The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:
a) and
a) and
a) and
Herein below, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in
In the double chamber single directional spiral tuyere, a body unit 100, a spiral unit 200 and a cover unit 300 may be separately manufactured prior to being assembled together into a single body. Alternatively, the body unit 100, the spiral unit 200 and the cover unit 300 may be cast into an integrated structure.
Because the tuyere is typically used at high temperature and high pressure operational atmosphere conditions and must have high thermal conductivity, the tuyere is preferably made of at least 99.5% pure copper.
Furthermore, in a conventional manner, the tuyere may be provided with a hard facing 400 on a nose surface thereof.
The hard facing 400 is preferably made of a nickel-chrome alloy and has the same function as that described for the prior art.
As shown in
Therefore, cooling water, having been supplied into the nose chamber, can flow through a passage in the order of the first spiral passage 210→the second spiral passage 220→the third spiral passage 230→the fourth spiral passage 240. Therefore, when viewing a hot blast outlet nozzle 500 of the tuyere from the right to the left in the drawings, the cooling water does not flow in opposite directions. Thus, unlike the conventional tuyere, the tuyere of the present invention is free from any reverse-turning part at which the flowing direction of the cooling water is reversed at an angle of 180°.
In the nose chamber, cooling water, which has been supplied into the nose chamber through the nose inlet 3, {circle around (a)}→{circle around (b)}→{circle around (c)}→{circle around (d)}→{circle around (e)}→{circle around (f)}→{circle around (g)}→{circle around (h)} circulates along the spiral passages in the sequence direction, and is discharged from the tuyere through the nose outlet 4.
Furthermore, unlike the conventional double chamber spiral tuyere, the body nose passage 110 of the body chamber in the double chamber single directional spiral tuyere according to the present invention has a minimized sectional area, and is configured to have the same circular passage as that of the spiral unit 200, thus allowing high speed circular flow of cooling water in the body chamber. Therefore, the tuyere of the present invention quickly improves the cooling performance in the nose of the body unit 100.
In the body chamber, cooling water, which has been supplied into the body chamber through a body inlet 1, circulates in the sequence and is discharged from the tuyere through a body outlet 2.
During operation of the tuyere according to the present invention, nose chamber cooling water starts flowing at the first spiral passage 210 due to the tunnel 250. Thus, although cooling water flows through the junction at which the spiral unit 200 is in contact with the cover unit 300, the cooling water supply rate for the first spiral passage 210, which bears the highest thermal load and requires high cooling performance, can be maintained at 100%.
Therefore, the double chamber single directional spiral tuyere for blast furnaces of the present invention has excellent cooling performance in comparison with the conventional tuyere, which causes a reduction in the cooling performance due to the reduction of a supply rate of cooling water for the first spiral passage 210.
Furthermore, unlike the conventional tuyere, the tuyere of the present invention is free from pressure loss caused by the reversal of the flowing direction of cooling water at an angle of 180°. Thus, the nose cooling water can more efficiently flow because the cooling water in the spiral unit 200 circulates in a single direction.
In the tuyere according to the present invention, the body nose chamber 110 has a reduced sectional area and allows high speed circular flow of cooling water in the same manner as does the spiral unit 200, therefore the cooling performance in the nose of the body unit 100 of the tuyere is improved in comparison with the conventional tuyere.
As described above, the present invention provides a double chamber single directional spiral tuyere for blast furnaces, in which a reverse-turning part, at which the flowing direction of cooling water is reversed at an angle of 180°, is eliminated from a cooling passage defined in the nose of the tuyere. Thus, cooling water can circulate in a single direction in the tuyere, resulting in efficient circulation of the cooling water. The tuyere also reduces pressure loss and causes cooling water to reach the nose of the tuyere, thereby providing maximum cooling performance.
Although the preferred embodiment of the present invention has been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0032896 | Apr 2006 | KR | national |