DOUBLE CELL CRUSHABLE JOINT FOR AUTOMOTIVE FRONT END

Information

  • Patent Application
  • 20080054665
  • Publication Number
    20080054665
  • Date Filed
    September 06, 2006
    18 years ago
  • Date Published
    March 06, 2008
    16 years ago
Abstract
A structural joint is formed between the upper frame rail, which bends downwardly to define a generally vertically extending portion, and a generally fore-and-aft extending lower frame rail that can increase bending resistance without sacrificing crash energy management of the horn section of the lower frame rail. The structural joint is reinforced with a crushable tubular reinforcement member formed in a clamshell configuration that includes a forwardly extending support arm positioned beneath the horn section to lower the center of gravity of a downwardly angled horn section to prevent premature bending thereof when encountering crash energy from a frontal impact. The horn section is formed in a pre-folded configuration to enhance the crash energy management of the horn section. The tubular reinforcement provides a double cell structural configuration adjacent the structural joint to provide a crushable structural joint that enables an effective management of crash energy.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of this invention will become apparent upon consideration of the following detailed disclosure of the invention, especially when taken in conjunction with the accompanying drawings wherein:



FIG. 1 is a perspective view of the front portion of an automotive frame incorporating the principles of the instant invention;



FIG. 2 is an enlarged partial side elevational view of the structural joint between the vertically extending portion of the upper frame rail member and the longitudinally extending lower frame rail member, looking at the inner side of the structural joint; and



FIG. 3 is an enlarged partial perspective view of the structural joint between the vertically extending portion of the upper frame rail member and the longitudinally extending lower frame rail member, looking at the outer side of the structural joint.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIGS. 1-3, a structural joint between two primary components of an automotive frame incorporating the principles of the instant invention can best be seen. The two primary members of the automotive frame 10 are the upper frame rail 12 and the lower frame rail 22. The upper frame rail 12 includes a generally horizontally extending portion 13 that is located at the upper outside portion of the automobile on both respective sides thereof. The upper frame rail 12 then preferably bends through a bend portion 14 inwardly and downwardly to form a generally vertically extending portion 15 that passes inboard of the lower frame rail 22. A radiator support member 19 is connected to the laterally opposing, vertically extending portions 15 of the upper frame rail to extend transversely across the front of the automotive frame 10. The lower frame rail 22 extends forwardly of the vertically extending portion 15 of the upper frame rail 12 to form the horn section 18 to which the bumper (not shown) is traditionally mounted.


The horn section 18 of the lower frame rail 22 projects forwardly of the vertically extending portion of the upper frame rail member in a cantilevered manner to position the bumper (not shown) at the forward extremity of the vehicle and to start the management of crash energy by crushing rearwardly when encountering crash energy from an impact. After collapsing the horn sections 18, the impact forces encounter the structural joint 30 between the upper frame rail 12 and the lower frame rail 22. In situations where the horn sections 18 are angled downwardly from the structural joint 25, the horn sections 18 are subjected to a premature downward bending because of the offset eccentricity of the applied bending forces to the center of gravity of the horn section 18. In such situations, the horn sections 18 do not effectively manage the crash forces and subject the structural joint 25 to a greater exposure of crash energy.


To lower the center of gravity of the horn section 18 and remove the offset eccentricity of the downwardly angled horn section 18, the structural joint 30 is formed with a tubular reinforcement member 30 that is formed in a clamshell configuration with an inner member 32 configured to receive a nesting outer member 33. Welded together, the inner and outer members 32, 33 form a tubular body portion 34 that includes a forwardly extending support arm 35 that is positioned beneath the horn section 18 immediately forwardly of the vertically extending portion 15 of the upper frame rail member 12. Preferably, the support arm 35 is welded to the horn section 18. The body portion 34 also forms a pocket 36 that receives the end of the vertically extending portion 15 of the upper frame rail member 12. The outer member 33 is preferably formed with a welding flange 37 that bends outwardly to mate against the upper flame rail member 12 and facilitate the welding therebetween.


The horn section 18 is formed in a pre-folded configuration to enhance the crushing of the horn member 18 when encountering crash forces. The pre-folded configuration is defined by the convoluted surface of the horn member 18 to alternatively increase and reduce the effective cross section of the horn member 18. The convolutions form valleys 41 that reduce the cross-section of the horn section 18 between the ridges 43 that increase the cross-section of the horn section 18. Accordingly, the horn section 18 will collapse uniformly at the valleys 41 and expand outwardly at the ridges 43 when crash energy from an impact is encountered by the horn sections 18.


Once the crash energy reaches the rearward portion of the horn sections 18, the support arm 35 of the reinforcement member 30 acts as a second cell to increase the effectiveness of the horn section 18 to manage crash forces. If necessary, the welding between the vertically extending portion 15 of the upper frame rail member 12 and the lower frame rail member 22 along with the reinforcement member 30, particularly the welding flange 37 of the outer member 33, can be designed to break away upon encountering a sufficient crash force and direct the flow of crash energy as desired along the flow paths corresponding to the upper and lower frame rail members 12, 22.


The tubular configuration of the reinforcement member 30 provides a crushable reinforcement for the horn section 18 of the lower frame rail member 22, which does not detract from the effective management of crash energy by the horn sections 18. In fact, the double cell configuration of the horn section 18 coupled with the support arm 35 of the reinforcement bracket 30 increases the effectiveness of crash energy management. Furthermore, the forwardly extending support arm 35 lowers the center of gravity of a downwardly angled horn section 18 to provide a substantially increase resistance to bending forces to allow the horn sections 18 to collapse as intended. Even though the reinforcement members 30 increase the bending resistance of the horn section, the crushable tubular configuration of the reinforcement members 30 do not detract from the desired crushing of the horn sections 18.


It will be understood that changes in the details, materials, steps and arrangements of parts which have been described and illustrated to explain the nature of the invention will occur to and may be made by those skilled in the art upon a reading of this disclosure within the principles and scope of the invention. The foregoing description illustrates the preferred embodiment of the invention; however, concepts, as based upon the description, may be employed in other embodiments without departing from the scope of the invention.


For example, the preferred configuration of the reinforcement member 30 is a two-piece clamshell construction having an inner member 32 and an outer member 33 received within the inner member 32. The reinforcement member 30 could instead be a one-piece tubular member formed through a hydroform manufacturing process. In the alternative, the reinforcement member 30 could be formed with the inner member 32 incorporating a tubular support arm 35 with the outer member 33 received within the inner member 32 behind the support arm 35. Any of these configurations, as well as other embodiments, would provide a crushable reinforcement member 30 that would increase the bending capacity of the horn section 18 without departing from the crushability of the horn section and the associated efficient management of crash energy.

Claims
  • 1. (canceled)
  • 2. A structural joint in an automotive frame, comprising: a first frame member having a vertically extending portion:a second frame member having a longitudinally extending portion located adjacent to the vertically extending portion of the first primary frame member, the second frame member including a projecting portion extending longitudinally from the first frame member: anda tubular reinforcement member having a body portion engaged with the first and second frame members and a longitudinally extending support arm positioned below the projecting portion of the second frame member, said support arm being attached to the projecting portion of the second frame member to lower the center of gravity of the projecting portion.
  • 3. The structural joint of claim 2 wherein the body portion of the reinforcement member forms a pocket into which the vertically extending portion of the first frame member is positioned.
  • 4. The structural joint of claim 3 wherein the reinforcement member is formed in a clamshell configuration with a first member forming one lateral side of the reinforcement member and a second member forming an opposing lateral side of the reinforcement member and being received within the first member.
  • 5. The structural joint of claim 4 wherein the first member is an upper frame rail and said second frame member is a lower frame rail, the projecting portion being a horn section extending in a cantilevered manner from the connection of the lower frame rail to the upper frame rail, the horn section being utilized to mount a bumper.
  • 6. The structural joint of claim 5 wherein the second member is formed with a welding flange that bends laterally away from the body portion for engagement with the upper frame rail.
  • 7. The structural joint of claim 3 wherein the reinforcement member is formed as a one-piece tubular member.
  • 8. The structural joint of claim 3 wherein the projecting portion of the second frame member is formed in a prefolded configuration having a convoluted surface defining valleys and ridges oriented transversely to the longitudinally extending projecting portion.
  • 9-10. (canceled)
  • 11. In an automotive frame having an upper frame rail including a horizontally extending portion, a vertically extending portion and a bend portion interconnecting the horizontally and vertically extending portions: and a longitudinally extending lower frame rail spaced vertically below the upper frame rail, the vertically extending portion of the upper frame rail being located adjacent to the lower frame rail, the lower frame rail including a forwardly projecting horn section extending in a cantilevered manner from a structural joint between the vertically extending portion of the upper frame rail and the lower frame rail, the improvement comprising: the horn section being formed in a prefolded configuration having a convoluted surface defining valleys and ridges oriented transversely to the longitudinally extending horn section: anda tubular reinforcement member having a body portion engaged with the vertically extending portion of the upper frame rail and the lower frame rail, and a longitudinally extending support arm positioned below the horn section of the lower frame rail, the reinforcement member being formed in a clamshell configuration with a first member forming one lateral side of the reinforcement member and a second member forming an opposing lateral side of the reinforcement member and being received within the first member.
  • 12. The automotive frame of claim 11 wherein the second member is formed with a welding flange that bends laterally away from the body portion for engagement with the upper frame rail.
  • 13. The automotive frame of claim 12 wherein the body portion of the reinforcement member forms a pocket into which the vertically extending portion of the upper frame rail is positioned.
  • 14. The automotive frame of claim 13 wherein the support arm is welded to the horn section to lower the center of gravity of the horn section.
  • 15. The automotive frame of claim 11 wherein the reinforcement member is formed as a one-piece tubular member formed through a hydroform manufacturing process.
  • 16. (canceled)
  • 17. An automotive frame comprising: an upper frame rail including a horizontally extending portion, a vertically extending portion and a bend portion interconnecting the horizontally and vertically extending portions:a longitudinally extending lower frame rail spaced vertically below the upper frame rail, the vertically extending portion of the upper frame rail being located adjacent to the lower frame rail, the lower frame rail including a forwardly projecting horn section extending in a cantilevered manner from a structural joint between the vertically extending portion of the upper frame rail and the lower frame rail:the horn section being formed in a prefolded configuration having a convoluted surface defining valleys and ridges oriented transversely to the longitudinally extending horn section: anda tubular reinforcement member having a body portion engaged with the vertically extending portion of the upper frame rail and the lower frame rail, and a longitudinally extending support arm welded to the underside of the horn section of the lower frame rail to lower the center of gravity of the horn section, the reinforcement member being formed in a clamshell configuration with an inner member forming one lateral side of the reinforcement member and an outer member forming an opposing lateral side of the reinforcement member and being received within the inner member.
  • 18. The automotive frame of claim 17 wherein the inner member of the reinforcement member forms a pocket into which the vertically extending portion of the upper frame rail is positioned, the outer member including a welding flange that bends laterally away from the body portion for engagement with the upper frame rail to secure the upper frame rail between the inner member and the welding flange of the outer member.
  • 19. The method of claim 17 wherein the reinforcement member is formed as a one-piece tubular member formed through a hydroform manufacturing process.