | B2 |
6575990 | Wang et al. | Jun 2003 | B1 |
6709408 | Fisher | Mar 2004 | B2 |
6743245 | Lobdell | Jun 2004 | B2 |
6758824 | Miller et al. | Jul 2004 | B1 |
6773445 | Finlay et al. | Aug 2004 | B2 |
6872185 | Fisher | Mar 2005 | B2 |
6875221 | Cull | Apr 2005 | B2 |
6890309 | Fisher | May 2005 | B2 |
6908440 | Fisher | Jun 2005 | B2 |
7070604 | Garito et al. | Jul 2006 | B1 |
7285107 | Charles | Oct 2007 | B1 |
7600405 | Maurer, Jr. et al. | Oct 2009 | B2 |
8038692 | Valencia et al. | Oct 2011 | B2 |
8172865 | DeBoer et al. | May 2012 | B2 |
8187293 | Kirchhevel | May 2012 | B2 |
8298253 | Charles | Oct 2012 | B2 |
8313501 | Miller et al. | Nov 2012 | B2 |
8328835 | Perkins et al. | Dec 2012 | B2 |
8545528 | Rob et al. | Oct 2013 | B2 |
8608753 | Luloh et al. | Dec 2013 | B2 |
8641701 | Hangai et al. | Feb 2014 | B2 |
8728108 | Gao et al. | May 2014 | B2 |
8808318 | Auld et al. | Aug 2014 | B2 |
8818564 | Zhou et al. | Aug 2014 | B2 |
8821524 | Agahi | Sep 2014 | B2 |
8979867 | Peyman | Mar 2015 | B2 |
9060841 | McCawley | Jun 2015 | B2 |
9101442 | McDonell | Aug 2015 | B2 |
9211608 | Chen et al. | Dec 2015 | B2 |
9216067 | Peyman | Dec 2015 | B2 |
20030032895 | Fisher | Feb 2003 | A1 |
20030114870 | Cull | Jun 2003 | A1 |
20030195538 | Wang et al. | Oct 2003 | A1 |
20040049217 | Ross et al. | Mar 2004 | A1 |
20040133190 | Hobart et al. | Jul 2004 | A1 |
20040167428 | Quick | Aug 2004 | A1 |
20050090765 | Fisher | Apr 2005 | A1 |
20050154379 | McGowan, Sr. et al. | Jul 2005 | A1 |
20050187537 | Loeb et al. | Aug 2005 | A1 |
20050209618 | Auld | Sep 2005 | A1 |
20060004397 | Osawa | Jan 2006 | A1 |
20060161145 | Lin et al. | Jul 2006 | A1 |
20060271082 | Kirchhevel et al. | Nov 2006 | A1 |
20070088376 | Zacharias | Apr 2007 | A1 |
20070129732 | Zacharias | Jun 2007 | A1 |
20070173870 | Zacharias | Jul 2007 | A2 |
20070185514 | Kirchhevel | Aug 2007 | A1 |
20070255196 | Wuchinich | Nov 2007 | A1 |
20080154292 | Huculak et al. | Jun 2008 | A1 |
20080172077 | Valencia et al. | Jul 2008 | A1 |
20080172078 | Svetic | Jul 2008 | A1 |
20080188881 | Chon | Aug 2008 | A1 |
20080208233 | Barnes et al. | Aug 2008 | A1 |
20090069831 | Miller et al. | Mar 2009 | A1 |
20090088784 | DeBoer et al. | Apr 2009 | A1 |
20090157111 | Goh et al. | Jun 2009 | A1 |
20090259242 | Gerg et al. | Oct 2009 | A1 |
20090281479 | Gagnepain et al. | Nov 2009 | A1 |
20100042125 | Maurer, Jr. et al. | Feb 2010 | A1 |
20100106054 | Hangai et al. | Apr 2010 | A1 |
20100152762 | Mark | Jun 2010 | A1 |
20100305596 | Peterson et al. | Dec 2010 | A1 |
20100312169 | Auld et al. | Dec 2010 | A1 |
20110144641 | Dimalanta, Jr. et al. | Jun 2011 | A1 |
20110190690 | Humayun et al. | Aug 2011 | A1 |
20110295292 | Hsia | Dec 2011 | A1 |
20110295296 | Charles | Dec 2011 | A1 |
20120083793 | Foster | Apr 2012 | A1 |
20120158030 | Underwood et al. | Jun 2012 | A1 |
20120221033 | Auld et al. | Aug 2012 | A1 |
20130053759 | McCawley | Feb 2013 | A1 |
20130090635 | Mansour | Apr 2013 | A1 |
20130110147 | Dame | May 2013 | A1 |
20130150875 | McDonell et al. | Jun 2013 | A1 |
20130211439 | Geuder | Aug 2013 | A1 |
20130325044 | Wang et al. | Dec 2013 | A1 |
20140074013 | McCary et al. | Mar 2014 | A1 |
20140171994 | Lee et al. | Jun 2014 | A1 |
20140171995 | McDonell | Jun 2014 | A1 |
20140171996 | McDonell et al. | Jun 2014 | A1 |
20140171997 | Nissan et al. | Jun 2014 | A1 |
20140296900 | Barnes et al. | Oct 2014 | A1 |
20140364885 | Wells et al. | Dec 2014 | A1 |
20150157503 | Chon | Jun 2015 | A1 |
20150182379 | Fantoni et al. | Jul 2015 | A1 |
20150282987 | McDonell | Oct 2015 | A1 |
20150306286 | Ross et al. | Oct 2015 | A1 |
20150335485 | Rieger et al. | Nov 2015 | A1 |
20150342678 | Deladurantaye et al. | Dec 2015 | A1 |
20160022489 | Hartstra | Jan 2016 | A1 |
20160120697 | Farley | May 2016 | A1 |
20160128870 | Mcdonell | May 2016 | A1 |
20160135991 | Farley et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
704384 | Jul 2012 | CH |
20022265 | Jun 2001 | DE |
10032007 | Jan 2002 | DE |
102010050337 | May 2012 | DE |
202013012000 | Feb 2015 | DE |
102013201784 | May 2015 | DE |
0919210 | Jun 1999 | EP |
2913034 | Sep 2015 | EP |
2004754 | Apr 1979 | GB |
2167305 | Nov 1988 | GB |
1034654 | May 2009 | NL |
9409711 | May 1994 | WO |
9409849 | May 1994 | WO |
9846147 | Oct 1998 | WO |
9852502 | Nov 1998 | WO |
0047116 | Aug 2000 | WO |
0078371 | Dec 2000 | WO |
0130281 | May 2001 | WO |
2004026142 | Apr 2004 | WO |
2010096139 | Aug 2010 | WO |
2012059092 | May 2012 | WO |
2012083402 | Jun 2012 | WO |
2012125674 | Sep 2012 | WO |
2013009576 | Jan 2013 | WO |
2013019859 | Feb 2013 | WO |
2013043455 | Mar 2013 | WO |
2013180718 | Dec 2013 | WO |
2014002040 | Jan 2014 | WO |
2014117774 | Aug 2014 | WO |
2014142663 | Sep 2014 | WO |
2015143308 | Sep 2015 | WO |
2015158438 | Oct 2015 | WO |
2016081133 | May 2016 | WO |
Entry |
---|
International Searching Authority, International Search Report, PCT/US2015/056572, Apr. 12, 2016, 8 pages. |
International Searching Authority, Written Opinion of the International Searching Authority, PCT/US2015/056572,Apr. 12, 2016, 7 pages. |
“A New Vitreous Cutter Blade Engineered for Constant Flow Vitrectomy” Retina, The Journal of Retinal and Vitreous Diseases 2014, vol. 34, No. 7 (5 pages). |
“Eva, A State-of-the-Art Surgical System for Phaco-Vitrectomy” Retina Today Supplement, 2013 (16 pages). |
https://web.archive.org/web/20131029212228/http://www.geuder.com/Mach2vitreouscutter, Website archive dated Oct. 29, 2013, archive site accessed on Jul. 5, 2016 (2 pages). |
Rizzo, Stanislao “Performance of a Modified Vitrectomy Probe in Small-gauge Vitrectomy” Retina Today Sep. 2011 (3 pages). |
Taking VR Surgery to the Next Generation, New Instruments 2013/2014, DORC brochure (6 pages). |
Number | Date | Country | |
---|---|---|---|
20160135991 A1 | May 2016 | US |