Double-action mechanical press

Information

  • Patent Grant
  • 6477945
  • Patent Number
    6,477,945
  • Date Filed
    Tuesday, March 7, 2000
    24 years ago
  • Date Issued
    Tuesday, November 12, 2002
    21 years ago
Abstract
A double-action mechanical press is capable of easily keeping the dynamic balance, simpler in structure and provides an improved processing accuracy by maintaining the parallelism in upper and lower rams. The double-action mechanical press has a crank mechanism within a double-action crown. The crank mechanism comprises a crankshaft having two of first eccentric sections and two of second eccentric sections. A bed includes two oppositely rotatable toggle linkage mechanisms which rotate oppositely from one another. The two first eccentric sections are connected to the upper ram to move it in the upward and downward directions. The two of second eccentric sections are connected to the lower ram through a plurality of upright rods with the two toggle linkage mechanisms to move the lower ram in the upward and downward directions.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a double-action mechanical press capable of upward and downward movement an upper ram and a lower ram while both movements are related each other by a common driving source.




2. Related Art




As an example, a double-action mechanical press has been used to shape a blank into a cup-like configuration and then draw the bottom of the cup-shaped material while holding the position of the upper flange of the cup-shaped material in the upward and downward directions to form a cylindrical-shape of a beverage can.




For example, Japanese Patent Application Laid-Open No. 9-285897 discloses a conventional double-action mechanical press which comprises an upper ram continuously movable in the upward and downward directions and a lower ram associated with the upper ram to stop at a given position for a given time period, as show in FIG.


8


.




This conventional double-action mechanical press has two drive linkage mechanisms disposed on the both sides of a frame. These two drive linkage mechanisms can be rotated by a single crankshaft in the forward and backward directions of the frame at its central position. Each of the drive linkage mechanisms includes an upper link for driving upward and downward the upper ram and a lower link for driving upward and downward the lower ram.




In such a double-action mechanical press of the conventional art, however, it is very difficult to keep its dynamic balance since large components force in a forward and backward directions exert onto the two drive linkage mechanisms. The both rams are moved upward and downward by the two drive linkage mechanisms at the central position of the frame extending forward and backward. To maintain the parallelism (or horizontal degree) of each ram, thus, 4 guideposts for the ram need to be strong. In addition, it is necessary that the drive linkage mechanism keeps the whole dynamic balance including the dynamic balances of both the rams in their forward and backward directions. Thus, the drive linkage mechanisms must be connected to other linkage mechanisms exclusive for the dynamic balance. This tends to make the double-action mechanical press complicated and upsized. Furthermore, the balance weight must be increased. In general, it is difficult to improve the stroke per minute (SPM) and accuracy of finishing.




In the conventional press, the respective mechanisms themselves in the press must be modified or adjusted to change the slide stroke diagram of the lower ram. The adjustment of die height must carefully be performed through a complicated operation while the operation of the press is stopping, since it should be set by a die-height adjusting device incorporated into the slide section of the press. Since the die-height adjusting device itself incorporated into the slide section of the press becomes a load on the driving source, the press will have no choice but to upsize.




SUMMARY OF THE INVENTION




It is thus an objective of the present invention to provide a double-action mechanical press of such a simplified structure that can easily keep the dynamic balance and that can ensure an improved SPM and accuracy of finishing by maintaining the parallelism in each ram.




Another objective of the present invention is to provide a double-action mechanical press which can disperse a load corresponding to the reaction force from the lower ram toward the driving source and which can simplify the supporting structure of the lower ram to reduce the manufacturing cost.




Still another objective of the present invention is to provide a double-action mechanical press which can adjust the die height and also change the slide stroke in the lower ram with no modification to the mechanism and without provision of any load onto the driving source.




In one aspect, the present invention provides a double-action mechanical press comprising:




a driving source;




a crank mechanism driven by the driving source, the crank mechanism including a crankshaft which has two of first eccentric sections and two of second eccentric sections;




an upper ram being moved upward and downward by the power from the first eccentric sections;




a lower ram being moved upward and downward by the power from the second eccentric sections;




a plurality of upright rods for transmitting the power from each of the second eccentric sections in the crank mechanism; and




two toggle linkage mechanisms each of which rotates in the opposite direction from each other in a vertical plane by the power inputted through the plurality of upright rods to move the lower ram in the upward and downward directions.




For example, if the crank mechanism, in a crown is driven according to this aspect of the present invention, the upper ram connected to the first eccentric sections which are spaced rightward and leftward, for example, through connecting rods or the like can be moved upward and downward. This crank mechanism will not cause any unbalance in the rightward and leftward directions. Since it is only required to keep the rotational balance, therefore, the structure of keeping the dynamic balance will be simpler.




The second eccentric sections in the crank mechanism moves the lower ram upward and downward by rotating the toggle linkage mechanisms oppositely from each other in the rightward and leftward directions in a bed through the upright rods. At this time, the upper position of the lower ram may be its retention position. Since each of the toggle linkage mechanisms are oppositely rotated from each other in the rightward and leftward directions, the parallelism in the lower ram can be maintained without making the guideposts more rugged.




In other words, the dynamic components in the rightward and leftward directions may be counteracted by each other since two toggle linkage mechanisms which are spaced rightward and leftward are oppositely rotated in the rightward and leftward directions. Each of the toggle linkage mechanisms will be simplified in structure since only the dynamic balance in the upward and downward moving member may be kept. In such a manner, the present invention can provide a double-action mechanical press of such a simplified structure that can easily keep the dynamic balance and that can ensure an improved SPM and accuracy of finishing by maintaining the parallelism in each ram.




In this aspect, the driving source may include a pair of driving sources for applying a rotational force onto both ends of the crankshaft. Thus, the pair of driving sources can function as a dual-system brake to more improve the safety and rightward and leftward balance.




The crankshaft may further include two of third eccentric sections for driving balance weights. In such a case, a rotational phase difference may be provided between the first eccentric sections and the second eccentric sections. At this time it is preferable that the third eccentric sections are disposed at positions (Pe) opposite to eccentric positions (Pc) about the crankshaft, the eccentric positions (Pc) being composition of masses of eccentric positions (Pa) of the first eccentric sections and eccentric positions (Pb) of the second eccentric sections.




Thus, the rotational balance in the crankshaft can be kept even if any phase difference is provided between the upper and lower rams when driven.




According to this aspect of the present invention, the lower ram being moved upward and downward may be retained at its upper position.




In another aspect, the present invention provides a double-action mechanical press comprising:




a driving source;




two crank mechanisms driven by the driving source, each of the crank mechanisms including a crankshaft which has a first eccentric section and a second eccentric section;




a plurality of upright rods for transmitting the power from the second eccentric section of each of the crank mechanisms;




an upper ram being moved upward and downward by the power from the plurality of upright rods;




a lower ram being moved upward and downward by the power from the second eccentric section of each of the crank mechanisms; and




two toggle linkage mechanisms receiving the power from the second eccentric section of each of the crank mechanisms and rotating in the opposite direction from each other in a vertical plane to move the lower ram in the upward and downward directions.




When both the crank mechanisms are rotated through main gear or the like, the upper ram is moved upward and downward by the respective first eccentric sections, for example, through the upper-ram-driving connecting rods and upright rods. Such an upward and downward movement of the upper ram will not produce any unbalance in the rightward and leftward directions. Therefore, the dynamic balance can perfectly be kept, for example, by mounting a balance weight on the main gear.




Since each of the toggle linkage mechanisms are oppositely rotated from each other in the rightward and leftward directions by the second eccentric sections driven at the same time of the above motion, the toggle linkage mechanisms can move the lower ram upward and downward. At this time, the upper position of the lower ram may be its retention position.




Since the toggle linkage mechanisms which are spaced rightward and leftward are oppositely rotated in the rightward and leftward directions, the dynamic components in the rightward and leftward (or horizontal) directions can be counteracted by each other. In other words, the dynamic balance in the upward and downward directions may also be kept in the lower ram. For example, a balance weight may simply be mounted on each of the toggle linkage mechanisms opposite to the connection portion to the lower-ram-driving connecting rods.




This aspect of the present invention can also provide a double-action mechanical press of such a simplified structure that can easily keep the dynamic balance and that can ensure an improved SPM and accuracy of finishing by maintaining the parallelism in each ram. Unlike the first mentioned aspect, this aspect can eliminate a crown on the upper part of the machine. Therefore, the press can be downsized. And also, the lubricating oil will not leak onto the pressed products. In addition, the oil treating system may be simplified in structure.




The driving source may include a pair of driving sources each for applying a rotational power to each of the crankshafts, one of the pair of driving sources applying a rotational power to one of the crankshafts, and the other one of the pair of driving sources applying a rotational power to the other one of crankshafts. In this case, it is preferable each of the crankshafts includes two pinion gears fixedly mounted thereon at both ends. Thus, two pinion gears fixed at one end of each of the crankshafts may mesh each other while other two pinion gears fixed at the other end of each of the crankshafts mesh each other. As a result, the pair of driving sources will function as a double-system brake to more improve the safety and rightward and leftward balance.




It is preferable that the toggle linkage mechanisms have two main gears meshing the pinion gears fixedly mounted on the crankshafts, and that each of the main gears includes a balance weight fixedly mounted thereon.




When two main gears rotated in the opposite directions from each other include balance weights fixedly mounted thereon, all the mass balances in the upper and lower rams moved upward and downward for a sine curve (STU) as shown in

FIG. 13

can be kept.




It is further preferable that each of the toggle linkage mechanisms has a balance weight.




According to this aspect, the dynamic components in the rightward and leftward (or horizontal) directions may be counteracted by each other since the toggle linkage mechanisms are rotated oppositely from each other. This can provide an extremely simplified structure only by mounting balance weights for keeping the balance in the upward and downward directions in the lower ram or the like on the two toggle linkage mechanisms.




Even in this embodiment of the present invention, the lower ram being moved upward and downward is retained at the upper position thereof.




In a further aspect of the present invention, two toggle linkage mechanisms of the double-action mechanical press may comprise a common toggle point shaft.




Since the system span can be reduced in any small-sized press producing fewer products, two toggle linkage mechanisms can be disposed making a toggle point shaft in common. When the two toggle linkage mechanisms are oppositely rotated from each other about the common toggle point shaft in the rightward and leftward directions, the dynamic components in the rightward and leftward (or horizontal) directions can surely be counteracted by each other.




Preferably, each of the toggle linkage mechanisms comprises: a swing arm swinging about the common toggle point shaft as a fulcrum; a lower-ram-driving connecting rod connecting between the second eccentric section and the swing arm; and a connecting link connecting the lower ram and the swing arm, and the swing arm, the lower-ram-driving connecting rod and the connecting link substantially form an inverted Y-shaped configuration.




Thus, a reaction force F corresponding to the load from the lower ram can be dispersed into components F


1


and F


2


toward the driving source, as shown in FIG.


14


. At the same time, the pressing operation can be accelerated by rotating the second eccentric sections at an increased speed.




It is further preferable that the double-action mechanical press comprises mechanism for adjusting the upward and downward positions of the common toggle point shaft.




Thus, the die height, lower ram motion and slide stroke can be changed by adjusting the upward and downward positions of the common toggle point shaft relative to the two toggle linkage mechanisms.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front view of a double-action mechanical press according to a first embodiment of the present invention.





FIG. 2

is a side view of the double-action mechanical press shown in

FIG. 1

as viewed from the right side.





FIG. 3

is a view illustrating the eccentrically positional relationship in the double-action mechanical press of FIG.


1


.





FIG. 4

is a view illustrating the phase shift based on FIG.


3


.





FIG. 5

is a view illustrating the relationship between the actuated toggle linkage mechanism and the lower ram stroke in the first embodiment of the present invention.





FIGS. 6A and 6B

are views illustrating the stroke phase shift between the upper and lower rams in the first embodiment of the present invention.





FIGS. 7A and 7B

are views illustrating the drawing area in the first embodiment of the present invention.





FIG. 8

is a front view of a double-action mechanical press according to a second embodiment of the present invention.





FIG. 9

is a side view of the double-action mechanical press shown in

FIG. 8

as viewed from the right side.





FIG. 10

is an exploded cross-sectional view illustrating the details of the driving system and the like of the double-action mechanical press shown in FIG.


8


.





FIG. 11

is a view illustrating the mounting of a balance weight for the lower ram of the double-action mechanical press shown in FIG.


8


.





FIGS. 12A and 12B

are views mainly illustrating the relationship between the operation of the toggle linkage mechanism and the stroke of the lower ram in the double-action mechanical press according to the second embodiment of the present invention.





FIG. 13

is a view illustrating the stroke phase shift between the upper and lower rams and drawing area thereof in the double-action mechanical press according to the second embodiment of the present invention.





FIG. 14

is a front view of a double-action mechanical press constructed according to a third embodiment of the present invention.





FIG. 15

is a side view of the double-action mechanical press shown in

FIG. 14

as viewed from the right side.





FIG. 16

is a schematic and perspective view of the double-action mechanical press according to the third embodiment of the present invention.





FIG. 17

is a front view of a position adjusting mechanism having a common toggle point shaft for two toggle linkage mechanisms.





FIG. 18

is a side view of the mechanism shown in

FIG. 17

as viewed from the right side.





FIG. 19

is a view illustrating the slide strokes of the upper and lower rams in the third embodiment of the present invention.





FIG. 20

is a graph illustrating the slide strokes of the upper and lower rams in the third embodiment of the present invention.





FIG. 21

is a view illustrating the slide strokes of the upper and lower rams in the third embodiment of the present invention before and after the toggle point shaft is changed.





FIG. 22

is a graph illustrating the slide strokes of the upper and lower rams in the third embodiment of the present invention before and after the toggle point shaft is changed.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the present invention will now be described with reference to the drawings.




(First Embodiment)




Referring now to

FIGS. 1 and 2

, a double-action mechanical press constructed according to a first embodiment of the present invention comprises a crank mechanism


20


having two first eccentric sections


22


L,


22


R for driving an upper ram and two second eccentric sections


23


L,


23


R for driving a lower ram. Each of the first eccentric portions and each of the second eccentric portions are spaced away from one another in rightward and leftward directions within a crown


1


. The double-action mechanical press also comprises a bed


5


in which two toggle linkage mechanisms


50


L and


50


R are spaced away from each other in the rightward and leftward directions. These toggle linkage mechanisms rotate oppositely from each other in the rightward and leftward directions in the vertical plane. The second eccentric sections


23


L and


23


R are respectively connected to the toggle linkage mechanisms


50


L and


50


R through upright rods


40


L and


40


R, respectively. Thus, a lower ram


35


is movable upward and downward such that the upper position of the lower ram


35


can be in its retention position.




Referring to

FIG. 1

, the main body of the press comprises the crown


1


which is the upper part of the press, the bed


5


which is the lower part of the press and columns


3


connecting the crown


1


and the bed


5


. Reference numeral


4


designates a bridge.




The left side of

FIG. 1

about an axis Y shows the bottom dead center while the right side represents the top dead center. The affixed letters “L” and “R” represent the left- and right-side components, respectively.




The crank mechanism


20


including a crankshaft


21


extending in the rightward and leftward directions is disposed within the crown


1


. The crankshaft


1


may be replaced by an eccentric shaft or the like.




A symmetric structure is formed by the first eccentric sections


23


L and


23


R, the second eccentric sections


22


L and


22


R, upper-ram and the third eccentric sections


25


L and


23


R respectively located on the left side and right side of the central press axis Y in the crankshaft. More particularly, the first eccentric sections


22


L and


22


R are respectively located on the left and right sides of the crankshaft


21


at their central location. Each of the second eccentric sections


23


L or


23


R is disposed outside of the corresponding first eccentric section


22


L or


22


R while each of the third eccentric sections


25


L or


25


R for driving a balance weight is arranged inside of the corresponding first eccentric section


22


L or


22


R.




As will be apparent from

FIGS. 1 and 2

, an upper ram


30


is slidably guided in the upward and downward directions by four guide posts


33


(


33


L,


33


L,


33


R,


33


R) and connected to the first eccentric sections


22


L and


22


R through plungers


31


L,


31


R and connecting rods.




The second eccentric sections


23


L and


23


R are connected to upright rods


40


L and


40


R through connecting rods


24


L and


24


R, respectively. The relationship between the second eccentric sections


23


L,


23


R and the toggle linkage mechanisms


50


L,


50


R and so on will be described later in more detail.




The third eccentric sections


25


L and


25


R are respectively connected to balance weights


28


L and


28


R through connecting rods. These balance weights


28


L and


28


R are smaller-sized and simple in structure since they are selected to have minimum weight (mass) equivalent to the difference from the total weight of the moving members (


30


,


31


L,


31


R,


40


L,


40


R, etc.) which are moved upward and downward along a sine curve (STU) shown in

FIG. 7A

due to the phase shift (=135 degrees) between the first eccentric sections


22


L and


22


R and the second eccentric sections


23


L and


23


R.




In the first embodiment, a driving source


10


comprises a pair of driving sources


10


L and


10


R which are spaced rightward and leftward to improve the safety and rightward and leftward balance in a dual-system brake. The right-side driving source


10


R comprises a motor


11


R, a flywheel


12


R, a clutch brake


13


R and a main gear


15


R connected through a pinion gear


14


R. The left-side driving source


10


L is of similar structure.




In other words, the driving source


10


provides a symmetric dual-system drive train which is synchronized each other through the crankshaft


21


. Thus, it will not be required that the driving source


10


is connected to the other drive shaft.




Within the bed


5


, the toggle linkage mechanisms


50


L and


50


R are disposed opposed to each other about the axis Y. The toggle linkage mechanisms


50


L and


50


R comprise a pair of toggles


52


L and


52


R extending in the forward and backward directions shown in FIG.


1


and mounted on right and left toggle point shafts


51


L and


51


R of FIG.


1


. The toggles


52


L and


52


R rotate oppositely from each other in the rightward and leftward directions in synchronism.




In the right toggle linkage mechanism


50


R, the drive end


55


R of the toggle


52


R is connected to the upright rod


40


R through the connecting rod


41


R, and the upper end


53


R is connected to the lower ram


35


through an upper toggle link


54


R. The lower end


56


R located opposite to the upper end


53


R includes a balance weight


57


R mounted thereon for the lower ram


35


that is movable upward and downward along a toggle curve (STL) shown in FIG.


7


B. The left toggle linkage mechanism


50


L is of similar structure.




The toggle linkage mechanisms


50


L,


50


R (or


52


L,


52


R) are symmetrically disposed by facing each other and synchronously rotated in the rightward and leftward directions (i.e. right rotational direction and left rotational direction in

FIG. 1

) about the toggle point (shaft)


51


L,


51


R. Therefore, the dynamic components force in the rightward and leftward (or horizontal) directions can be counteracted by each other. Thus, the balance weights


57


L and


57


R may only be used to keep the upward and downward motion balance in the lower ram


35


and so on.




In other words, the double-action mechanical press of the present invention does not require any balance-weight driving linkage other than the toggle linkage mechanisms that was required in the prior art, and may be extremely simple in structure.




The toggle linkage mechanisms


50


L,


50


R (or


52


L,


52


R) are synchronously rotated rightward and leftward directions at the central positions of toggle shafts (fulcrum)


51


L,


51


R in the forward and backward directions. Therefore, the lower ram


35


can be supported to be driven by the four upper toggle links


54


. As a result, the double-action mechanical press can be formed to be stronger for the load eccentricity in the forward and backward directions and to maintain the parallelism (or horizontal degree) of the lower ram


35


. In addition, the guide posts


33


can be formed more simply.




In this configuration, the phase difference between the first eccentric sections


22


L,


22


R and the second eccentric sections


23


L,


23


R is 135 degrees, and the third eccentric sections


25


L and


25


R are positioned at the midpoint in the remaining angle 225 (360−135) degrees. Although the phase difference of 135 degrees is not essential, it is preferred in this embodiment since the mass of the balance weights


28


L,


28


R can be minimized to keep the rotational balance in the crankshaft


21


as described.




Such a setting provides interrelationships as shown in

FIG. 3

among the eccentric position Pa of the upper ram


30


, the eccentric position Pb of the lower ram, the eccentric position Pc of the combined mass of the eccentric positions Pa and Pb, the eccentric position Pd opposed to Pc and the eccentric position Pe obtained when the rotational radius of Pd is equal to those of Pa and Pb. The respective changes of phase are as shown in FIG.


4


. The mass of the eccentric position Pe is equal to the mass obtained by 0.77 times the eccentric position Pa (=Pb). This eccentric position Pe becomes the position of each of the third eccentric sections


25


L and


25


R.




In such a manner, the relationships between the crank mechanism


20


(or upright rods


40


L,


40


R) and the toggle linkage mechanisms


50


L,


50


R are determined such that the lower ram


35


can be moved upward and downward by the stroke STL so that the upper position of the lower ram


35


can be the retention position thereof, as shown in FIG.


5


.




In relation with the left toggle linkage mechanism


50


L, for example,

FIG. 5

shows the interrelationships among the upright rod


40


L, the toggle point


51


L, the toggle


52


L and the balance weight


57


L when the letters “U” and “L” represent the upward and downward positions of the lower ram


35


, respectively. Lines shown only by the letters “L” and “U” are for convenience in comparison and for facilitating the understanding.




The stroke STL of the lower ram


35


thus advances by the phase difference equal to 135 degrees, which is the phase difference of the second eccentric section


23


relative to the first eccentric section


22


as shown by one-dot-and-chain line in

FIG. 6B

, relative to the relationship between the rotational angle of the crankshaft


21


(or the first eccentric section


22


) and the stroke STU of the upper ram


30


as shown in FIG.


6


A.




In other words, the stroke diagram of the lower ram


35


becomes a toggle diagram (STL) in which the upper position shown in

FIG. 7B

has a retention or drawing area and is followed by a sharp descending line, unlike the stroke diagram (STU) of the upper ram


30


approximating to a sine curve as shown in FIG.


7


A.




In such an arrangement, the ratio (L/R) of a radius (R) of the crank and a length (L) of the connecting rod for driving both the upper and lower rams


30


,


35


can be reduced. Therefore, the drawing area determined by the relative position between the upper and lower rams


30


,


35


can be increased. As a result, the pressing operation can be improved in speed by reducing the stroke STU of the upper ram


30


or the retention time of the lower ram


35


.




(Second Embodiment)




A second embodiment of the present invention is shown in

FIGS. 8

to


11


. According to the second embodiment, a double-action mechanical press comprises a bed


15


including two crank mechanisms


120


L,


120


R and two toggle linkage mechanisms


150


L,


150


R. Each of the crank mechanisms


122


L or


122


R has a first eccentric section


122


L or


122


R for driving an upper ram and a second eccentric section


123


L or


123


R for driving a lower ram, which are located away from each other in the forward and backward directions on a crankshaft


121


L or


121


R. An upper ram


130


can be moved upward and downward by connecting the third eccentric section


122


L or


122


R for driving a balance weight of the crank mechanism


120


L or


120


R to the upper ram


130


through the upper-ram-driving connecting rod


126


L or


126


R and upright rod


140


L or


140


R as shown in FIG.


10


. The second eccentric section


123


L or


123


R is connected to a toggle linkage mechanism


150


R or


150


L through a lower-ram-driving connecting rod


158


R or


158


L. In such an arrangement, the lower ram


135


can be moved in the upward and downward directions such that it will be retained at its upper position.




Parts similar to those of the first embodiment (

FIGS. 1

to


7


) are designated by the same reference numerals, but will simply or not further be described.




It will be apparent from

FIGS. 8 and 9

that the pairs of crank mechanisms


120


L,


120


R and toggle linkage mechanisms


150


L,


150


R are disposed opposed to one another within the bed


15


. Thus, the crown


1


is omitted to reduce the whole height of the machine. As a result, the manufacturing cost can also be reduced since the columns, tie-rods and so on in the bed


15


can be eliminated.




In the second embodiment, similarly, the driving source comprises a pair of driving sources


110


L and


110


R which are spaced rightward and leftward to form a double-system brake providing an improved safety. Right main gear


115


R and left main gear


115


L are meshed by each other and synchronously rotated in the opposite direction from each other through four pinion gears


118


L,


118


R which are connected by a pinion shaft


119


.




The main gears


115


L and


115


R oppositely rotated from each other include balance weights


128


L and


128


R (


128


R is omitted) mounted thereon as shown in

FIG. 8

for keeping the whole mass balance of the members moved upward and downward along a sine curve (STU) as shown in FIG.


13


.




Also in the second embodiment, the toggle linkage mechanisms


150


L,


150


R (or


152


L,


152


R) located symmetrically opposed to each other in the rightward and leftward directions are rotated oppositely from each other in the rightward and leftward directions (or right rotational direction and left rotational direction in

FIG. 8

) about the toggle points (shafts)


151


L,


151


R. As a result, the dynamic components force in the rightward and leftward (or horizontal) directions can be counteracted by each other. Therefore, the balance weights


157


L,


157


R may only be used to keep the vertical balance in the lower ram


135


and so on, and may only be mounted on the toggles


152


L,


152


R as shown in FIG.


11


. This provides an extremely simplified structure.




The lower ram


135


is supported by four toggle links


154


to be stronger against the load eccentricity in the forward and backward directions and to maintain the parallelism (or horizontal degree). The guide posts


133


can be simplified in structure.




Considering the right side of the machine, for example, the crank mechanism


120


R or


123


R is connected to the lower ram


135


through the toggle linkage mechanism


150


R by lower-ram-driving connecting rod


158


R, toggle driving arm


160


R, lower toggle link


159


R and upper toggle link


154


R.




In other words, the upper and lower rams


130


,


135


can be moved upward and downward by the driving sources


110


L,


110


R rotate in the opposite direction from each other under a relationship as shown in

FIGS. 12 and 13

which corresponds to the first embodiment (

FIGS. 5

to


7


).

FIG. 12A

shows the side of lower ram while

FIG. 12B

represents the side of upper ram.




In such a manner, the double-action mechanical press according to the second embodiment can have the same functions and advantages as in the first embodiment and also eliminate the crown on the upper part of the machine. In addition, the double-action mechanical press can prevent any leaked lubricant oil from the upper part from depositing on the pressed products and can have a simplified oil processing system.




(Third Embodiment)




A third embodiment of the present invention is shown in

FIGS. 14

to


18


. The third embodiment is similar to the second embodiment. More particularly, the third embodiment provides a double-action mechanical press comprises a bed


25


including two crank mechanisms


220


L,


220


R and two toggle linkage mechanisms


250


L,


250


R. Each of the crank mechanisms


220


L or


220


R has a first eccentric section


222


L or


222


R for driving an upper ram and a second eccentric section


223


L or


223


R for driving a lower ram, which are located away from each other on a crankshaft


221


L or


221


R. An upper ram


230


can be moved upward and downward by connecting the first eccentric section


222


L or


222


R to the upper ram


230


through the upper-ram-driving connecting rod


226


L or


226


R and upright rod


240


L or


240


R as shown in FIG.


10


. The second eccentric section


223


L or


223


R is connected to a toggle linkage mechanism


250


R or


250


L through a lower-ram-driving connecting rod


258


R or


258


L.




Therefore, the third embodiment can provide the same advantages as in the second embodiment.




The third embodiment is different from the second embodiment only in that the third embodiment provides a single toggle point shaft


251


common for two toggle linkage mechanisms


250


L,


250


R, unlike the second embodiment in which each of the two toggle linkage mechanisms


250


L or


250


R has one toggle point shaft


251


L or


251


R.




Although the double-action mechanical press according to the second embodiment has been described as to a large-sized structure in which, for example, eight beverage cans are simultaneously processed into cylindrical configuration through a single pressing step, the double-action mechanical press according to the third embodiment may be of such a small-sized structure as only two cans, for example, are worked through a single pressing step. Thus, in the double-action mechanical press according to the third embodiment a space between each of connecting links


254


L,


254


R, which are connected to a lower ram


235


, can be reduce. This provides a single common toggle point shaft


251


.




Each of the toggle linkage mechanisms


250


L or


250


R includes a swing arm


252


L or


252


R swinging about the toggle point shaft


251


, an lower-ram-driving connecting rod


258


L or


258


R connecting the second eccentric section


223


L or


223


R and the swing arm


252


L or


252


R, and a connecting link


254


L or


254


R connecting the lower ram


235


and the swing arm


252


L or


252


R. The swing arm


252


L (


252


R), lower-ram-driving connecting rod


258


L (


258


R) and connecting link


254


L (


254


R) substantially form an inverted Y-shape.




In such a toggle linkage mechanism


250


L or


250


R, the rotational power of the second eccentric section


223


L or


223


R is inputted as a linear reciprocating force by the lower-ram-driving connecting rod


258


L or


258


R. As a result, the swing arm


252


L or


252


R is swung about the toggle point shaft


251


. The lower ram


235


connected to the swing arm


252


L or


252


R through the connecting link


254


L or


254


R is moved upward and downward by the motion of swing arm


252


L or


252


R along a stroke diagram approximating to sine curve.




As shown in

FIG. 14

, thus, a reaction force F corresponding to the load from the lower ram


235


or a slider can be dispersed into components F


1


and F


2


toward the side of driving source. At the same time, the pressing operation can be increased in speed by rotating the second eccentric section


223


L or


223


R at an increased speed.





FIG. 19

shows the rotational angle in the crankshaft


221


of each of the two crank mechanisms


220


L and


220


R, the positions of the corresponding swing arm


252


L or


252


R, lower-ram-driving connecting rod


258


L or


258


R and connecting link


254


L or


254


R and the upward and downward motion stroke of the lower ram


235


.

FIG. 20

is a diagram of the slide strokes in the upper and lower rams


230


,


235


.




As will be seen from

FIG. 20

, the third embodiment is different from the first and second embodiments in that there is an extremely small area providing the upper retention position of the lower ram


235


to be a retention area. However, the lower ram


235


is slower in motion than that of a direct crank system in which a lower ram is connected directly to the eccentric portion of a crankshaft. This can improve the accuracy at the top dead center. Even if the retention area at the top dead center is smaller, the accuracy can be improved by providing a member of holding a can blank on the side of the upper ram


230


.




Although the motion of the lower ram


235


is slower at the side of the top dead center, the acceleration G acting on the lower ram


235


is reversely increased on the side of the bottom dead center.




As the acceleration G increases, vibrations and noises will occur during the pressing process. This cannot avoid an reduction in yield. However, such a problem can be overcome by changing the motion and stroke of the lower ram


235


to reduce the acceleration G at the bottom dead center within a moldable range.




To this end, the third embodiment provides a single toggle point shaft


251


which is shared by the two toggle linkage mechanisms


250


L and


250


R and adjustable in the upward and downward directions. By adjusting the upward and downward positions of the toggle point shaft


251


, the upper limit (or die-height) in a die fixedly mounted on the upper surface of the lower ram


235


can be changed to vary the motion and stroke of the lower ram


235


.




As shown in

FIGS. 17 and 18

, the double-action mechanical press of the third embodiment comprises an adjusting motor


270


, a shaft


271


located parallel to the toggle point shaft


251


, a belt or chain


272


for transmitting the power from the adjusting motor


270


to the shaft


271


, two worm gears


273


disposed on the both ends of the shaft


271


, two wheels


274


meshing the respective worm gears, two adjusting screws


275


fixedly connected to the respective wheels


274


, and two guide nut blocks


276


meshing the respective adjusting screws


275


and holding the toggle point shaft


251


.




To adjust the upward and downward positions of the toggle point shaft


251


, the adjusting motor


270


rotatable in reverse directions is rotated in one of the directions. The power of the adjusting motor


270


is transmitted to the two adjusting screws


275


through the belt or chain


272


, shaft


271


, the two worm gears


273


and the two wheels


274


to rotate the two adjusting screws


275


. The guide nut blocks


276


are then moved in the upward and downward directions along the two adjusting screws


275


. Thus, the toggle point shaft


251


held by the two guide nut blocks


276


is moved upward or downward in the upward and downward directions to adjust the upward and downward positions thereof.





FIG. 21

schematically shows changes in the die height and in the upward and downward stroke of the lower ram


235


when the reference position A of the toggle point shaft


251


and the downward position below the reference position A by 25 mm are set.

FIG. 22

is a diagram of slide stroke in the upper and lower rams


230


,


235


when the position of the toggle point shaft has been adjusted.

FIG. 22

clearly shows the fact that the stroke of the upper ram


230


is not changed while only the stroke of the lower ram


235


is changed. As best seen from

FIGS. 21 and 22

, the upper limit of the die fixedly mounted on the upper surface of the lower ram


235


is lowered by 10 mm when the toggle point shaft


251


is set at the downward position B. It can also be understood that the upward and downward stroke of the lower ram


235


is equal to 245 mm at the reference position A while the upward and downward stroke of the same is equal to 240 mm at the downward position B, thereby enabling the motion and stroke of the lower ram


235


to be changed.




When the toggle point shaft


251


is moved downward, the lower ram


235


tends to be retained at the top dead center as shown in FIG.


22


. Therefore, the acceleration G at the bottom dead center correspondingly increases. Since the upward and downward stroke of the lower ram


235


is reduced, however, the maximum acceleration G


MAX


will accordingly be reduced to increase the speed of production (or yield).




When it is wanted to adjust the position of the toggle point shaft


251


for adjusting the die height, the amount of adjustment is equal to about ±5 mm. Therefore, even though the slide stroke of the lower ram


235


is changed simultaneously with the adjustment of die height, such a change may be neglected.



Claims
  • 1. A double-action mechanical press comprising:a driving source; a crank mechanism driven by said driving source, said crank mechanism including a crankshaft which has two of first eccentric sections and two of second eccentric sections; an upper ram being moved upward and downward by a power from said first eccentric sections; a lower ram; a plurality of upright rods for transmitting a power from each of said second eccentric sections in said crank mechanism to the lower ram; two toggle linkage mechanisms each of which rotates in the opposite direction from each other in a vertical plane by the power inputted through said plurality of upright rods to move said lower ram in upward and downward directions, wherein the two toggle linkage mechanisms are symmetrically disposed by facing each other and synchronously rotated in right rotational direction and left rotational direction respectively about respective toggle points so that dynamic forces with respect to said rotations are counteracted; and two balance weights, each of which is coupled to each toggle linkage mechanism to keep an upward and downward motion balance in the lower ram.
  • 2. The double-action mechanical press according to claim 1,wherein said driving source includes a pair of driving sources for applying a rotational force onto both ends of said crankshaft.
  • 3. The double-action mechanical press according to claim 1,wherein said lower ram is movable upward and downward such that an upper position of the lower ram is a retention position.
  • 4. A double-action mechanical press comprising:a driving source; two crank mechanisms driven by said driving source, each of said crank mechanisms including a crankshaft which has a main gear, a first eccentric section and a second eccentric section; a plurality of upright rods for transmitting a power from said first eccentric section of each of said crank mechanisms; an upper ram being moved upward and downward by the power from said plurality of upright rods; a lower ram; and two toggle linkage mechanisms receiving the power from said second eccentric section of each of said crank mechanisms and rotating in the opposite direction from each other in a vertical plane to move said lower ram in upward and downward directions; and wherein said driving source includes a pair of driving sources each for applying a rotational power to each of said crankshafts, one of said pair of driving sources applying a rotational power to one of said crankshafts, and the other one of said pair of driving sources applying a rotational power to the other one of crankshafts; two pinion shafts, each includes two pinion gears fixedly mounted thereon at each end of the pinion shafts; wherein the two pinion gears fixed at one end of each of said pinion shafts directly mesh with each other while another two pinion gears fixed at the other end of each of said pinion shafts directly mesh with each other; and wherein the main gear in one of the two crank mechanisms meshes with one of the two pinion gears, and the main gear in the other of the two crank mechanisms meshes with one of said another two pinion gears.
  • 5. The double-action mechanical press according to claim 4, wherein:each of said main gears includes a balance weight fixedly mounted thereon.
  • 6. The double-action mechanical press according to claim 4,wherein each of said toggle linkage mechanisms has a balance weight.
  • 7. The double-action mechanical press according to claim 4,wherein said lower ram is movable upward and downward such that an upper position of the lower ram is a retention position.
  • 8. A double-action mechanical press comprising:a driving source; two crank mechanism driven by said driving source, each of said crank mechanisms including a first eccentric section and a second eccentric section; an upper ram being moved upward and downward by a power from said first eccentric sections; a lower ram; and two toggle linkage mechanisms receiving a power from said second eccentric section of each of said crank mechanisms and rotating in the opposite direction from each other in a vertical plane to move said lower ram in upward and downward directions, wherein said toggle linkage mechanisms have a common toggle point shaft; and wherein each of said toggle linkage mechanisms comprises, a swing arm swinging about said common toggle point shaft as a fulcrum; a lower-ram driving connecting rod connecting said second eccentric section and said swing arm; and a connecting link connecting said lower ram and said swing arm, and wherein said swing arm, said lower-ram-driving connecting rod and said connecting link substantially form an inverted Y-shaped configuration.
  • 9. The double-action mechanical press according to claim 8, further comprising mechanism for adjusting the upward and downward positions of said common toggle point shaft.
Priority Claims (1)
Number Date Country Kind
11-253387 Sep 1999 JP
US Referenced Citations (13)
Number Name Date Kind
1986410 Rode Jan 1935 A
2071001 Rode et al. Feb 1937 A
2532320 Maussnest Dec 1950 A
2633765 Glasner Apr 1953 A
2771790 Munschauer Nov 1956 A
3772986 Kawagoshi et al. Nov 1973 A
3797327 Voorhees et al. Mar 1974 A
3808912 Voorhees et al. May 1974 A
4238950 Carrieri et al. Dec 1980 A
4276823 Rotzler Jul 1981 A
5136875 Schockman Aug 1992 A
5287728 Yoshida Feb 1994 A
5852970 Bornhost et al. Dec 1998 A
Foreign Referenced Citations (2)
Number Date Country
2 307 435 May 1997 GB
9-285897 Nov 1997 JP