1. Field
The present invention relates generally to a serial encoder for high data rate serial communication links. More particularly, the invention relates to a double data rate serial encoder for Mobile Display Digital Interface (MDDI) links.
2. Background
In the field of interconnect technologies, demand for ever increasing data rates, especially as related to video presentations, continues to grow.
The Mobile Display Digital Interface (MDDI) is a cost-effective, low power consumption, transfer mechanism that enables very-high-speed data transfer over a short-range communication link between a host and a client. MDDI requires a minimum of just four wires plus power for bi-directional data transfer that delivers a maximum bandwidth of up to 3.2 Gbits per second.
In one application, MDDI increases reliability and decreases power consumption in clamshell phones by significantly reducing the number of wires that run across a handset's hinge to interconnect the digital baseband controller with an LCD display and/or a camera. This reduction of wires also allows handset manufacturers to lower development costs by simplifying clamshell or sliding handset designs.
MDDI is a serial transfer protocol, and, as such, data received in parallel for transmission over an MDDI link needs to be serialized. What is needed therefore is a serial encoder, integrable in an MDDI link controller, that supports the high-speed data rate of MDDI.
In one aspect of the present invention, a double data rate serial encoder for MDDI is provided. The serial encoder comprises a multiplexer (mux) having a plurality of inputs, a plurality of latches coupled to the inputs of the mux, an enabler to enable the latches to update their data inputs, and a counter to select one of the plurality of inputs of the mux for output.
In another aspect of the invention, the mux provides a glitch-less output during input transitions. The mux may include an output selection algorithm optimized based on a priori knowledge of an input selection sequence provided by the counter. The input selection sequence may be Gray code sequence.
Further embodiments, features, and advantages of the present invention, as well as the structure and operation of the various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The present invention will be described with reference to the accompanying drawings. The drawing in which an element first appears is typically indicated by the leftmost digit(s) in the corresponding reference number.
This specification discloses one or more embodiments that incorporate the features of this invention. The disclosed embodiment(s) merely exemplify the invention. The scope of the invention is not limited to the disclosed embodiment(s). The invention is defined by the claims appended hereto.
The embodiment(s) described, and references in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Embodiments of the invention may be implemented in hardware, firmware, software, or any combination thereof. Embodiments of the invention may also be implemented as instructions stored on a machine-readable medium, which may be read and executed by one or more processors. A machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computing device). For example, a machine-readable medium may include read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.), and others. Further, firmware, software, routines, instructions may be described herein as performing certain actions. However, it should be appreciated that such descriptions are merely for convenience and that such actions in fact result from computing devices, processors, controllers, or other devices executing the firmware, software, routines, instructions, etc.
Mobile Display Digital Interface (MDDI)
The Mobile Display Digital Interface (MDDI) is a cost-effective, low power consumption, transfer mechanism that enables very-high-speed serial data transfer over a short-range communication link between a host and a client.
In the following, examples of MDDI will be presented with respect to a camera module contained in an upper clamshell of a mobile phone. However, it would be apparent to persons skilled in the relevant art(s) that any module having functionally equivalent features to the camera module could be readily substituted and used in embodiments of this invention.
Further, according to embodiments of the invention, an MDDI host may comprise one of several types of devices that can benefit from using the present invention. For example, the host could be a portable computer in the form of a handheld, laptop, or similar mobile computing device. It could also be a Personal Data Assistant (PDA), a paging device, or one of many wireless telephones or modems. Alternatively, the host could be a portable entertainment or presentation device such as a portable DVD or CD player, or a game playing device. Furthermore, the host can reside as a host device or control element in a variety of other widely used or planned commercial products for which a high speed communication link is desired with a client. For example, a host could be used to transfer data at high rates from a video recording device to a storage based client for improved response, or to a high resolution larger screen for presentations. An appliance such as a refrigerator that incorporates an onboard inventory or computing system and/or Bluetooth connections to other household devices, can have improved display capabilities when operating in an internet or Bluetooth connected mode, or have reduced wiring needs for in-the-door displays (a client) and keypads or scanners (client) while the electronic computer or control systems (host) reside elsewhere in the cabinet. In general, those skilled in the art will appreciate the wide variety of modern electronic devices and appliances that may benefit from the use of this interface, as well as the ability to retrofit older devices with higher data rate transport of information utilizing limited numbers of conductors available in either newly added or existing connectors or cables. At the same time, an MDDI client may comprise a variety of devices useful for presenting information to an end user, or presenting information from a user to the host. For example, a micro-display incorporated in goggles or glasses, a projection device built into a hat or helmet, a small screen or even holographic element built into a vehicle, such as in a window or windshield, or various speaker, headphone, or sound systems for presenting high quality sound or music. Other presentation devices include projectors or projection devices used to present information for meetings, or for movies and television images. Another example would be the use of touch pads or sensitive devices, voice recognition input devices, security scanners, and so forth that may be called upon to transfer a significant amount of information from a device or system user with little actual “input” other than touch or sound from the user. In addition, docking stations for computers and car kits or desk-top kits and holders for wireless telephones may act as interface devices to end users or to other devices and equipment, and employ either clients (output or input devices such as mice) or hosts to assist in the transfer of data, especially where high speed networks are involved. However, those skilled in the art will readily recognize that the present invention is not limited to these devices, there being many other devices on the market, and proposed for use, that are intended to provide end users with high quality images and sound, either in terms of storage and transport or in terms of presentation at playback. The present invention is useful in increasing the data throughput between various elements or devices to accommodate the high data rates needed for realizing the desired user experience.
Referring to
Still referring to
Still referring to
Typically, camera module 118 receives pixel data from a camera through a parallel interface, stores the pixel data, and then transfers it to MDDI Host 122 when the host is ready. MDDI Host 122 encapsulates the received pixel data into MDDI packets. However, in order for MDDI Host 122 be able to transmit the pixel data onto MDDI link 110, a serialization of the MDDI packets is necessary.
In the embodiment of
MDDI Host Core Architecture
The MDDI Host core provides a hardware implementation of the host side of the MDDI Specification as defined by the VESA (Video Electronics Standards Association). The MDDI Host core interfaces with both an MDDI Host processor and with an external connection operating as specified in the MDDI Specification.
CMD block 302 is responsible for processing commands issued by the MDDI Host 122 processor. Commands issued by the host processor include tasks such as powering up/down the MDDI link and generating certain MDDI packets.
MINT block 304 is responsible for interfacing with the MDDI Host processor. The MDDI Host processor uses MINT block 304 to set registers, read registers, and issue commands to MDDI Host core 300. MINT block 304 passes processor commands to CMD block 302 and register read/write commands to REG block 306.
REG block 306 stores various registers necessary for the transmission of data across the MDDI link. Registers of REG block 306 control the behavior of the MDDI link as well as the configuration of MDDI Host core 300.
MPB block 308 is responsible for creating the MDDI packets to be transmitted over the MDDI link as well as determining the order of transmission. MDDI packets are created from internal register values, and data retrieved by DINT block 310.
DINT block 310 is responsible for interfacing with a DMA bus of MDDI Host 122. DINT block 310 issues burst requests to an external SDRAM memory of MDDI Host 122 to buffer data for MPB block 308. In addition, DINT block 310 assists MPB block 308 in determining the order of packet transmissions on the MDDI link.
DIO block 312 is responsible for managing the physical MDDI link. DIO block 312 is responsible for Host-Client handshaking, data output, and round trip delay measurements. DIO block 312 receives data from MPB block 308 and passes it out to DIO Pad block 314 block to be shifted out.
DIO Pad block 314 receives parallel data from DIO block 312 and serially shifts it out onto the MDDI link. In essence, DIO Pad block 314 is responsible for the data serialization required for transmission on the MDDI link. As shown in
Typically, at the MDDI link startup, the output data is entirely generated within DIO block 312 for Host-Client handshaking. Once the handshaking sequence is completed, MPB block 308 is allowed to direct the output flow of data which is received from three sources. An MPB_AUTOGEN block 402, a sub-block of the MPB block 308, generates packets internally within MPB block 308. Data from MPB_AUTOGEN block 402 is received on an 8-bit parallel bus. Such packets include, for example, filler packets, round trip delay measurements, and link shutdown packets.
DINT block 310 of MDDI Host core 300 routes to MPB block 308 packets received from an external SDRAM memory of MDDI Host 122. DINT block 310 uses four 32-bit parallel buses to route data to MPB block 308. An MDDI Data Packets (MDP) Interface (MDPINT) block 404, which is a sub-block of MPB block 308, interfaces with an MDP block outside of the MDDI Host core and typically receives video data packets for transmission. MDPINT block 404 interfaces with MPB block 308 using an 8-bit parallel bus.
MPB block 308 determines the order of transmission of packets received from DINT block 310, MPB_AUTOGEN block 402, and MDPINT block 404. MPB block 308 then directs data for transmission to DIO block 312 over an 8-bit parallel bus. In turn, DIO block 312 forwards the data, on an 8-bit parallel bus, to DIO Pad block 314. DIO Pad block 314 serializes the data received from DIO block 312 for transmission on the MDDI link. Embodiments of DIO Pad block 314 according to the present invention are further discussed below.
MDDI Serial Encoder
In essence, DIO Pad block 314 comprises a serial encoder for MDDI.
MDDI serial encoder 500 includes a block of latches 502, an enabler block 504, a counter block 506, and a mux 508. A parallel data interface provides a parallel data stream 518 to serial encoder 500. The parallel data stream is received and stored by latches 502. Counter 506 outputs an input selection sequence to control the output of mux 508. In the embodiment of
Using signals derived from the set of select signals 512, enabler 504 provides latches 502 with a set of signals 514 to enable them to update their data inputs. A set of signals 510 couple latches 502 to inputs of mux 508. Accordingly, the data inputs of latches 502 and the inputs of mux 508 are updated according to the input selection sequence generated by counter 506.
Mux 508 outputs a serial data stream 520 onto the MDDI link. In one example, mux 508 is an N:1 mux having N inputs and a single output, where N is an integer power of 2.
The first layer of latches 602 comprise first and second sets of latches 612 and 614. Similarly, the second layer of latches 604 comprise first and second sets of latches 616 and 618. First and second sets of latches 612 and 614 of the first layer of latches 602 are coupled, respectively, to first and second sets of latches 616 and 618 of the second layer of latches 604. Each set of latches 612, 614, 616, and 618 comprise a set of four D-latches. An input clock signal 640 is coupled to the clock input of each of the D-latches in the first and second layers of latches 602 and 604.
Mux 606 has a plurality of data inputs coupled to the outputs of the second layer of latches 604. Further, mux 606 comprises a set of select inputs being provided by counter 608. Typically, the mux has 2N data inputs, where N is the number of select inputs. In the embodiment of
Counter 608 comprises a plurality of D-latches. In the embodiment of
Enabler 610 comprises a plurality of AND gates. In the embodiment of
The operation of MDDI serial encoder 600 will now be described.
Assuming that serial encoder 600 has just been started, at the first rising edge of input clock signal 640, counter 608 outputs {b2, b1, b0}={0,0,1}. For this value of {b2, b1, b0}, the outputs of AND gates 628 and 630 of enabler 610 are true and, consequently, the inputs of the first and second sets of latches 612 and 614 of the first layer of latches 602 as well as the inputs of the first set of latches 616 of the second layer of latches 604 can be updated. Further, given that clock signal 640 is at a rising edge, the outputs of the first and second sets of latches 612 and 614 follow their corresponding inputs. Similarly, the outputs of the first set of latches 616 of the second layer of latches 604 also reflect their corresponding inputs. The inputs of the second set of latches 618 of the second layer of latches 604, however, remain unchanged. The mux 606 selects for output an input corresponding to the input selection value 001.
At the next falling edge of input clock signal 640, counter 608 outputs {b2, b1, b0}={0,1,1}. Given that {b2, b0}={0,1}, the inputs of the first and second sets of latches 612 and 614 can be updated. However, since input clock, signal 640 is at a falling edge, the outputs of latches 612 and 614 will not yet reflect the updated inputs. In other words, the outputs of latches 612 and 614 will remain the same. Consequently, the inputs of latches 616 will also remain the same. Mux 606 selects for output an input corresponding to the input selection value 011.
At the next two rising and falling edges of input clock signal 640, counter 608 outputs {b2, b1, b0}={0,1,0} and {b2, b1, b0}={1,1,0}, respectively. No changes occur at the inputs or outputs of either set of latches.
At the next rising edge of input clock signal 640, counter 608 outputs {b2, b1, b0}={1,1,1}. For {b2,b0}={1,1 }), the output of AND gate 626 of enabler 610 is true and, consequently, the inputs of the second set of latches 618 of the second layer of latches 604 are updated. Further, given that input clock 640 is at a rising edge, the outputs of latches 618 follow their corresponding inputs. Mux 606 selects for output an input corresponding to the input selection value 011.
For the next three rising and falling clock edges, the counter transitions through the sequence {b2,b1,b0}={101, 100,000}. The inputs and outputs of all sets of latches 612, 614, 616, and 618 remain the same throughout these transitions. Subsequently, the input selection sequence returns to {b2,b1,b0}={0,0, 1} and the cycle described above restarts.
According to the description above of the operation of MDDI serial encoder 600, it is noted that counter 608 transitions on either a rising or a falling edge of input clock signal 640 and that mux 606 outputs one bit at every edge of input clock signal 640. Accordingly, MDDI serial encoder 600 is a double data rate encoder. Further, the input selection sequence {b2,b1,b0} has a single bit only changing at every counter transition. Accordingly, the input selection sequence outputted by counter 608 represents a Gray code sequence.
Meanwhile, enabler 610 enables for update the first set of latches 616 during the first half of the input selection sequence and the second set of latches 618 during the second half of the input selection sequence. Accordingly, the first and second sets of latches 616 and 618 are updated when they are not being selected for output by the mux 606.
Glitch-Free Output
According to the present invention, mux 606 of MDDI serial encoder 600 provides a glitch-less output during input selection transitions.
In the example of
Typically, glitches of the type of glitch 804 may occur at the output of the mux whenever more than one select input changes values during an input selection transition. Accordingly, to prevent the occurrence of such glitches at the output of mux 606 of MDDI serial encoder 600, embodiments of the present invention employ a Gray code input selection sequence.
Another type of output glitch, illustrated as 806 in
In addition to the two types of mux output glitches illustrated in
Optimized Output Selection Algorithm
The output of mux 606 of MDDI serial encoder 600 is governed by the following output selection algorithm:
wherein s(n) represents the value of the n-th select input of the mux, sn(n) represents the inverse of s(n), and d(k) represents the value of the k-th data input of the mux. For example, in the case of the Gray code input selection sequence of
As is apparent to a person skilled in the relevant art, the first eight terms of the above equation are concerned with selecting the output of the mux. The last eight terms ensure that internal mux glitches, as described above, do not appear during input transitions. Furthermore, having stable mux inputs and using a Gray code input selection sequence guarantee that the other two types of output glitches, as described above, do not occur.
The above output selection algorithm is optimized based on a priori knowledge of the input selection sequence of the mux. In other words, given an input selection sequence, the output selection algorithm is designed to provide a glitch-free mux output only for input transitions in accordance with the input selection sequence. Accordingly, the output selection algorithm is not concerned with providing a glitch-free output for input transitions not within the input selection sequence. This design choice of the present invention reduces the number of terms in the above output selection algorithm to a necessary minimum. Consequently, the physical size of the mux is also reduced.
Example Timing Diagram
From
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3594304 | Seitzer | Jul 1971 | A |
4042783 | Gindi | Aug 1977 | A |
4363123 | Grover | Dec 1982 | A |
4393444 | Weinberg | Jul 1983 | A |
4491943 | Iga et al. | Jan 1985 | A |
4660096 | Arlan et al. | Apr 1987 | A |
4764805 | Rabbani et al. | Aug 1988 | A |
4769761 | Downes et al. | Sep 1988 | A |
4812296 | Schmelz et al. | Mar 1989 | A |
4821296 | Cordell | Apr 1989 | A |
4891805 | Fallin | Jan 1990 | A |
5079693 | Miller | Jan 1992 | A |
5111455 | Negus | May 1992 | A |
5131012 | Dravida | Jul 1992 | A |
5138616 | Wagner, Jr. et al. | Aug 1992 | A |
5155590 | Beyers, II et al. | Oct 1992 | A |
5167035 | Mann et al. | Nov 1992 | A |
5224213 | Dieffenderfer et al. | Jun 1993 | A |
5227783 | Shaw et al. | Jul 1993 | A |
5231636 | Rasmussen | Jul 1993 | A |
5331642 | Valley et al. | Jul 1994 | A |
5345542 | Wye | Sep 1994 | A |
5359595 | Weddle et al. | Oct 1994 | A |
5377188 | Seki | Dec 1994 | A |
5396636 | Gallagher et al. | Mar 1995 | A |
5418452 | Pyle | May 1995 | A |
5418952 | Morley et al. | May 1995 | A |
5420858 | Marshall et al. | May 1995 | A |
5422894 | Abe et al. | Jun 1995 | A |
5430486 | Fraser et al. | Jul 1995 | A |
5477534 | Kusano | Dec 1995 | A |
5483185 | Scriber et al. | Jan 1996 | A |
5490247 | Tung et al. | Feb 1996 | A |
5502499 | Birch et al. | Mar 1996 | A |
5510832 | Garcia | Apr 1996 | A |
5513185 | Schmidt | Apr 1996 | A |
5519830 | Opoczynski | May 1996 | A |
5521907 | Ennis, Jr. et al. | May 1996 | A |
5524007 | White et al. | Jun 1996 | A |
5530704 | Gibbons et al. | Jun 1996 | A |
5535336 | Smith et al. | Jul 1996 | A |
5543939 | Harvey et al. | Aug 1996 | A |
5546121 | Gotanda et al. | Aug 1996 | A |
5550489 | Raab | Aug 1996 | A |
5559459 | Back et al. | Sep 1996 | A |
5559952 | Fujimoto | Sep 1996 | A |
5560022 | Dunstan et al. | Sep 1996 | A |
5565957 | Goto | Oct 1996 | A |
5575951 | Anderson | Nov 1996 | A |
5604450 | Borkar et al. | Feb 1997 | A |
5619650 | Bach et al. | Apr 1997 | A |
5621664 | Phaal | Apr 1997 | A |
5646947 | Cooper et al. | Jul 1997 | A |
5664948 | Dimitriadis et al. | Sep 1997 | A |
5680404 | Gray | Oct 1997 | A |
5726990 | Shimada et al. | Mar 1998 | A |
5732352 | Gutowski et al. | Mar 1998 | A |
5733131 | Park | Mar 1998 | A |
5734118 | Ashour et al. | Mar 1998 | A |
5751445 | Masunaga | May 1998 | A |
5751951 | Osborne et al. | May 1998 | A |
5777999 | Hiraki et al. | Jul 1998 | A |
5790551 | Chan | Aug 1998 | A |
5798720 | Yano | Aug 1998 | A |
5802351 | Frampton | Sep 1998 | A |
5815507 | Vinggaard et al. | Sep 1998 | A |
5816921 | Hosokawa | Oct 1998 | A |
5818255 | New et al. | Oct 1998 | A |
5822603 | Hansen et al. | Oct 1998 | A |
5844918 | Kato | Dec 1998 | A |
5847752 | Sebestyen | Dec 1998 | A |
5862160 | Irvin et al. | Jan 1999 | A |
5864546 | Campanella | Jan 1999 | A |
5867501 | Horst et al. | Feb 1999 | A |
5867510 | Steele | Feb 1999 | A |
5881262 | Abramson et al. | Mar 1999 | A |
5903281 | Chen et al. | May 1999 | A |
5935256 | Lesmeister | Aug 1999 | A |
5953378 | Hotani et al. | Sep 1999 | A |
5958006 | Eggleston et al. | Sep 1999 | A |
5963557 | Eng | Oct 1999 | A |
5963564 | Petersen et al. | Oct 1999 | A |
5963979 | Inoue | Oct 1999 | A |
5969750 | Hsieh et al. | Oct 1999 | A |
5982362 | Crater et al. | Nov 1999 | A |
5983261 | Riddle | Nov 1999 | A |
5990852 | Szamrej | Nov 1999 | A |
5990902 | Park | Nov 1999 | A |
5995512 | Pogue, Jr. | Nov 1999 | A |
6002709 | Hendrickson | Dec 1999 | A |
6014705 | Koenck et al. | Jan 2000 | A |
6047380 | Nolan et al. | Apr 2000 | A |
6049837 | Youngman | Apr 2000 | A |
6055247 | Kubota et al. | Apr 2000 | A |
6064649 | Johnston | May 2000 | A |
6078361 | Reddy | Jun 2000 | A |
6081513 | Roy | Jun 2000 | A |
6091709 | Harrison et al. | Jul 2000 | A |
6092231 | Sze | Jul 2000 | A |
6097401 | Owen et al. | Aug 2000 | A |
6101601 | Matthews et al. | Aug 2000 | A |
6117681 | Salmons et al. | Sep 2000 | A |
6118791 | Fichou et al. | Sep 2000 | A |
6151067 | Suemoto et al. | Nov 2000 | A |
6151320 | Shim et al. | Nov 2000 | A |
6154156 | Tagato | Nov 2000 | A |
6154466 | Iwasaki et al. | Nov 2000 | A |
6185601 | Wolff | Feb 2001 | B1 |
6192230 | Van Bokhorst et al. | Feb 2001 | B1 |
6198752 | Lee | Mar 2001 | B1 |
6199169 | Voth | Mar 2001 | B1 |
6222677 | Budd et al. | Apr 2001 | B1 |
6236647 | Amalfitano | May 2001 | B1 |
6242953 | Thomas | Jun 2001 | B1 |
6243596 | Kikinis et al. | Jun 2001 | B1 |
6243761 | Mogul et al. | Jun 2001 | B1 |
6246876 | Hontzeas | Jun 2001 | B1 |
6252526 | Uyehara | Jun 2001 | B1 |
6252888 | Fite, Jr. et al. | Jun 2001 | B1 |
6256509 | Tanaka et al. | Jul 2001 | B1 |
6288739 | Hales et al. | Sep 2001 | B1 |
6297684 | Uyehara et al. | Oct 2001 | B1 |
6308239 | Osakada et al. | Oct 2001 | B1 |
6335696 | Aoyagi et al. | Jan 2002 | B1 |
6359479 | Oprescu | Mar 2002 | B1 |
6363439 | Battles et al. | Mar 2002 | B1 |
6393008 | Cheng et al. | May 2002 | B1 |
6397286 | Chatenever et al. | May 2002 | B1 |
6400392 | Yamaguchi et al. | Jun 2002 | B1 |
6400654 | Sawamura et al. | Jun 2002 | B1 |
6400754 | Fleming et al. | Jun 2002 | B2 |
6421735 | Jung et al. | Jul 2002 | B1 |
6429867 | Deering | Aug 2002 | B1 |
6430196 | Baroudi | Aug 2002 | B1 |
6430606 | Haq | Aug 2002 | B1 |
6434187 | Beard et al. | Aug 2002 | B1 |
6438363 | Feder et al. | Aug 2002 | B1 |
6457090 | Young | Sep 2002 | B1 |
6475245 | Gersho et al. | Nov 2002 | B2 |
6477186 | Nakura et al. | Nov 2002 | B1 |
6480521 | Odenwalder et al. | Nov 2002 | B1 |
6483825 | Seta | Nov 2002 | B2 |
6487217 | Baroudi | Nov 2002 | B1 |
6493357 | Fujisaki | Dec 2002 | B1 |
6493713 | Kanno | Dec 2002 | B1 |
6493824 | Novoa et al. | Dec 2002 | B1 |
6545979 | Poulin | Apr 2003 | B1 |
6549538 | Beck et al. | Apr 2003 | B1 |
6549958 | Kuba | Apr 2003 | B1 |
6574211 | Padovani et al. | Jun 2003 | B2 |
6583809 | Fujiwara | Jun 2003 | B1 |
6594304 | Chan | Jul 2003 | B2 |
6609167 | Bastiani et al. | Aug 2003 | B1 |
6611221 | Soundarapandian et al. | Aug 2003 | B1 |
6611503 | Fitzgerald et al. | Aug 2003 | B1 |
6618360 | Scoville et al. | Sep 2003 | B1 |
6621809 | Lee et al. | Sep 2003 | B1 |
6621851 | Agee et al. | Sep 2003 | B1 |
6636508 | Li et al. | Oct 2003 | B1 |
6636922 | Bastiani et al. | Oct 2003 | B1 |
6662322 | Abdelilah et al. | Dec 2003 | B1 |
6690201 | Simkins et al. | Feb 2004 | B1 |
6714233 | Chihara et al. | Mar 2004 | B2 |
6715088 | Togawa | Mar 2004 | B1 |
6728263 | Joy et al. | Apr 2004 | B2 |
6738344 | Bunton et al. | May 2004 | B1 |
6745364 | Bhatt et al. | Jun 2004 | B2 |
6754179 | Lin | Jun 2004 | B1 |
6760722 | Raghunandan | Jul 2004 | B1 |
6760772 | Zou et al. | Jul 2004 | B2 |
6760882 | Gesbert et al. | Jul 2004 | B1 |
6765506 | Lu | Jul 2004 | B1 |
6771613 | O'Toole et al. | Aug 2004 | B1 |
6778493 | Ishii | Aug 2004 | B1 |
6782039 | Alamouti et al. | Aug 2004 | B2 |
6784941 | Su et al. | Aug 2004 | B1 |
6791379 | Wakayama et al. | Sep 2004 | B1 |
6797891 | Blair et al. | Sep 2004 | B1 |
6804257 | Benayoun et al. | Oct 2004 | B1 |
6810084 | Jun et al. | Oct 2004 | B1 |
6813638 | Sevanto et al. | Nov 2004 | B1 |
6816929 | Ueda | Nov 2004 | B2 |
6831685 | Ueno et al. | Dec 2004 | B1 |
6836469 | Wu | Dec 2004 | B1 |
6850282 | Makino et al. | Feb 2005 | B1 |
6865240 | Kawataka | Mar 2005 | B1 |
6865609 | Gubbi et al. | Mar 2005 | B1 |
6865610 | Bolosky et al. | Mar 2005 | B2 |
6867668 | Dagostino et al. | Mar 2005 | B1 |
6882361 | Gaylord | Apr 2005 | B1 |
6886035 | Wolff | Apr 2005 | B2 |
6892071 | Park | May 2005 | B2 |
6894994 | Grob et al. | May 2005 | B1 |
6895410 | Ridge | May 2005 | B2 |
6897891 | Itsukaichi | May 2005 | B2 |
6906762 | Witehira | Jun 2005 | B1 |
6927746 | Lee et al. | Aug 2005 | B2 |
6944136 | Kim et al. | Sep 2005 | B2 |
6947436 | Harris et al. | Sep 2005 | B2 |
6950428 | Horst et al. | Sep 2005 | B1 |
6956829 | Lee | Oct 2005 | B2 |
6973039 | Redi et al. | Dec 2005 | B2 |
6973062 | Han | Dec 2005 | B1 |
6975145 | Vadi et al. | Dec 2005 | B1 |
6990549 | Main et al. | Jan 2006 | B2 |
6993393 | Von Arx et al. | Jan 2006 | B2 |
6999432 | Zhang et al. | Feb 2006 | B2 |
7003796 | Humpleman et al. | Feb 2006 | B1 |
7010607 | Bunton | Mar 2006 | B1 |
7012636 | Hatanaka | Mar 2006 | B2 |
7015838 | Groen et al. | Mar 2006 | B1 |
7023924 | Keller et al. | Apr 2006 | B1 |
7030796 | Shim et al. | Apr 2006 | B2 |
7036066 | Weibel et al. | Apr 2006 | B2 |
7042914 | Zerbe et al. | May 2006 | B2 |
7047475 | Sharma et al. | May 2006 | B2 |
7051218 | Gulick et al. | May 2006 | B1 |
7062264 | Ko et al. | Jun 2006 | B2 |
7062579 | Tateyama et al. | Jun 2006 | B2 |
7068666 | Foster et al. | Jun 2006 | B2 |
7095435 | Hartman et al. | Aug 2006 | B1 |
7110420 | Bashirullah et al. | Sep 2006 | B2 |
7126945 | Beach | Oct 2006 | B2 |
7138989 | Mendelson et al. | Nov 2006 | B2 |
7143177 | Johnson et al. | Nov 2006 | B1 |
7143207 | Vogt | Nov 2006 | B2 |
7145411 | Blair et al. | Dec 2006 | B1 |
7151940 | Diao | Dec 2006 | B2 |
7158536 | Ching et al. | Jan 2007 | B2 |
7158539 | Zhang et al. | Jan 2007 | B2 |
7161846 | Padaparambil | Jan 2007 | B2 |
7165112 | Battin et al. | Jan 2007 | B2 |
7178042 | Sakagami | Feb 2007 | B2 |
7180951 | Chan | Feb 2007 | B2 |
7184408 | Denton et al. | Feb 2007 | B2 |
7187738 | Naven et al. | Mar 2007 | B2 |
7191281 | Bajikar | Mar 2007 | B2 |
7219294 | Vogt | May 2007 | B2 |
7231402 | Dickens | Jun 2007 | B2 |
7251231 | Gubbi | Jul 2007 | B2 |
7257087 | Grovenburg | Aug 2007 | B2 |
7260087 | Bao et al. | Aug 2007 | B2 |
7269153 | Schultz et al. | Sep 2007 | B1 |
7274652 | Webster et al. | Sep 2007 | B1 |
7278069 | Abrosimov et al. | Oct 2007 | B2 |
7284181 | Venkatramani | Oct 2007 | B1 |
7301968 | Haran et al. | Nov 2007 | B2 |
7310535 | MacKenzie et al. | Dec 2007 | B1 |
7315265 | Wiley et al. | Jan 2008 | B2 |
7315520 | Xue et al. | Jan 2008 | B2 |
7317754 | Remy et al. | Jan 2008 | B1 |
7327735 | Robotham et al. | Feb 2008 | B2 |
7336139 | Blair et al. | Feb 2008 | B2 |
7336667 | Allen et al. | Feb 2008 | B2 |
7340548 | Love et al. | Mar 2008 | B2 |
7349973 | Saito et al. | Mar 2008 | B2 |
7373155 | Duan et al. | May 2008 | B2 |
7383350 | Moore et al. | Jun 2008 | B1 |
7383399 | Vogt | Jun 2008 | B2 |
7392541 | Largman et al. | Jun 2008 | B2 |
7403487 | Foladare et al. | Jul 2008 | B1 |
7403511 | Liang et al. | Jul 2008 | B2 |
7405703 | Qi et al. | Jul 2008 | B2 |
7412642 | Cypher | Aug 2008 | B2 |
7430001 | Fujii | Sep 2008 | B2 |
7447953 | Vogt | Nov 2008 | B2 |
7451362 | Chen et al. | Nov 2008 | B2 |
7487917 | Kotlarsky et al. | Feb 2009 | B2 |
7508760 | Akiyama et al. | Mar 2009 | B2 |
7515705 | Segawa et al. | Apr 2009 | B2 |
7526323 | Kim et al. | Apr 2009 | B2 |
7536598 | Largman et al. | May 2009 | B2 |
7543326 | Moni | Jun 2009 | B2 |
7557633 | Yu | Jul 2009 | B2 |
7574113 | Nagahara et al. | Aug 2009 | B2 |
7595834 | Kawai et al. | Sep 2009 | B2 |
7634607 | Honda | Dec 2009 | B2 |
7643823 | Shamoon et al. | Jan 2010 | B2 |
7729720 | Suh et al. | Jun 2010 | B2 |
7800600 | Komatsu et al. | Sep 2010 | B2 |
7813451 | Binder et al. | Oct 2010 | B2 |
7831127 | Wilkinson | Nov 2010 | B2 |
7835280 | Pang et al. | Nov 2010 | B2 |
7844296 | Yuki | Nov 2010 | B2 |
7868890 | Ludwin et al. | Jan 2011 | B2 |
7873343 | Gollnick et al. | Jan 2011 | B2 |
7876821 | Li et al. | Jan 2011 | B2 |
7877439 | Gallou et al. | Jan 2011 | B2 |
7912503 | Chang et al. | Mar 2011 | B2 |
7945143 | Yahata et al. | May 2011 | B2 |
7949777 | Wallace et al. | May 2011 | B2 |
8031130 | Tamura | Oct 2011 | B2 |
8077634 | Maggenti et al. | Dec 2011 | B2 |
8325239 | Kaplan et al. | Dec 2012 | B2 |
20010005385 | Ichiguchi et al. | Jun 2001 | A1 |
20010012293 | Petersen et al. | Aug 2001 | A1 |
20010032295 | Tsai et al. | Oct 2001 | A1 |
20010047450 | Gillingham et al. | Nov 2001 | A1 |
20010047475 | Terasaki | Nov 2001 | A1 |
20010053174 | Fleming et al. | Dec 2001 | A1 |
20010056513 | Ueda | Dec 2001 | A1 |
20020011998 | Tamura | Jan 2002 | A1 |
20020045448 | Park et al. | Apr 2002 | A1 |
20020071395 | Redi et al. | Jun 2002 | A1 |
20020131379 | Lee et al. | Sep 2002 | A1 |
20020140845 | Yoshida et al. | Oct 2002 | A1 |
20020146024 | Harris et al. | Oct 2002 | A1 |
20020188907 | Kobayashi | Dec 2002 | A1 |
20020193133 | Shibutani | Dec 2002 | A1 |
20030003943 | Bajikar et al. | Jan 2003 | A1 |
20030028647 | Grosu | Feb 2003 | A1 |
20030033417 | Zou et al. | Feb 2003 | A1 |
20030034955 | Gilder et al. | Feb 2003 | A1 |
20030035049 | Dickens et al. | Feb 2003 | A1 |
20030039212 | Lloyd et al. | Feb 2003 | A1 |
20030061431 | Mears et al. | Mar 2003 | A1 |
20030081557 | Mettala et al. | May 2003 | A1 |
20030086443 | Beach et al. | May 2003 | A1 |
20030091056 | Paul Hulme Walker et al. | May 2003 | A1 |
20030093607 | Main et al. | May 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030144006 | Johansson et al. | Jul 2003 | A1 |
20030158979 | Tateyama et al. | Aug 2003 | A1 |
20030185220 | Valenci | Oct 2003 | A1 |
20030191809 | Mosley et al. | Oct 2003 | A1 |
20030193576 | Fujii | Oct 2003 | A1 |
20030194018 | Chang | Oct 2003 | A1 |
20030235209 | Garg et al. | Dec 2003 | A1 |
20040008631 | Kim | Jan 2004 | A1 |
20040024920 | Gulick et al. | Feb 2004 | A1 |
20040028415 | Eiselt | Feb 2004 | A1 |
20040049616 | Dunstan et al. | Mar 2004 | A1 |
20040073697 | Saito et al. | Apr 2004 | A1 |
20040082383 | Muncaster et al. | Apr 2004 | A1 |
20040100966 | Allen, Jr. et al. | May 2004 | A1 |
20040128563 | Kaushik et al. | Jul 2004 | A1 |
20040130466 | Lu | Jul 2004 | A1 |
20040140459 | Haigh et al. | Jul 2004 | A1 |
20040153952 | Sharma et al. | Aug 2004 | A1 |
20040176065 | Liu | Sep 2004 | A1 |
20040184450 | Omran | Sep 2004 | A1 |
20040199652 | Zou et al. | Oct 2004 | A1 |
20040221315 | Kobayashi | Nov 2004 | A1 |
20040260823 | Tiwari et al. | Dec 2004 | A1 |
20050012905 | Morinaga | Jan 2005 | A1 |
20050020279 | Markhovsky et al. | Jan 2005 | A1 |
20050021885 | Anderson et al. | Jan 2005 | A1 |
20050033586 | Savell | Feb 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050088939 | Hwang et al. | Apr 2005 | A1 |
20050091593 | Peltz | Apr 2005 | A1 |
20050108611 | Vogt et al. | May 2005 | A1 |
20050117601 | Anderson et al. | Jun 2005 | A1 |
20050120079 | Anderson et al. | Jun 2005 | A1 |
20050120208 | Dobson et al. | Jun 2005 | A1 |
20050125840 | Anderson et al. | Jun 2005 | A1 |
20050135390 | Anderson et al. | Jun 2005 | A1 |
20050138260 | Love et al. | Jun 2005 | A1 |
20050144225 | Anderson et al. | Jun 2005 | A1 |
20050154599 | Kopra et al. | Jul 2005 | A1 |
20050163085 | Cromer et al. | Jul 2005 | A1 |
20050163116 | Anderson et al. | Jul 2005 | A1 |
20050165970 | Ching et al. | Jul 2005 | A1 |
20050184993 | Ludwin et al. | Aug 2005 | A1 |
20050204057 | Anderson et al. | Sep 2005 | A1 |
20050213593 | Anderson et al. | Sep 2005 | A1 |
20050216421 | Barry et al. | Sep 2005 | A1 |
20050216599 | Anderson et al. | Sep 2005 | A1 |
20050216623 | Dietrich et al. | Sep 2005 | A1 |
20050248685 | Seo et al. | Nov 2005 | A1 |
20050259670 | Anderson et al. | Nov 2005 | A1 |
20050265333 | Coffey et al. | Dec 2005 | A1 |
20050271072 | Anderson et al. | Dec 2005 | A1 |
20050286466 | Tagg et al. | Dec 2005 | A1 |
20060004968 | Vogt et al. | Jan 2006 | A1 |
20060034301 | Anderson et al. | Feb 2006 | A1 |
20060034326 | Anderson et al. | Feb 2006 | A1 |
20060120433 | Baker et al. | Jun 2006 | A1 |
20060128399 | Duan et al. | Jun 2006 | A1 |
20060161691 | Katibian et al. | Jul 2006 | A1 |
20060164424 | Wiley et al. | Jul 2006 | A1 |
20060168496 | Steele et al. | Jul 2006 | A1 |
20060171414 | Katibian et al. | Aug 2006 | A1 |
20060179164 | Katibian et al. | Aug 2006 | A1 |
20060179384 | Wiley et al. | Aug 2006 | A1 |
20060212775 | Cypher et al. | Sep 2006 | A1 |
20060274031 | Yuen et al. | Dec 2006 | A1 |
20060288133 | Katibian et al. | Dec 2006 | A1 |
20070008897 | Denton et al. | Jan 2007 | A1 |
20070073949 | Fredrickson et al. | Mar 2007 | A1 |
20070098002 | Liu et al. | May 2007 | A1 |
20070274434 | Arkas et al. | Nov 2007 | A1 |
20080036631 | Musfeldt | Feb 2008 | A1 |
20080129749 | Wiley et al. | Jun 2008 | A1 |
20080147951 | Love | Jun 2008 | A1 |
20080282296 | Kawai et al. | Nov 2008 | A1 |
20090055709 | Anderson et al. | Feb 2009 | A1 |
20090070479 | Anderson et al. | Mar 2009 | A1 |
20090290628 | Matsumoto | Nov 2009 | A1 |
20100128626 | Anderson et al. | May 2010 | A1 |
20100260055 | Anderson et al. | Oct 2010 | A1 |
20110013681 | Zou et al. | Jan 2011 | A1 |
20110022719 | Anderson et al. | Jan 2011 | A1 |
20110199383 | Anderson et al. | Aug 2011 | A1 |
20110199931 | Anderson et al. | Aug 2011 | A1 |
20120008642 | Katibian et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
88101302 | Oct 1988 | CN |
1234709 | Nov 1999 | CN |
1310400 | Aug 2001 | CN |
1377194 | Oct 2002 | CN |
1467953 | Jan 2004 | CN |
1476268 | Feb 2004 | CN |
0594006 | Apr 1994 | EP |
0872085 | Dec 1996 | EP |
0850522 | Jul 1998 | EP |
0896318 | Feb 1999 | EP |
0969676 | Jan 2000 | EP |
1217602 | Jun 2002 | EP |
1309151 | May 2003 | EP |
1423778 | Jun 2004 | EP |
1478137 | Nov 2004 | EP |
1544743 | Jun 2005 | EP |
1580964 | Sep 2005 | EP |
1630784 | Mar 2006 | EP |
2729528 | Jul 1996 | FR |
2250668 | Jun 1992 | GB |
2265796 | Oct 1993 | GB |
53131709 | Nov 1978 | JP |
62132433 | Jun 1987 | JP |
64-008731 | Jan 1989 | JP |
H01129371 | May 1989 | JP |
1314022 | Dec 1989 | JP |
H0465711 | Mar 1992 | JP |
4167715 | Jun 1992 | JP |
H04181823 | Jun 1992 | JP |
4241541 | Aug 1992 | JP |
5199387 | Aug 1993 | JP |
5219141 | Aug 1993 | JP |
5260115 | Oct 1993 | JP |
6037848 | Feb 1994 | JP |
06053973 | Feb 1994 | JP |
06317829 | Nov 1994 | JP |
7115352 | May 1995 | JP |
837490 | Feb 1996 | JP |
H0854481 | Feb 1996 | JP |
08-274799 | Oct 1996 | JP |
09-006725 | Jan 1997 | JP |
H0923243 | Jan 1997 | JP |
09230837 | Sep 1997 | JP |
09-270951 | Oct 1997 | JP |
09261232 | Oct 1997 | JP |
9307457 | Nov 1997 | JP |
10-234038 | Feb 1998 | JP |
10200941 | Jul 1998 | JP |
10312370 | Nov 1998 | JP |
1117710 | Jan 1999 | JP |
11032041 | Feb 1999 | JP |
11122234 | Apr 1999 | JP |
11163690 | Jun 1999 | JP |
11225182 | Aug 1999 | JP |
11225372 | Aug 1999 | JP |
11249987 | Sep 1999 | JP |
11282786 | Oct 1999 | JP |
11341363 | Dec 1999 | JP |
11355327 | Dec 1999 | JP |
2000183840 | Jun 2000 | JP |
2000188626 | Jul 2000 | JP |
2000216843 | Aug 2000 | JP |
2000236260 | Aug 2000 | JP |
2000278141 | Oct 2000 | JP |
2000295667 | Oct 2000 | JP |
2000324135 | Nov 2000 | JP |
2000358033 | Dec 2000 | JP |
200144960 | Feb 2001 | JP |
200194542 | Apr 2001 | JP |
2001094524 | Apr 2001 | JP |
2001177746 | Jun 2001 | JP |
2001222474 | Aug 2001 | JP |
2001-282714 | Oct 2001 | JP |
2001292146 | Oct 2001 | JP |
2001306428 | Nov 2001 | JP |
2001319745 | Nov 2001 | JP |
2001320280 | Nov 2001 | JP |
2001333130 | Nov 2001 | JP |
2002-503065 | Jan 2002 | JP |
2002500855 | Jan 2002 | JP |
2002062990 | Feb 2002 | JP |
2002208844 | Jul 2002 | JP |
2002281007 | Sep 2002 | JP |
2002-300229 | Oct 2002 | JP |
2002300229 | Oct 2002 | JP |
20039035 | Jan 2003 | JP |
2003006143 | Jan 2003 | JP |
2003044184 | Feb 2003 | JP |
2003046595 | Feb 2003 | JP |
2003046596 | Feb 2003 | JP |
2003058271 | Feb 2003 | JP |
2003069544 | Mar 2003 | JP |
2003076654 | Mar 2003 | JP |
2003-098583 | Apr 2003 | JP |
2003111135 | Apr 2003 | JP |
2003167680 | Jun 2003 | JP |
2003198550 | Jul 2003 | JP |
2003303068 | Oct 2003 | JP |
2004005683 | Jan 2004 | JP |
2004007356 | Jan 2004 | JP |
2004021613 | Jan 2004 | JP |
200446324 | Feb 2004 | JP |
2004153620 | May 2004 | JP |
2004242294 | Aug 2004 | JP |
2004246023 | Sep 2004 | JP |
2004297660 | Oct 2004 | JP |
2004531916 | Oct 2004 | JP |
2004309623 | Nov 2004 | JP |
2004363687 | Dec 2004 | JP |
2005107683 | Apr 2005 | JP |
2005536167 | Nov 2005 | JP |
2005539464 | Dec 2005 | JP |
2008522493 | Jun 2008 | JP |
1999-61245 | Jul 1999 | KR |
0222225 | Oct 1999 | KR |
1019990082741 | Nov 1999 | KR |
200039224 | Jul 2000 | KR |
1999-0058829 | Jan 2001 | KR |
20010019734 | Mar 2001 | KR |
20020071226 | Sep 2002 | KR |
2003-0061001 | Jul 2003 | KR |
102004-7003852 | May 2004 | KR |
2004-69360 | Aug 2004 | KR |
102006-0053050 | May 2006 | KR |
102006-0056989 | May 2006 | KR |
2004-0014406 | Feb 2007 | KR |
2111619 | May 1998 | RU |
2150791 | Jun 2000 | RU |
2337497 | Oct 2008 | RU |
2337497 | Oct 2008 | RU |
459184 | Oct 2001 | TW |
466410 | Dec 2001 | TW |
488133 | May 2002 | TW |
507195 | Oct 2002 | TW |
513636 | Dec 2002 | TW |
515154 | Dec 2002 | TW |
529253 | Apr 2003 | TW |
535372 | Jun 2003 | TW |
540238 | Jul 2003 | TW |
542979 | Jul 2003 | TW |
200302008 | Jul 2003 | TW |
546958 | Aug 2003 | TW |
552792 | Sep 2003 | TW |
200304313 | Sep 2003 | TW |
563305 | Nov 2003 | TW |
569547 | Jan 2004 | TW |
595116 | Jun 2004 | TW |
9210890 | Jun 1992 | WO |
92010890 | Jun 1992 | WO |
9410779 | May 1994 | WO |
9619053 | Jun 1996 | WO |
9642158 | Dec 1996 | WO |
9802988 | Jan 1998 | WO |
WO9915979 | Apr 1999 | WO |
9923783 | May 1999 | WO |
0130038 | Apr 2001 | WO |
0138970 | May 2001 | WO |
WO0137484 | May 2001 | WO |
WO0138982 | May 2001 | WO |
WO0158162 | Aug 2001 | WO |
0249314 | Jun 2002 | WO |
WO02098112 | Dec 2002 | WO |
03023587 | Mar 2003 | WO |
WO03023587 | Mar 2003 | WO |
03039081 | May 2003 | WO |
03040893 | May 2003 | WO |
03061240 | Jul 2003 | WO |
WO2004015680 | Feb 2004 | WO |
2004110021 | Dec 2004 | WO |
2005018191 | Feb 2005 | WO |
2005073955 | Aug 2005 | WO |
2005088939 | Sep 2005 | WO |
2005091593 | Sep 2005 | WO |
2005096594 | Oct 2005 | WO |
2005122509 | Dec 2005 | WO |
2006058045 | Jun 2006 | WO |
2006058050 | Jun 2006 | WO |
2006058051 | Jun 2006 | WO |
2006058052 | Jun 2006 | WO |
2006058053 | Jun 2006 | WO |
2006058067 | Jun 2006 | WO |
2006058173 | Jun 2006 | WO |
WO2006058045 | Jun 2006 | WO |
WO2006058051 | Jun 2006 | WO |
WO2007051186 | May 2007 | WO |
Entry |
---|
Video Electronics Standards Association (VESA), “Mobile Display Digital Interface Standard (MDDI)”, Jul. 2004. cited by other. |
Plug and Display Standard, Video Electronics Association (VESA) San Jose, CA (Jun. 11, 2997). cited by other. |
International Search Report issued to PCT/US05/042643. |
International Search Report issued to PCT/US05/042402. |
International Search Report issued to PCT/US05/042414. |
International Search Report issued to PCT/US05/042436. |
International Search Report issued to PCT/US05/042415. |
International Search Report issued to PCT/US07/075127. |
International Search Report issued to PCT/US05/008073. |
International Search Report issued to PCT/US05/008832. |
International Search Report issued to PCT/US2005/009944. |
International Search Report issued to PCT/US2005/019530. |
J. Sevanto, “Multimedia messaging service for GPRS and UMTS”, IEEE on WCNC, Sep. 1999, pp. 1422-1426, vol. 3. |
“V4400,” Product Brochure May 31, 2004. |
Written Opinion PCT/US05/042643 International Search Authority US, Oct. 5, 2006. |
International Preliminary Report on Patentability PCT/US05/042402 IPEA/US Jun. 19, 2007. |
Written Opinion PCT/US05/042402 PCT/US05/042402, International Search Authority US, Feb. 20, 2007. |
International Preliminary Report on Patentability PCT/US05/042414, International Search Authority—European Patent Office Jun. 19, 2007. |
Written Opinion PCT/US05/042414—International Search Authority, US May 23, 2007. |
International Search Report PCT/US2005/042413, International Search Authority US, Aug. 25, 2008. |
International Preliminary Report on Patentability PCT/US05/042413, International Search Authority US, Aug. 25, 2008. |
Written Opinion PCT/US05/042413 International Search Authority US, Aug. 25, 2008. |
International Preliminary Report on Patentability PCT/US05/042415, International Search Authority US, Apr. 10, 2007. |
Written Opinion PCT/US05/042415, International Search Authority US, Nov. 8, 2006. |
“Transmission and Multiplexing; High Bit Rate Digital Subscriber Line (HDSL) Transmission System on Metallic Local Lines; HDSL Core Specification and Applications for 2 048 Kbit/S Based Access Digital Sections; ETR 152” European Telecommunications Standard (Dec. 1996)). |
IEEE STD 1394B;IEEE Standard for High Performance Serial Bus-Amendment 2(Dec. 2002). |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1P, Draft 10, Aug. 13, 2003, pp. 1-75. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1 p, Draft 1 0, Aug. 13, 2003, pp. 76-151. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1 p, Draft 11, Sep. 10, 2003, pp. 1-75. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1 P, Draft 11, Sep. 10, 2003, pp. 76-150. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1P, Draft 13, Oct. 15, 2003, pp. 1-75. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1P, Draft 13, Oct. 15, 2003, pp. 76-154. |
VESA Mobile Display Digital Interface, Proposed Standard: Version1P, Draft 14, Oct. 29, 2003, pp. 1-75. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1P, Draft 14, Oct. 29, 2003, pp. 76-158. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1P, Draft 15, Nov. 12, 2003, pp. 1-75. |
VESA Mobile Display Digital Interface, Proposed Standard: Version 1P, Draft 15, Nov. 12, 2003, pp. 76-160. |
Liptak, “Instrument Engineer's Handbook, Third Edition, vol. Three: Process Software and Digital Networks, Section 4.17, Proprietary Networks, pp. 627-637, Boca Raton” CRC Press, Jun. 26, 2002. |
European Search Report—EP10172872, Search Authority—Munich Patent Office, Dec. 17, 2010. |
European Search Report—EP10172878, Search Authority—Munich Patent Office, Dec. 17, 2010. |
European Search Report—EP10172882, Search Authority—Munich Patent Office, Dec. 29, 2010. |
European Search Report—EP10172885, Search Authority—Munich Patent Office, Dec. 23, 2010. |
Hopkins, K. et al.: “Display Power Management,” IP.com Journal; IP.com Inc., West Henrietta, NY (Mar. 1, 1995), XP013103130, ISSN: 1533-0001, vol. 38 No. 3 pp. 425-427. |
Masnick, B. et al., “On Linear Unequal Error Protection Codes” IEEE Transactions on Information Theory, vol. IT-3, No. 4, Oct. 1967, pp. 600-607. |
“Universal Serial Bus Specification—Revision 2.0: Chapter 9—USB Device Framework,” Universal Serial Bus Specification, Apr. 27, 2000, pp. 239-274, XP002474828. |
VESA: VESA Mobile Display Digital Interface Standard: Version 1. Milpitas, CA (Jul. 23, 2004), pp. 87-171. |
STMicroelectronics: “STV0974 Mobile Imaging DSP Rev.3”, Datasheet internet, (Nov. 30, 2004), XP002619368. Retrieved from the Internet: URL: http://pdf1.alldatasheet.com/datasheet-pdf/view/112376/STMICROELECTRONICS/STV0974.html [retrieved on Jan. 27, 2011], pp. 1-69. |
Supplementary European Search Report—EP05852044—Search Authority—The Hague—May 17, 2011. |
Taiwan Search Report—TW093127510—TIPO—Apr. 1, 2011. |
Taiwan Search Report—TW093133101—TIPO—Mar. 28, 2011. |
Translation of Office Action in Chinese application 201010183254.3 corresponding to U.S. Appl. No. 11/008,024, dated Apr. 21, 2011. |
http://www.3gpp2.org/public—html/specs/C.S0047-0—v1.0—110403.pdf, 3rd Generation Patnership Project 2, Date Apr. 14, 2003, pp. 1-36. |
Supplementary European Search Report—EP05852049—Search Authority—The Hague—Aug. 17, 2011. |
“Nokia 6255”, Retrieved from the Internet: URL: http://nokiamuseum.com/view.php″model=6255 [retrieved on Feb. 4, 2012], 2 pgs. |
Taiwan Search Report—TW094141286—TIPO—Aug. 7, 2012. |
Number | Date | Country | |
---|---|---|---|
20080088492 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11285397 | Nov 2005 | US |
Child | 11937913 | US |