The present invention provides methods for making bioprosthetic devices from collagen-containing tissue. More particularly, a double cross-linkage process to enhance post-implantation bioprosthetic tissue durability is described.
In 1968, Alain Carpentier first introduced the use of glutaraldehyde (“Glut”) to treat animal tissues before implantation, leading to the first implantation of a valvular bioprosthesis in man. Carpentier, A. et al., J Thorac Cardiovasc Surg. 1969 October; 58 (4): 467-83. In the following years the process was improved, and the valve was mounted into a stent leading to the concept of a bioprosthesis. Carpentier, A. Med Instrum. 1977; 11 (2): 98-101.
As experience grew several limitations became apparent, including tissue calcification and collagen degeneration. Calcium mitigation was obtained by adding a surfactant and ethanol to the glutaraldehyde process. Carpentier A., Nashef A. et al. Circulation 70 (3Pt2): 1165-68; and intensively described in U.S. Pat. No. 4,885,005 Improved glutaraldehyde fixation was obtained by immersing the tissue in a heated glutaraldehyde solution, preferably at a temperature of about 45 to 55° C. for a period of time ranging from 10 to 12 days, according to the method first proposed by Carpentier S. et al., Ann. Thorac. Surg. Dec. 66 (6 Suppl.) 3264-6, which is incorporated herein in its entirety.
Although these techniques have proven to be efficient in reducing tissue calcification and enhancing tissue stability, there remains a need for further improvements, in particular to enlarge the use of valvular bioprosthesis in young patients.
Diamines, including lysine or Jeffamine, have been proposed by others to crosslink free aldehyde groups in bioprosthetic tissues. Jeffamine®, sold by Huntsman International, was first used by Hendricks et al (U.S. Pat. No. 6,166,184 and U.S. Pat. No. 7,053,051) to avoid treating the tissue with glutaraldehyde, which was said to enhance calcification. The drawbacks in these methods are that amino groups from adjacent collagen molecules and residual amino groups from the diamines were not crosslinked or further modified. As a result, tissue stability was compromised. Thus, there remains a need for improved bioprosthetic tissue with enhanced post-implantation durability.
The present invention teaches an improved tissue treatment process which comprises the novel combination of: 1) a heated glutaraldehyde solution at a higher concentration or for an increased time of fixation to durably crosslink free amino groups, and 2) a diamine treatment, to durably crosslink free aldehyde groups.
One aspect of the present invention is a method for preparing bioprosthetic implant tissue, comprising fixing bioprosthetic implant tissue by treatment with glutaraldehyde at 0.1 to 10 wt % concentration and at elevated temperature, capping said fixed tissue by treatment with a diamine crosslinking agent, and treating said capped tissue with about 0.6 wt. % glutaraldehyde. The fixing step is conducted at about 50° C. and pH 5.8 for 2 to 25 days, and the capping step is preferably conducted in the presence of a reducing agent, such as sodium borohydride. The diamine crosslinking agent can be Jeffamine, Jeffamine D, lysine, a multifunctional polymer, or an organic solvent, and can be delivered in water or a buffer solution.
In one embodiment, the diamine crosslinking agent is Jeffamine at a concentration of 0.01M to 1M, and the capping treatment is done for a period of 1 hour to 7 days at temperatures between 4° and 50° C. at pH between 8 and 13. Preferably, the concentration is 0.1M and the treatment is done for 48 hours at 37° C. and pH 11.7.
In one embodiment, the sodium borohydride is used as an adjunct to Jeffamine at a concentration between 0.05% and 1%, for a period of 1 hr to 3 days, at a temperature between 4° and 40°. Preferably, the concentration is 0.25% and the treatment is done for 24 hours at 37° C.
In one embodiment of the method, during the fixing step, the glutaraldehyde concentration is 0.6 to 10 wt. %, and the treatment is carried out to for 1 to 90 days, at a temperature from 37 to 75° C., at a pH of 5.4 to 6.8. Preferably, the glutaraldehyde concentration is 5%, and the treatment is carried out for a time of 18 days, at a temperature of 52±2.5° C., at a pH of 5.8. Alternatively, the heat treatment is achieved in a non-Glut solution.
In yet another embodiment, the fixed tissue is treated in a surfactant solution thereby substantially eliminating phospholipids. The surfactant solution contains formaldehyde, ethanol and Tween 80.
The tissue being treated can be a heart valve or valve leaflets retrieved from animals, mounted within a stent and used as a treated whole valve. It can be a native valve treated and mounted as a whole valve, and the treated whole valve is stored in a glutaraldehyde solution of 0.1% to 0.6 wt. % concentration, preferably the glutaraldehyde storage solution has a concentration of 0.6%. Alternatively, the treated whole valve can be stored as a dehydrated valve, wherein tissue dehydration is achieved in a glycerol solution. The dehydrated valve can be sterilized in ethylene oxide.
Another aspect of the present invention is a bioprosthetic implant tissue made by a process comprising fixing bioprosthetic implant tissue by treatment with 0.1 to 10 wt. % glutaraldehyde, at elevated temperature; capping said fixed tissue by treatment with a diamine crosslinking agent; and treating said capped tissue with about 0.6 wt. % glutaraldehyde.
Another aspect of the present invention is a method of preparing bioprosthetic implant tissue comprising:
Experiments were carried out using subcutaneous implantation in rats of treated tissue specimen.
Heart valve replacement may be indicated for native valve stenosis and when the native valve leaks or regurgitates, such as when the leaflets are calcified. The native valve may be excised and replaced with either a biological or mechanical valve prosthesis.
Bioprosthetic valves have biological tissue leaflets supported by a base structure that are implanted into the blood stream. As examples, biological leaflets mounted within a support structure are used in the CARPENTIER-EDWARDS® Porcine Heart Valve and in the CARPENTIER-EDWARDS® PERIMOUNT® Pericardial Heart Valve, available from Edwards Lifesciences of Irvine, Calif. Although these valves have been associated with excellent long term function in human, some of them have shown evidence of calcification, particularly in young patients.
The present invention provides an improved bioprosthetic tissue treatment process that greatly reduces the potential for calcification after implantation of glutaraldehyde-treated tissue by using a combination of crosslinking free amino groups, using high temperature, high concentration Glut and crosslinking free aldehyde groups by diamines.
A preferred embodiment uses JEFFAMINE polyetheramines, which are an expanding family of Huntsman products that contain primary amino groups attached to the end of a polyether backbone. The polyether backbone is normally based on either propylene oxide (PO), ethylene oxide (EO), or mixed PO/EO. Thus they are called “polyetheramines.” The JEFFAMINE polyetheramine family comprises monoamines, diamines, and triamines based on this core structure. Recently, the addition of secondary, hindered, high-conversion, and polytetramethylene glycol (PTMEG) based polyetheramines have become available.
“Bioprosthetic tissue” includes, without limitation, bovine pericardium and porcine tissue which are commonly used in bioprosthetic heart valves, blood vessels, skin, dura mater, pericardium, small intestinal submucosa (“SIS tissue”), tissue heart valves, ligaments and tendons. In one embodiment, the tissue comprises pre-cut heart valve leaflets mounted and treated in a suitable apparatus. Alternatively, the tissue may be bulk sheets of tissue treated in a suitable apparatus.
“Implants” in the present application refer not only to heart valves, including transcatheter heart valves, but also to vascular prostheses and grafts, tissue grafts, bone grafts, and orbital implant wraps, among others.
A “bioprosthetic heart valve” refers to a fully assembled prosthetic valve made at least partly from bioprosthetic tissue. Some whole porcine valves are used in so-called “stentless” bioprosthetic valves in which there is very little, if any, synthetic material added for support or anchoring purposes.
A “stented” bioprosthetic valve typically has some kind of synthetic (e.g., polymer or metallic) support for the leaflets, which may be the leaflets of a whole porcine valve or separate bovine pericardial leaflets. Heart valves contemplated herein include surgical heart valves, transapical heart valves, transfemoral heart valves and other types of heart valves.
Implantable biological tissues of the invention can be formed of human tissues preserved by freezing (i.e., cryopreservation) of homograft tissues, or tissues from animal preserved by chemical fixing (i.e., bioprosthetic tissues). These tissues contain connective proteins (i.e., collagen and elastin) which act as the supporting framework.
Chemical fixation of biological tissues involves exposing them to one or more chemical fixatives (i.e., tanning agents) which form crosslinks between the polypeptide chains within a given collagen molecule (i.e., intramolecular cross-linkages), or between adjacent collagen molecules (i.e., intermolecular cross-linkages). Examples of chemical fixatives that have been used to crosslink collagenous tissues include: formaldehyde, glutaraldehyde, dialdehyde starch, hexamethylene diisocyanate and certain polyepoxy compounds.
An ongoing problem with bioprosthetic materials is that the connective tissue proteins, collagen and elastin, can become calcified after long term implantation in the body particularly in young patients. Calcification produces undesirable stiffening or degradation of the bioprosthesis, which may lead to valve failure.
Glutaraldehyde (or “Glut”) has been the most widely used fixative since the discovery of its anti-immunological and anti-degenerative effects. Carpentier, A. et al., J Thorac Cardiovasc Surg. 1969 October; 58 (4): 467-83. However, glutaraldehyde treatment does not prevent calcification of the tissue's potential calcium binding sites on collagen, elastin, ground substance and lipids, which can lead to calcification in vivo. This propensity for calcification can be reduced by applying various chemical treatments as described in U.S. Pat. No. 4,729,139 (Nashef); U.S. Pat. No. 4,885,005 (Nashef et al.); U.S. Pat. No. 4,648,881 (Carpentier et al.); U.S. Pat. No. 5,002,566 (Carpentier); EP Patent No. 103947 (Pollock et al.), U.S. Pat. No. 5,476,516 (Seifter et al.), U.S. Pat. No. 5,215,541 (Nashef et al.) and U.S. Pat. No. 5,862,806 (Cheung).
U.S. Pat. No. 6,471,723 (Ashworth et al.) and U.S. Pat. No. 4,786,287 (Nashef et al.) describe calcification mitigation by addition of a variety of amines to the aldehyde groups in glutaraldehyde-fixed tissue. U.S. Pat. No. 5,476,516 (Seifter, et al.) teaches the addition of polyols (e.g., glycerol) and alcohols to bioprosthetic tissues as a calcification mitigation treatment. U.S. Pat. No. 6,509,145 (Torrianni) and U.S. Pat. No. 7,078,163 (Torrianni) address oxidation of bioprosthetic tissue for calcification mitigation. U.S. Pat. No. 6,630,001 (Duran, et al.) and U.S. Pat. No. 6,277,555 (Duran, et al.) discuss the use of glycerol preservation first proposed by Zerbini and lyophilization of tissue. U.S. Pat. No. 6,352,708 (Duran, et al.) includes glycerol preservation of fresh, “non-fixed” tissue, and treatments with glycerol and heparin.
A method of calcium mitigation by elevated-temperature fixation of the tissue in glutaraldehyde was described in U.S. Pat. No. 6,561,970 (Carpentier et al.), and in combination with relative tissue/fluid movement in U.S. Pat. No. 5,931,969 (Carpentier et al.). A technique involving adjusting the pH of a glutaraldehyde fixation solution is disclosed in U.S. Pat. No. 6,878,168 (Carpentier et al.).
Described herein is a method of treating bioprosthetic implant tissue to reduce in vivo calcification, comprising: fixing bioprosthetic implant tissue with high temperature and high concentration glutaraldehyde, and then treating the fixed tissue with a diamine crosslinking solution to mitigate calcification.
Tissue treatment with glutaraldehyde, Tween (polyoxyethylene 20 sorbitan monooleate), ethanol, and optionally with formaldehyde, can provide useful fixation of the tissue. However, these compounds will also generate new binding sites capable of interacting with or attracting calcium. Tissues treated with glutaraldehyde contain free aldehyde groups which cause increased toxicity, and higher calcification.
Thus, described herein is a method to cap these newly formed binding sites prior to implantation into the body. The term “capping” refers to the blocking, removal, or alteration of a functional group that would have an adverse effect on the bioprosthesis properties.
Unlike prior art tissue processes in which the separate goals are merely to fix the tissue with glutaraldehyde at low concentration, or to cap tissue amines with a blocking agent, the present method combines the two processes, i.e., cross-linking free aldehyde groups with a diamine and free amino groups with a high concentration dialdehyde, while at the same time capping free aldehyde groups, preferably under reducing conditions.
In a preferred embodiment, the glutaraldehyde fixation step is carried out before capping the dialdehyde groups with diamines, preferably using heated Glut at 50° C. for 3 to 25 days. The Glut fixation is followed by treatment with a Jeffamine diamine under reducing conditions (e.g., sodium borohydride) in order to cap the aldehyde groups in fixed tissue, and further cross-link proteins in the tissue, thereby enhancing its stability in vivo.
The present fixing/capping/crosslinking process preferably includes chemical reduction of the tissue, which, when applied in the presence of a polymeric diamine, will permanently connect the crosslinking agent to the target aldehyde groups.
For example, the addition of a Jeffamine, such as Jeffamine D, to the tissue will simultaneously cap and crosslink the aldehyde groups, while a reducing agent (e.g., sodium borohydride) will reduce any Schiff base created by reaction of the aldehyde with the amine groups. Thus aldehyde groups are ultimately replaced by bridging groups or polymeric amine moieties, which may be beneficial for tissue hydration, flexibility, and cell interactions.
Other diamine capping/crosslinking agents can be used instead of Jeffamine, such as lysine or polymeric molecules. Reducing agents usable in aqueous solution other than sodium borohydride are known by those skilled in the art and are included in the scope of this invention, including potassium borohydride, cyanoborohydride and others.
Glutaraldehyde Treatment
Glutaraldehyde treatment comprises 3 steps: First, fixation of the tissue in 0.6% Glut at pH 7.4 at room temperature for at least 1 month with stirring (Glut Fixation I 10,
Jeffamine Crosslinking and Reduction by Sodium Borohydride
The glutaraldehyde-fixed tissue is rinsed in PBS buffer solution to remove any excess glutaraldehyde adhering to the tissue. The tissue is then exposed first to a capping/crosslinking solution of Jeffamine diamines in distilled water (DW) at a concentration of 0.1±0.01M under agitation for 24 hours at 37° C. and secondly in Jeffamine and 0.25% sodium borohydride solution at 37° C. for another 24 hours under agitation (Capping 16,
Surfactant Treatment
The tissue is then treated in a surfactant solution containing formaldehyde, ethanol and Tween 80 for 9 hours at 32° C. (Surfactant 18,
Storage
1—Storage in 0.6% Glut at 4° C. Sterilization is achieved by the Glut solution (Storage in Glut 20,
2—Storage in Glycerol (optional). After the tissue has been processed through a standard final bioburden reduction step and then through 0.6% Glut step for at least 1 month, it may undergo a glycerol treatment in a solution of 75 wt % glycerol and 25 wt. % ethanol. The tissue is soaked in this solution for one hour at room temperature. During this time most of the water molecules present in the pericardial tissue are replaced with glycerol. The tissue is removed from the solution and placed in a clean hood to allow any excess solution to evaporate or drip off the tissue (Dry Storage 22,
Sterilization
Sterilization is achieved by ethylene oxide (EO). The dehydrated tissue is packaged in double sterile barrier packaging consisting of a rigid tray (PETG) with a Tyvek lid. The package should be sealed in a cleanroom, and can be sterilized in 100% ethylene oxide.
In embodiments where the fixed and crosslinked tissue is dehydrated, such as in an ethanol/glycerol solution, the glycerol may include an antioxidant and may contain a water-soluble wax. The tissue is then allowed to dry and then subjected to final sterilization (e.g., ethylene oxide, gamma irradiation, or electron beam irradiation).
The calcification mitigant preferably contains a capping/crosslinking agent selected from:
The reducing agent may be sodium borohydride, potassium borohydride, cyanobrohydride and the like.
The chemical anti-oxidant is desirably selected from a water soluble antioxidant such as ascorbic acid, a fat soluble antioxidant such as tocopherols, a carbohydrate such as fructose, sucrose, or mannitol a hindered phenol such as butylated hydroxytoluene (BHT), a hindered amine light stabilizer (HALS) such as p-phenylamine diamine, trimethyl dihydrodquinoline, or alkylated diphenyl amines a phosphite/phosphonite such as triphenyl phosphine, and a thioester such as a thiocinnamate.
The diamine is desirably delivered in one or a combination of the following solutions:
The diamine crosslinking agents are generally used a) at a concentration of 0.02M to 1M, preferably 0.1M; b) for a period of 1 hour to 4 days, preferably 48 hours; c) at temperatures between 4° and 50° C., preferably 37° C.; and d) at pH between 8 and 13, preferably 11.7.
The reducing agents, such as sodium borohydride, are generally used a) at a concentration between 0.05% and 1%, preferably 0.25%; b) for a period of 1 hr to 3 days, preferably 24 hr; c) at temperature between 4° and 40°, preferably 37° C.
During the high temperature fixing step, the glutaraldehyde concentration is generally 0.1 to 6 wt. %, preferably 0.6 wt. %; and treated for 1 to 25 days, preferably 18 days at a temperature from 20 to 70° C., preferably 52° C.+/−2.5° C.; at a pH between 5.4 to 6.8, preferably 5.8. The other fixing steps preceding or following the high temperature step are generally 0.6% Glut at pH 7.4 at room temperature. In another embodiment, heated Glut can be replaced by heated buffer solution under similar conditions.
In a preferred embodiment the fixed tissue is treated in a surfactant solution to eliminate phospholipids. For example the surfactant solution may contain formaldehyde, ethanol and Tween 80.
In one embodiment of the invention the prosthetic tissue is a heart valve or leaflets retrieved from animals, mounted within a stent and used as a treated whole valve. In another embodiment, the tissue is bovine pericardial tissue used to form heart valve leaflets which are used to produce a bioprosthetic heart valve.
In another embodiment the processed tissue is a native valve treated and mounted as a whole valve. A treated whole valve may be stored in a glutaraldehyde solution at a concentration from 0.1% to 2%, preferably 0.6 wt. %.
In one embodiment the treated whole valve is stored as a dehydrated valve; preferably tissue dehydration is achieved in a glycerol solution. In a preferred embodiment the dehydrated valve is sterilized in ethylene oxide.
In one embodiment for preparing a bioprosthetic implant tissue, the glutaraldehyde fixing step is conducted at about 50° C. and pH 5.8 for at least 7 days, and capping with a diamine crosslinking agent is conducted in the presence of a reducing agent, preferably sodium borohydride.
To better understand the calcification properties of the invention, charts are presented in the figures which are based on subcutaneous testing of multiple samples.
In order to evaluate the calcification mitigation properties of pericardial tissue treated in accordance with the method described herein (“SFX-treated”), animal feasibility studies were conducted. After rinsing of the samples in 0.9% NaCl to eliminate excess Glut, 18 samples/treatment (n=4/rat) were implanted subcutaneously on the back of 12 day old rats for 6 weeks (
In all studies in rats, SFX-treated tissue demonstrated reduced variability in calcification data when compared to control tissue. Data from intramuscular implantation in rabbits were discarded because they were associated with too many variations.
Bioprosthetic tissue was removed from 0.625% glutaraldehyde just after a heat treatment step, and stored in 0.6% Glut (pH 7.4) for 2 days. One liter of crosslinking solution was prepared containing 333 mM Jeffamine (Poly (propylene glycol) bis (2-aminopropyl ether), average M 230 (Aldrich ref. 406651) and 0.25% sodium borohydride in DW.
The capping solution was placed on an orbital shaker, then tissues (leaflets, pericardium) were placed in the solution with a ratio of 3 leaflets per 100 ml. The container was not completely sealed because hydrogen gas liberated by the chemical reaction with water could cause the container to explode. The orbital shaker was operated at between 60-80 rpm for 24 hours at 37° C. The tissue was removed and stored in 0.6% Glut solution for 2-3 days and then treated in the FET solution (formaldehyde, ethanol, Tween-80) for 9 hours at 32° C. before being stored in 0.6% Glut solution until implantation.
As shown in
The effect of lysine treatment is cumulative to the heat treatment, and FET further improves results. The place of FET could play a role with a preference when FET is after lysine treatment.
Two storages processes have been developed:
1—Low concentration Glutaraldehyde Storage:
This is the preferred storage process for valves prepared using tissue treated according to the method described herein. Provided that certain conditions are respected, storage in glut does not enhance calcium mitigation. These conditions are storage in 0.6% Glut for at least 2 months and thorough rinsing before implantation.
2—No Glutaraldehyde Storage: Glycerol
An alternative to avoid glutaraldehyde as a storage solution is to dehydrate the bioprosthetic tissue in a glycerol/ethanol mixture, sterilize with ethylene oxide, and package the final product “dry.” This process is said to circumvent the potential toxicity and calcification effects of glutaraldehyde as a sterilant and storage solution. There have been several methods proposed to use glycerine, alcohols, and combinations thereof as post-glut processing methods so that the resulting tissue is in a “dry” state. The storage of heart valve tissue in glycerol was described by Parker et al. (Thorax 1978 33:638), but does not include any calcification mitigation techniques and does not describe any advantages. Also, U.S. Pat. No. 6,534,004 (Chen et al.) describes the storage of bioprosthetic tissue in polyhydric alcohols such as glycerol. However, neither of these methods addresses mitigating potential oxidation of the tissue. The recommended process was described in Edwards U.S. patent publication no. 2009-0164005.
While the invention has been described in terms of exemplary embodiments, it is to be understood that these examples are descriptive and are not meant to be limiting. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.
The present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/414,726 filed Nov. 17, 2010.
Number | Name | Date | Kind |
---|---|---|---|
2393580 | Weiskopf | Jan 1946 | A |
2484813 | Bower | Oct 1949 | A |
2567929 | Fessenden | Sep 1951 | A |
3002895 | Freedman | Oct 1961 | A |
3093439 | Bothwell | Jun 1963 | A |
3870789 | Mikat | Mar 1975 | A |
3927422 | Sawyer | Dec 1975 | A |
3961097 | Gravlee, Jr. | Jun 1976 | A |
3966401 | Hancock et al. | Jun 1976 | A |
4050893 | Hancock et al. | Sep 1977 | A |
4067091 | Backman | Jan 1978 | A |
4082507 | Sawyer | Apr 1978 | A |
4120649 | Schechter | Oct 1978 | A |
4120991 | Ornstein et al. | Oct 1978 | A |
4197658 | Fraser | Apr 1980 | A |
4207689 | Romera-Sierra et al. | Jun 1980 | A |
4294753 | Urist | Oct 1981 | A |
4320157 | von Hagens | Mar 1982 | A |
4323358 | Lentz et al. | Apr 1982 | A |
4328256 | Romero-Sierra et al. | May 1982 | A |
4347671 | Dias et al. | Sep 1982 | A |
4350492 | Wright et al. | Sep 1982 | A |
4372743 | Lane | Feb 1983 | A |
4378224 | Nimni et al. | Mar 1983 | A |
4402697 | Pollock et al. | Sep 1983 | A |
4405327 | Pollock | Sep 1983 | A |
4481009 | Nashef | Nov 1984 | A |
4553974 | Dewanjee | Nov 1985 | A |
4599084 | Nashef | Jul 1986 | A |
4624822 | Arru et al. | Nov 1986 | A |
4647283 | Carpentier et al. | Mar 1987 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4655773 | Grassi | Apr 1987 | A |
4676070 | Linner | Jun 1987 | A |
4729139 | Nashef | Mar 1988 | A |
4753652 | Langer et al. | Jun 1988 | A |
4770665 | Nashef | Sep 1988 | A |
4776853 | Klement et al. | Oct 1988 | A |
4786287 | Nashef et al. | Nov 1988 | A |
4800603 | Jaffe | Jan 1989 | A |
4831065 | Pietsch et al. | May 1989 | A |
4838888 | Nashef | Jun 1989 | A |
4865871 | Livesey et al. | Sep 1989 | A |
4885005 | Nashef et al. | Dec 1989 | A |
4891319 | Roser | Jan 1990 | A |
4911713 | Sauvage et al. | Mar 1990 | A |
4958008 | Petite et al. | Sep 1990 | A |
4969912 | Kelman et al. | Nov 1990 | A |
4975526 | Kuberasampath et al. | Dec 1990 | A |
4976733 | Girardot | Dec 1990 | A |
4990131 | Dardik et al. | Feb 1991 | A |
4994030 | Glowczewskie, Jr. et al. | Feb 1991 | A |
4994237 | Login et al. | Feb 1991 | A |
4996054 | Pietsch et al. | Feb 1991 | A |
5002566 | Carpentier et al. | Mar 1991 | A |
5011913 | Benedict et al. | Apr 1991 | A |
5024830 | Linner | Jun 1991 | A |
5044165 | Linner et al. | Sep 1991 | A |
5051401 | Sikes | Sep 1991 | A |
5068086 | Sklenak et al. | Nov 1991 | A |
5068100 | McClanahan | Nov 1991 | A |
5080670 | Imamura et al. | Jan 1992 | A |
5094661 | Levy et al. | Mar 1992 | A |
5104405 | Nimni | Apr 1992 | A |
5108923 | Benedict et al. | Apr 1992 | A |
5116564 | Jansen et al. | May 1992 | A |
5131908 | Dardik et al. | Jul 1992 | A |
5147514 | Mechanic | Sep 1992 | A |
5149621 | McNally et al. | Sep 1992 | A |
5149653 | Roser | Sep 1992 | A |
5154007 | Piunno et al. | Oct 1992 | A |
5200399 | Wettlaufer et al. | Apr 1993 | A |
5215541 | Nashef et al. | Jun 1993 | A |
5275954 | Wolfinbarger et al. | Jan 1994 | A |
5279612 | Eberhardt | Jan 1994 | A |
5290558 | O'Leary et al. | Mar 1994 | A |
5296583 | Levy | Mar 1994 | A |
5332475 | Mechanic | Jul 1994 | A |
5336616 | Livesey et al. | Aug 1994 | A |
5368608 | Levy et al. | Nov 1994 | A |
5397353 | Oliver et al. | Mar 1995 | A |
5424047 | Zwingenberger et al. | Jun 1995 | A |
5436291 | Levy et al. | Jul 1995 | A |
5437287 | Phillips et al. | Aug 1995 | A |
5447536 | Girardot et al. | Sep 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5460962 | Kemp | Oct 1995 | A |
5476516 | Seifter et al. | Dec 1995 | A |
5507813 | Dowd et al. | Apr 1996 | A |
5509932 | Keogh et al. | Apr 1996 | A |
5556379 | Wolfinbarger | Sep 1996 | A |
5558875 | Wang | Sep 1996 | A |
5595571 | Jaffe et al. | Jan 1997 | A |
5613982 | Goldstein | Mar 1997 | A |
5632778 | Goldstein | May 1997 | A |
5645587 | Chanda et al. | Jul 1997 | A |
5674298 | Levy et al. | Oct 1997 | A |
5679112 | Levy et al. | Oct 1997 | A |
5695820 | Davis et al. | Dec 1997 | A |
5697972 | Kim et al. | Dec 1997 | A |
5720777 | Jaffe et al. | Feb 1998 | A |
5733339 | Girardot et al. | Mar 1998 | A |
5746775 | Levy et al. | May 1998 | A |
5762600 | Bruchman et al. | Jun 1998 | A |
5766520 | Bronshtein | Jun 1998 | A |
5769780 | Hata et al. | Jun 1998 | A |
5773285 | Park | Jun 1998 | A |
5776182 | Bruchman et al. | Jul 1998 | A |
5782914 | Schankereli | Jul 1998 | A |
5782915 | Stone | Jul 1998 | A |
5782931 | Yang et al. | Jul 1998 | A |
5792603 | Dunkelman et al. | Aug 1998 | A |
5843180 | Jaffe et al. | Dec 1998 | A |
5843181 | Jaffe et al. | Dec 1998 | A |
5843182 | Goldstein | Dec 1998 | A |
5855620 | Bishopric et al. | Jan 1999 | A |
5856102 | Bierke-Nelson et al. | Jan 1999 | A |
5856172 | Greenwood et al. | Jan 1999 | A |
5862806 | Cheung | Jan 1999 | A |
5865849 | Stone | Feb 1999 | A |
5873812 | Ciana et al. | Feb 1999 | A |
5879383 | Bruchman et al. | Mar 1999 | A |
5882850 | Khor et al. | Mar 1999 | A |
5882918 | Goffe | Mar 1999 | A |
5899936 | Goldstein | May 1999 | A |
5902338 | Stone | May 1999 | A |
5904718 | Jefferies | May 1999 | A |
5911951 | Girardot et al. | Jun 1999 | A |
5913900 | Stone | Jun 1999 | A |
5919472 | Trescony et al. | Jul 1999 | A |
5922027 | Stone | Jul 1999 | A |
5931969 | Carpentier et al. | Aug 1999 | A |
5935168 | Yang et al. | Aug 1999 | A |
5945319 | Keogh | Aug 1999 | A |
5977153 | Camiener | Nov 1999 | A |
5987720 | Yamamoto | Nov 1999 | A |
5993844 | Abraham et al. | Nov 1999 | A |
6008292 | Lee et al. | Dec 1999 | A |
6017741 | Keogh | Jan 2000 | A |
6024735 | Wolfinbarger, Jr. | Feb 2000 | A |
6063120 | Stone | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6093204 | Stone | Jul 2000 | A |
6093530 | McIlroy et al. | Jul 2000 | A |
6106555 | Yang | Aug 2000 | A |
6117979 | Hendriks et al. | Sep 2000 | A |
6121041 | Mirsch, II et al. | Sep 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6132986 | Pathak et al. | Oct 2000 | A |
6156531 | Pathak et al. | Dec 2000 | A |
6166184 | Hendriks et al. | Dec 2000 | A |
6177514 | Pathak et al. | Jan 2001 | B1 |
6190407 | Ogle et al. | Feb 2001 | B1 |
6193749 | Schroeder et al. | Feb 2001 | B1 |
6203755 | Odland | Mar 2001 | B1 |
6206917 | Williams et al. | Mar 2001 | B1 |
6210957 | Carpentier et al. | Apr 2001 | B1 |
6214054 | Cunanan et al. | Apr 2001 | B1 |
6214055 | Simionescu et al. | Apr 2001 | B1 |
6231608 | Stone | May 2001 | B1 |
6231614 | Yang | May 2001 | B1 |
6251579 | Moore et al. | Jun 2001 | B1 |
6254635 | Schroeder et al. | Jul 2001 | B1 |
6258320 | Persing et al. | Jul 2001 | B1 |
6267786 | Stone | Jul 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6287338 | Sarnowski et al. | Sep 2001 | B1 |
6290991 | Roser et al. | Sep 2001 | B1 |
6302909 | Ogle et al. | Oct 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6322593 | Pathak et al. | Nov 2001 | B1 |
6322994 | Reid | Nov 2001 | B1 |
6328762 | Anderson et al. | Dec 2001 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6364905 | Simpson et al. | Apr 2002 | B1 |
6372228 | Gregory | Apr 2002 | B1 |
6375680 | Carlyle | Apr 2002 | B1 |
6376244 | Atala | Apr 2002 | B1 |
6383732 | Stone | May 2002 | B1 |
6391538 | Vyavahare et al. | May 2002 | B1 |
6394096 | Constantz | May 2002 | B1 |
6448076 | Dennis et al. | Sep 2002 | B2 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6471723 | Ashworth et al. | Oct 2002 | B1 |
6479079 | Pathak et al. | Nov 2002 | B1 |
6506339 | Girardot et al. | Jan 2003 | B1 |
6509145 | Torrianni | Jan 2003 | B1 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6531310 | Mirsch, II et al. | Mar 2003 | B1 |
6534004 | Chen et al. | Mar 2003 | B2 |
6547827 | Carpentier et al. | Apr 2003 | B2 |
6561970 | Carpentier et al. | May 2003 | B1 |
6569200 | Wolfinbarger, Jr. et al. | May 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6586006 | Roser et al. | Jul 2003 | B2 |
6586573 | Besman et al. | Jul 2003 | B1 |
6589591 | Mansouri et al. | Jul 2003 | B1 |
6605667 | Badejo et al. | Aug 2003 | B1 |
6613278 | Mills et al. | Sep 2003 | B1 |
6617142 | Keogh et al. | Sep 2003 | B2 |
6630001 | Duran et al. | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6653062 | DePablo et al. | Nov 2003 | B1 |
6660265 | Chen et al. | Dec 2003 | B1 |
6685940 | Andya et al. | Feb 2004 | B2 |
6696074 | Dai et al. | Feb 2004 | B2 |
6734018 | Wolfinbarger, Jr. et al. | May 2004 | B2 |
6753181 | Atala | Jun 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6797000 | Simpson et al. | Sep 2004 | B2 |
6828310 | Barresi et al. | Dec 2004 | B2 |
6861211 | Levy et al. | Mar 2005 | B2 |
6878168 | Carpentier et al. | Apr 2005 | B2 |
6893666 | Spievack | May 2005 | B2 |
6908591 | MacPhee et al. | Jun 2005 | B2 |
6919172 | DePablo et al. | Jul 2005 | B2 |
6933326 | Griffey et al. | Aug 2005 | B1 |
7008763 | Cheung | Mar 2006 | B2 |
7053051 | Hendriks et al. | May 2006 | B2 |
7063726 | Crouch et al. | Jun 2006 | B2 |
7078163 | Torrianni | Jul 2006 | B2 |
7087723 | Besman et al. | Aug 2006 | B2 |
7214344 | Carpentier et al. | May 2007 | B2 |
7318998 | Goldstein et al. | Jan 2008 | B2 |
7338757 | Wolfinbarger, Jr. et al. | Mar 2008 | B2 |
7354749 | Fisher et al. | Apr 2008 | B2 |
7358284 | Griffey et al. | Apr 2008 | B2 |
7479164 | Girardot et al. | Jan 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7594974 | Cali et al. | Sep 2009 | B2 |
7648676 | Mills et al. | Jan 2010 | B2 |
7918899 | Girardot et al. | Apr 2011 | B2 |
20010000804 | Goldstein et al. | May 2001 | A1 |
20010004715 | Duran et al. | Jun 2001 | A1 |
20010020191 | Williams et al. | Sep 2001 | A1 |
20010023372 | Chen et al. | Sep 2001 | A1 |
20010025196 | Chinn et al. | Sep 2001 | A1 |
20010032024 | Cunanan et al. | Oct 2001 | A1 |
20010039459 | Stone | Nov 2001 | A1 |
20020001834 | Keogh et al. | Jan 2002 | A1 |
20020111532 | Pathak et al. | Aug 2002 | A1 |
20030035843 | Livesey et al. | Feb 2003 | A1 |
20030125805 | Johnson et al. | Jul 2003 | A1 |
20030135284 | Crouch et al. | Jul 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030217415 | Crouch et al. | Nov 2003 | A1 |
20040030381 | Shu | Feb 2004 | A1 |
20040086543 | Keogh et al. | May 2004 | A1 |
20040158320 | Simionescu et al. | Aug 2004 | A1 |
20040193259 | Gabbay | Sep 2004 | A1 |
20050079200 | Rathenow et al. | Apr 2005 | A1 |
20050119736 | Zilla et al. | Jun 2005 | A1 |
20050136510 | Hendriks et al. | Jun 2005 | A1 |
20060099326 | Keogh et al. | May 2006 | A1 |
20060110370 | Pathak et al. | May 2006 | A1 |
20060159641 | Girardot et al. | Jul 2006 | A1 |
20060177426 | Gibson et al. | Aug 2006 | A1 |
20060210960 | Livesey et al. | Sep 2006 | A1 |
20060217804 | Dove | Sep 2006 | A1 |
20060217805 | Dove | Sep 2006 | A1 |
20070050014 | Johnson | Mar 2007 | A1 |
20070292459 | Cooper et al. | Dec 2007 | A1 |
20080302372 | Davidson et al. | Dec 2008 | A1 |
20080319166 | Shen | Dec 2008 | A1 |
20090041729 | Wolfinbarger, Jr. et al. | Feb 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
8401894 | May 1984 | WO |
9511047 | Apr 1995 | WO |
9522361 | Aug 1995 | WO |
9534332 | Dec 1995 | WO |
9604028 | Feb 1996 | WO |
9613227 | May 1996 | WO |
9843556 | Oct 1998 | WO |
0032252 | Jun 2000 | WO |
0141828 | Jun 2001 | WO |
03037227 | May 2003 | WO |
2004082536 | Sep 2004 | WO |
2006099334 | Sep 2006 | WO |
2008073582 | Jun 2008 | WO |
Entry |
---|
Jeffamine, Huntsman Group, 2008. |
Julien et al., Shelf-life of bioprosthetic heart valves: a structural and mechanical study, Biomaterials, 18, p. 605-612, 1997. |
Tween80, Sigma Product Sheet, 2014. |
Polyetheramine, Scienoc Product Sheet, 2014. |
Zilla et al., Diamine-extended Glutaraldehyde and Carbodiimide Crosslinks act syngerstically in mitigating bioprosthetic aortic wall calcification, The Journal of Heart Valve Disease, 14:538-545. |
Zilla'ATS, Zilla et al., Carbodiimide Treatment Dramatically Potentiates the Anticalcific Effect of Alpha-Amino Oleic Acid on Glutaraldehyde-Fixed Aortic Wall Tissue, Ann. Thorac. Surg. 79:905-10. |
International Search Report for corresponding international patent application No. PCT/US2011/060980 dated Jul. 9, 2012. |
Estler, C.-J. et al., “Lehrbuch der allgemeinen und systematischen Pharmakologie und Toxikologie,” Schattauer, 1986. |
Hof, Herbert et al., “Duale Reihe/Medizinische Mikrobiologie,” George Thieme Verlag, 2000, Ed. 3. |
Gilbert, Thomas W. et al., “Decellularization of tissues and organs,” Biomaterials, vol. 7, Mar. 7, 2006. |
Glycerin, http://de.wikipedia.org/wiki/Glycerin. |
Carpentier, A., et al., “Biological Factors Affecting Long-Term Results of Valvular Heterografts,” Forty-ninth Meeting of the American Association for Thoracic Surgery, San Francisco, CA, Mar. 31-Apr. 2, 1969. |
Chanda, J., et al., “Heparin in Calcification Prevention of Porcine Pericardial Bioprostheses,” Biomaterials, Elsevier Science Publishers, vol. 18, No. 16, ISSN: 0142-9612, Aug. 1, 1997. |
Dahm, Manfred, et al., “Effects of Surface Seeding with Vital Cells on the Calcium Uptake of Biological Materials for Heart Valve Replacement,” J Heart Valve Dis, vol. 5, No. 2, Mar. 1996, 148-151. |
Jayakrishnan, A., et al., “Glutaraldehyde as a Fixative in Bioprostheses and Drug Delivery Matrices,” Biomaterials, vol. 17, Issue 5, 1996, pp. 471-484. |
Khora, Eugene, “Methods for the Treatment of Collagenous Tissues for Bioprostheses,” Biomaterials, vol. 18, Issue 2, Jan. 1997, pp. 95-105. |
R Parker, et al. Storage of Heart Valve Allografts in Glycerol With Subsequent Antibiotic Sterilisation, Thorax, 1978, 638-645, vol. 33:5, British Thoracic Society, London, UK. |
Zilla, P., et al., “Carbodiimide Treatment Dramatically Potentiates the Anticalcific Effect of Alpha-Amino Oleic Acid on Glutaraldehyde-Fixed Aortic Wall Tissue,” The Annals of Thoracic Surgery, Elsevier, vol. 79, No. 3, ISSN: 0003-4975; Mar. 1, 2005. |
Number | Date | Country | |
---|---|---|---|
20120123557 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61414726 | Nov 2010 | US |