1. Field of the Invention
The present invention relates to door technology and more particularly, to a double-action door having wide open angle and bi-directional opening characteristics.
2. Description of the Related Art
A door can be used as a normal-open partition (e.g., for easy access) or normal-close partition (e.g., for access control) in a public place of a building.
In time of emergency, an escapee normally will push a closed door panel intuitively instead of pulling it. Technically, providing bi-directional escape route and keeping a fire door closed are requisite tasks to ensure a high level of safety.
Single-action and double-action doors are commercially available. A single-action door can simply be opened in one particular direction. A double-action door can be opened in either of two reversed directions. However, due to the limitation of the turning angle of the hinges between the door frame and the door panel, the opening angle of the door panel of a double-action door cannot be widely opened, for example, through 180 degrees.
The present invention has been accomplished under the circumstances in view. It is therefore the main object of the present invention to provide a double-action door, which provides a door-in-door structure with a small door in a large door, allowing the door panel to be opened in either of two reversed directions subject to the functioning of a bi-directional door closer.
To overcome conventional technical problems, the invention provides a double-action door of a door-in-door structure defining a large door and a small door in the large door. Thus, the double-action door can be opened in either of two reversed directions, providing a bi-directional escape route and keeping in a normally closed condition for fire protection.
The double-action door of the invention eliminates the drawbacks of conventional double-action doors that provide a limited door panel turning angle and can simply allow the door panel to be opened in either
“Push” or “Pull” manner, i.e., the double-action door allows the door panel to be opened in a large angle by a push action or a pull action.
To achieve the objects of the present invention, the double-action door is based on the architecture of two door frames and one door panel. This double-action door is a door-set structure comprising an outer door frame, an inner door frame hinged to the inside of the outer door frame and biasable relative to the outer door frame in one direction, and a door panel hinged to the inner door frame and biasable relative to the inner door frame in a reversed direction. Subject to the reversed arrangement of the hinges between the outer door frame and the inner door frame and the hinges between the inner door frame and the door panel, the double-action door can be opened in either of two reversed directions in a large angle, for example, 180 degrees. Therefore the double-action door is practical for use as an escape door or fire door.
Further, a bi-directional door closer is mounted in the inner door frame and coupled between the outer door frame and the door panel for buffering the closing movement of the door panel and for enabling the door panel to be opened in either of two reversed directions.
Further, two double-action doors can be symmetrically arranged together, forming a double-swing double-action combination door.
Referring to
Referring to
Referring to
Based on the aforesaid arrangement for allowing the large door A to be opened in the first direction S1 or the small door B to be opened in the second direction S2, the invention achieves a double action for outward or inward opening (leftward or rightward opening).
Referring to
When compared to conventional door structures, the invention uses reversed hinges to couple the outer door frame 2, the inner door frame 3 and the door panel 5, forming a door-indoor architecture that is substantially a unique door-set structure of one frame with two door panels. This door-set structure defines a large door A, and a small door B in the large door A, wherein the inner door frame 3 and the door panel 5 constitute the large door A that can be turned relative to the outer door frame 2 between an open position and a close position in the first direction S1; the door panel 5 constitutes the small door B that can be turned relative to the inner door frame 3 between an open position and a close position in the second direction S2 reversed to the first direction S1. Thus, the double-action door of the present invention can be opened in a large angle in either of two reversed directions, achieving the functions of an emergency exit and a fire escape.
When compared to a conventional double-action door that limits the turning angle of the door panel, the invention allows the door panel to be biased through 180 degrees. When the double-action door of the present invention is used as an entrance door, interior door, access door or fire door in a building, it can work as a left-handed door as well as a right-handed door.
Further, the first hinges 4 or second hinge 6 are buffer hinges having gear buffer means, hydraulic buffer means, spring buffer means, pneumatic buffer means, friction buffer means, or any of their combinations mounted therein for enabling the large door or small door to be automatically returned to the close position after having been opened, or buffering the moving speed of the door panel to reduce noises.
Referring to
Further, the first arm 73 defines a first front end 731 pivotally coupled to one side of the casing 71, and a first rear end 733 coupled to the first top rail 25. The second arm 75 defines a second front end 751 pivotally coupled to the opposite side of the casing 71, and a second rear end 752 coupled to the door panel 5.
In this embodiment, the first top rail 25 defines a first sliding groove 251. The first rear end 733 of the first arm 73 is slidably coupled to the first sliding groove 251. The door panel 5 defines a second sliding groove 53. The second rear end 752 of the second arm 75 is slidably coupled to the second sliding groove 53.
Thus, the inner door frame 3 and the door panel 5 constitute a large door that can be opened from the outer door frame 2 in the first direction S1 or closed thereon; the door panel 5 can work as a small door and be biased relative to the inner door frame 3 in the second direction S2 reversed to the first direction S1 between open and close positions.
When compared to the aforesaid first embodiment, this second embodiment is characterized in the bi-directional door closer 7 that can buffer the speed and return the door panel to the close position. The first rear end 733 of the first arm 73 is movably coupled to the first top rail 25, enabling the bi-directional door closer 7 to buffer the inner door frame 3 and the door panel 5 when they are moved in the first direction S1 between the open position and the close position. The second rear end 752 of the second arm 75 is movably coupled to the door panel 5, enabling the bi-directional door closer 7 to buffer the door panel 5 when the door panel 5 is moved in the second direction S2 between the open position and the close position.
Referring to
The bi-directional door closer 7 further comprises a first cam 735 and a second cam 755. The first cam 735 is fixedly mounted at the top end 771 of the shaft wheel 77. The second cam 755 is fixedly mounted at the bottom end 773 of the shaft wheel 77.
The first arm 73 further comprises a first stop block 732 located at the first front end 731. The first cam 735 further comprises a first axle hole 737 fastened to the top end 771 of the shaft wheel 77. The first front end 731 of the first arm 73 is rotatably coupled to the top end 771 of the shaft wheel 77 adjacent to the first cam 735. Thus, the first cam 735 and the first stop block 732 are kept in parallel, and can be engaged together or moved apart.
The second arm 75 further comprises a second stop block 753 located at the second front end 751. The second cam 755 further comprises a second axle hole 757 fastened to the bottom end 773 of the shaft wheel 77. The second front end 751 of the second arm 75 is rotatably coupled to the bottom end 773 of the shaft wheel 77 adjacent to the second cam 755. Thus, the second cam 755 and the second stop block 753 are kept in parallel, and can be engaged together or moved apart.
Referring to
Referring to
In this embodiment, the invention has a bi-directional door closer 7 connected to the inner door frame 3. The bi-directional door closer 7 integrates the directional first arm 73 and second arm 75 for enabling them to be respectively moved in reversed directions and linked to the outer door frame 2 and door panel 5, and thus, the bi-directional door closer 7 solves the problem of conventional double-action door. More particularly, the first cam 735 and the second cam 755 are mounted at the opposing top and bottom ends of the shaft wheel 77 to match with the first stop block 732 for moving the first arm 73 and the second stop block 753 for moving the second arm 75, thus, the single bi-directional door closer 7 controls two door panels in two reversed directions, this cooperation and competition function is similar to the working of a clutch. Under the functioning of a conventional door closer, the architecture of the present invention cannot achieve “two ways in one, i.e., push and go”, i.e., the use of a conventional door closer cannot control the functioning of two reversed one-way door panels. The structural functional features of the double-action door and the bi-directional door closer 7 of the present invention are not seen in prior art designs.
Referring to 13, a double-action door in accordance with a third embodiment is shown. This third embodiment uses a first door closer 8 and a second door closer 9 to substitute for the aforesaid bi-directional door closer 7.
According to this third embodiment, the double-action door comprises an outer door frame 2 comprising an outer door frame inner edge 21 and a first top rail 25 at an upper side of the outer door frame inner edge 21, an inner door frame 3 comprising an inner door frame inner edge 31, an inner door frame outer edge 33 being smaller than the outer door frame inner edge 21 and a second top rail 35 at an upper side of the inner door frame outer edge 33, at least one, for example, two first hinges 4 connected between the outer door frame 2 and the inner door frame outer edge 33 at different elevations for enabling the inner door frame 3 to be biased relative to the outer door frame inner edge 21 in the first direction S1 between an open position and a close position, a door panel 5 comprising a door panel outer edge 51 being smaller than the inner door frame inner edge 31, and at least one, for example, two second hinges 6 connected between the inner door frame 3 and the door panel outer edge 51 at different elevations for enabling the door panel 5 to be biased relative to the inner door frame inner edge 31 in the second direction S2 between an open position and a close position.
The first door closer 8 comprises casing 81 fastened to the second top rail 35, and an arm 83 coupled to the outer door frame 2 and turnable relative to the outer door frame 2 in the first direction S1.
The second door closer 9 comprises a casing 91 fastened to the inside of the second top rail 35, and an arm 93 coupled to the door panel 5 and turnable relative to the door panel 5 in the second direction S2. The first top rail 25 defines a first sliding groove 251. The first arm 73 defines a first rear end 733 slidably coupled to the first sliding groove 251. The door panel 5 defines a second sliding groove 351 at a top side thereof. The second arm 75 defines a second rear end 752 slidably coupled to the second sliding groove 351. By means of the first door closer 8 and the second door closer 9, this third embodiment achieves the same effects as the aforesaid second embodiments.
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.
The present invention is a continuation-in-part of U.S. patent application Ser. No. 13/706,555 filed on Dec. 6, 2012.
Number | Date | Country | |
---|---|---|---|
Parent | 13706555 | Dec 2012 | US |
Child | 14182016 | US |