DOUBLE ACTION SOLAR DISTILLER

Information

  • Patent Application
  • 20080078670
  • Publication Number
    20080078670
  • Date Filed
    September 28, 2006
    17 years ago
  • Date Published
    April 03, 2008
    16 years ago
Abstract
A solar still includes a relatively shallow chamber with a pyramid shaped transparent cover and a transparent base. The still also includes a pair of rollers and an endless heat absorbing belt rotatable about the rollers. The still is positioned to receive solar energy passing through the transparent cover and impinging on an upper surface of the heat absorbing belt in order to vaporize seawater within the chamber. The efficiency of the still is increased by one or more mirrors disposed below the still for reflecting sun light up through the transparent base to impinge on a lower outer surface of the belt to enhance the vaporization of the seawater. One or more fans are also provided for cooling the cover to enhance the condensation of water that will then run down the cover and into a pure water receptacle.
Description

DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a solar still in accordance with a first embodiment of the invention;



FIG. 2 is a perspective view illustrating a portion of a solar still in accordance with the invention;



FIG. 3 is a perspective view showing a further embodiment of the invention;



FIG. 4A is a side elevation view of a solar still in accordance with the invention;



FIG. 4B is a top view of the solar still shown in FIG. 4A;



FIG. 5 is a side view illustrating another embodiment of the invention;



FIG. 6 is a schematic illustration of the roller assembly and endless belt with means for rotating the endless belt.



FIG. 7A is a side view of a solar still in accordance with a further embodiment of the invention.



FIG. 7B is a side view of a fan as used in the further embodiment of the invention; and



FIG. 7C is a side elevational view of a different fan as used in the further embodiment of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

A solar still in accordance with a first embodiment of the invention is shown if FIG. 1. As shown, the still 10 includes a box-like relatively shallow chamber 12 having a square transparent base 14 of glass or the like. The transparent base 14 is preferably clear in order to allow a maximum amount of solar energy to pass through the base. The relatively shallow chamber 12 also includes four sidewalls 16 which are sealed to the base to provide a water tight chamber with an open top and a height which is preferably less than about one-tenth of the width and more preferably about one-twelfth of its width. A pyramid shaped cover 18 is placed over the chamber 12 with its base extending outwardly beyond the walls 16 of the chamber 12.


The pyramid shaped cover 18 also defines a relatively shallow shape with four triangular shape sloping sides and with its height less than about one-sixth of the width of the chamber 12. The height of the pyramid shape cover 18 is a compromise of wanting an inclined cover as close to the level of seawater or contaminated water as possible and yet with a sufficient slope that condensate will flow down the cover and into a receptacle 20.


An inlet valve 22 is provided for feeding brackish or contaminated water into the chamber 12 while an outlet valve 24 removes excess water that would exceed a pre-selected level in the chamber. The outlet valve 24 may remain open if positioned at the pre-selected water level or opened in response to a float-valve assembly (not shown) in a conventional manner to maintain the level of the water at the pre-selected level.


An endless heat absorbing belt 30 is disposed in the chamber 12 below the surface of the water for distillation. The heat absorbing or “black” belt 30 is disposed around rollers 32 or 34 for rotation around the rollers with a thin film or layer of water on an upper outer surface 29. Solar rays passing through the pyramid shaped transparent cover 18 pass through the cover 18 and heat the belt 30 to aid in the evaporation of water on the upper outer surface 29 of the belt 30.


In order to increase the effectiveness and efficiency of the still 10, reflecting means such as a plurality of mirrors 36 are disposed below the level of the chamber 12 and positioned to reflect the suns rays up through the transparent base 14 to impinge on the lower outer surface 31 of the belt 30. The reflecting rays aid in raising the temperature of the heat absorbing belt 30 which will in turn aid in the evaporation process. Means, such as a plurality of legs 38 support the still 10 above the level of the mirror 36.



FIG. 2 is a perspective view illustrating the positioning of the mirror surface 36 below the chamber 12 (FIG. 1). The mirror surface 36 is preferably moveable in order to reflect the maximum solar energy through the transparent base 14 depending on the time of year and/or the time of day. An alternative embodiment shown in FIG. 3 illustrates the use of a mirror 11 to reflect the rays of the sun through one side of the pyramid shaped cover 18. It should be recognized that upper and lower mirrors may be used to reflect the maximum amount of solar energy onto the belt 30 (FIG. 1).


As shown in FIGS. 4A and 4B, a pair of mirrors 36 are positioned under two sides of the solar still 10 and adapted to reflect the solar rays thorough the base 14 as described above. An additional third and perhaps a fourth mirror can be added below the still 10 in order to reflect the maximum amount of solar energy onto the belt 30.


As shown in dotted lines in FIG. 4B, the receptacle 20 for receiving distilled water extends around the outer periphery at the bottom of each of the sides of the pyramid shaped cover 18.



FIG. 5 is a side view of a further embodiment of the invention but includes a separate brine collecting chamber 60 and valve 62 for removing concentrated brine from the still. As shown the brine is dropped into a tank 64 or other suitable container.



FIG. 6 is a schematic illustration of the chamber 12, heat absorbing or “black belt” 30 having an upper outer surface 29 and a lower outer surface 31 disposed about the rollers 32 and 34. Means such as a hand crank 70 or motor 72 for rotate one of the rollers 34 to thereby drive the belt. The motor 72 would be powered by a solar cell 73 and include a gear assembly 75 and drive shaft 76 for rotating the belt 30 at a pre-selected speed.


A further embodiment of the invention will now be described with reference to FIGS. 7A, 7B and 7C. This embodiment of the invention is generally similar to the first embodiment shown in FIG. 1 but includes a pair of solar powered fans 80 and 82. The fans 80 and 82 are powered by solar cells 81 and 83 for cooling the pyramid shaped cover 18. Two such fans are shown but in practice one fan is provided for each side of the pyramid cover 18.


As shown in FIG. 7B the fan blades may be reflective in order to reflect more of the suns rays onto the belt 30. It is also contemplated that the direct rays of the sun can be focused by the fan blades as illustrated in FIG. 7C to increase the heat of the water in the chamber.


While the invention has been described in connection with its preferred embodiments, it should be recognized that changes and modifications may be made therein without departing from the scope of the claims.

Claims
  • 1. A solar still comprising: a chamber having a generally transparent base and a side wall surrounding said base for confining a mass of water at a pre-selected level in said chamber and means for adding and removing water from said chamber;an inclined generally transparent cover disposed above the level of the water and a distilled water receptacle at a base of said cover, said inclined cover adapted to receive solar energy impinging thereon and passing there through;a pair of rollers and an endless heat absorbing belt having an upper and lower outer surfaces passing around said rollers in said chamber below the level of the water and means for rotating said heat absorbing belt so that solar energy passes through said inclined transparent cover impinges on said upper outer surface of said heat absorbing endless belt to thereby heat said belt; andreflecting means for reflecting solar energy disposed below said chamber for reflecting solar energy up through said generally transparent base and onto said lower outer surface of said belt to thereby add heat to said belt whereby water is vaporized by said belt and condenses on said inclined cover and flows down into said receptacle.
  • 2. A solar still according to claim 1 in which said base is made of a transparent glass.
  • 3. A solar still according to claim 2 in which said inclined cover comprises a glass plate and in which said inclined glass cover extends outwardly beyond said chamber so that distillate flows down said cover and falls outside of said chamber and into said receptacle.
  • 4. A solar still according to claim 3 which includes cooling means for cooling the surface of said cover.
  • 5. A solar still according to claim 4 in which said cooling means is a solar powered fan.
  • 6. A solar still according to claim 5 in which said means for rotating said heat absorbing endless belt is a solar powered motor.
  • 7. A solar still comprising: a chamber having a square transparent base and four side walls surrounding said base for confining a mass of water at a pre-selected level within said chamber and means for adding and removing contaminated water from said chamber;a pyramid shaped transparent cover disposed above the level of contaminated water and a distilled water receptacle on each side of said cover at a base thereof and said cover adapted to receive the rays of the sun;a pair of rollers and a heat absorbing endless belt having an upper outer surface and a lower outer surface passing around said rollers in said chamber below the level of water and means for rotating said heat absorbing belt so that solar energy passing through said pyramid shaped transparent cover impinges on said upper outer surface of said heat absorbing endless belt to thereby heat said belt;reflecting means including a mirror for reflecting solar energy disposed below said chamber and reflecting solar energy up through said square transparent base and onto said lower outer surface of said heat absorbing belt to add heat to said belt so that water vapor from said water heated by said belt condenses on said pyramid shaped cover and flows down into said receptacle.
  • 8. A solar still according to claim 7 which includes cooling means for cooling said pyramid shaped cover.
  • 9. A solar still according to claim 8 in which said cooling means includes a plurality of solar powered fans.
  • 10. A solar still according to claim 9 in which said reflecting means includes multiple mirror surfaces.
  • 11. A solar still according to claim 10 which includes additional reflecting means for directing solar rays through the pyramid shaped cover and onto an upper outer surface of said heat absorbing belt.
  • 12. A double-sided single basin solar still comprising: a boxed shaped basin having a square transparent glass bottom and four sides for receiving a mass of contaminated water;a transparent pyramid shaped cover having four sloping sides and a receptacle for receiving distillate disposed at a bottom of said pyramid shaped cover outside of said basin;a pair of rollers at an endless heat absorbing belt disposed around said roller with an upper outer surface and a lower outer surface disposed in said box shaped basin with a thin film of contaminated water on said upper outer surface and means for rotating said endless belt so that solar energy passing through said pyramid shaped cover impinges on an upper outer surface of said belt to heat said belt and evaporate water;reflecting means disposed below said basin for reflecting solar energy up through said transparent glass bottom to impinge on said lower outer surface of said endless belt to heat the contaminated water whereby evaporated water will condense on an inner surface of said pyramid shaped cover and run down said sides of said pyramid shaped cover and into said receptacle.
  • 13. A double-sided single basin solar still according to claim 12 in which said box shaped basin has a height of less than one fifth of its width and said pyramid shaped cover has a height of about one sixteenth of its width.
  • 14. A double-sided single basin solar still according to claim 13 which includes cooling means for cooling said pyramid shaped cover.
  • 15. A double-sided single basin solar still according to claim 14 in which said cooling means includes a plurality of solar powered fans.
  • 16. A double-sided single basin solar still according to claim 15 in which said reflecting means includes a plurality of mirrors.
  • 17. A double-sided single basin solar still according to claim 16 in which said means for rotating said belt includes a solar powered motor.
  • 18. A double-sided single basin solar still according to claim 17 which includes a first valve for providing a mass of contaminated water to said basin and second means for removing water from said basin.
  • 19. A double-sided single basin solar still according to claim 18 which includes means for maintaining a pre-selected level of water in said basin.
  • 20. A solar still according to claim 7 in which said chamber is a shallow chamber with a height of less than about one fifth of its width and in which said pyramid shaped cover has a height of about one sixteenth of its width.