The present invention relates to a device for facilitating flow of low consistency fibrous stock into refining zones of a double disk refiner, more particularly to an inducer carried by a rotor that is common to both rotating refining surfaces of a double disk refiner, and a method of facilitating more uniform flow of low consistency stock into both refining zones of a double disk refiner.
In the papermaking industry, disk refiners are utilized to refine stock as an initial step in the papermaking process. Stock flows into an inlet of the refiner and then passes between a pair of refiner disks, one of which rotates with respect to the other disk, to refine the stock.
Initially, rather massive fibrous clumps, typically in the form of wood chips, are disposed in a liquid stock slurry such that the consistency of the stock is thick with fibrous matter and referred to as high consistency stock. To help soften the chips so they more easily break apart during refining, they are heated and chemically treated in a tank called a digester before refining.
High consistency stock is refined by refiners specifically setup to handle breaking up such large chips apart into smaller components. Refiners are typically staged so as to progressively break the fibrous matter into increasingly smaller components with the desire that the stock will be almost entirely composed of individual fibers entrained in liquid by the time the stock reaches a paper machine or fiber product making apparatus. Liquid is typically added to the stock at each stage to dilute the fibrous matter so it can more easily pass through increasingly narrower refiner disk gaps required to refine the fibrous matter into ever-smaller components.
As the fibrous matter becomes more diluted and smaller in size, the consistency of the stock is correspondingly reduced. At some point, the percentage of fibrous matter becomes six percent or less, and the stock is defined as being low consistency stock. One desired goal of refining that takes place at or after this point is to refiner the fibrous matter into individual fibers that are fibrillated so they more tightly engage each other when the fibers are formed into a sheet of paper or some other like fiber product. This increases finished product strength, while enabling ever-higher production rates to be achieved.
Stock feed assist devices have been employed in the past in high consistency refining applications to help force the relatively thick stock into the gap between refiner disks of a high consistency refiner. Since fibrous matter of high consistency stock consists of relatively large fibrous components, typically wood chips, refining of high consistency stock usually generates so much heat that a considerable amount of steam is produced. Such feed assist devices are also employed to help overcome the opposition to stock flow due to the pressure of steam seeking to escape the refining zone against the direction of flow. Some examples of feed assist devices used in high consistency refiners are disclosed in U.S. Pat. Nos. 5,076,892, 5,383,608, and 5,626,300.
It is believed that feed assist has not been heretofore been used in low consistency refining applications. Since low consistency stock is comprised almost entirely of liquid and a small amount of fiber, steam does not adversely impact the flow of entering stock anywhere near the same degree as it does in high consistency refining, employing any kind of feed assist in a low consistency refiner application was not heretofore believed to significantly impact low consistency refining.
One type of refiner that is used in low consistency refining applications is a double disk refiner. A double disk refiner has an inlet through which stock flows into a first refining zone that is located closest to the inlet and a second refining zone located downstream of the first refining zone. A double disk refiner includes a rotor that carries a pair of refining surfaces that face away from each other with each of these refining surfaces, in turn, opposing a stationary refining surface, defining refining zones therebetween. The rotor includes a perforate hub through which some stock entering the refiner must flow to reach the second refining zone, which is located downstream of the hub.
As a result of this construction, low consistency stock flow conditions are complex and believed not heretofore fully understood. For example, stock passing through the perforate hub drops in pressure. This is believed to occur at least in part because some of the stock flowing toward to second refining zone impacts the hub before it reaches the second refining zone. This dissipates some of the energy of the stock, which thereby decreases its velocity before it enters the second refining zone. As such, its velocity is less than the velocity of the stock flowing into the first refining zone. Additionally, the fluid shearing action of the hub rotating generally perpendicular to stock flow, creates flow disturbances that include wakes, flow-opposing cavitation, turbulence, as well as localized pressure differences in the stock along the hub that can further reduce the rate of stock flow into the second refining zone.
It is also believed not heretofore understood the full extent how such flow conditions and the double disk refiner geometry also impacts the distribution of fiber of low consistency stock entering the refiner. For example, despite the fact that no more than six percent of low consistency stock is comprised of fiber, it has not been heretofore well understood about how to best disperse fiber that tends to agglomerate in double disk refiners between the stock inlet and both refining zones as a result.
Thus, in the past, performance of double disk refiners in low consistency refining applications has been less than optimal. For example, the aforementioned fiber agglomeration causes fiber entering each refining zone to be nonuniformly distributed, which, for example, typically manifests itself in an undesirably high amount of shives. Shives are bundles of fibers still bound together (such as by lignin), which are discharged by the refiner. These are undesirable as they are much larger than desired and tend not to be fibrillated enough to adequately engage other surrounding fibers when sheet forming takes place.
In the past, a double disk refiner of Sprout-Bauer, Inc., marketed under the trade name Twin-Flo III, was equipped with a pair of agitator assemblies carried on the rotor drive shaft that were each intended to break up clumps in low consistency stock. Each agitator assembly is a circular collar clamped on the shaft for rotation in unison therewith having a pair of square tabs that each extends out from the collar into stock located adjacent one of the refining zones of the double disk refiner. One agitator assembly is located at the end of a stock inlet conduit and just upstream of both refining zones. The second agitator assembly is located downstream of both refining zones in a stock-receiving pocket.
Unfortunately, rotation of the square tabs of each agitator assembly creates retarding eddies and turbulence that can adversely impact stock flow, which can actually cause clumping. In particular, the agitator assembly located upstream of both refining zones actually decreases stock flow and can actually cause stock backflow out of the first refining zone back toward the inlet. The shape of each of agitator assembly tab and the orientation each tab relative to the intended direction of stock flow impedes flow to both refining zones and also has virtually no impact in preventing the hub from impeding flow to the second refining zone. As a result, the volume of shives outputted by a low consistency double disk refiner so equipped remains undesirably high, energy efficiency is less than optimal as a result of the increased energy dissipated by each agitator assembly, and refiner throughput via both refining zones is less than ideal.
What is needed is an improved double disk refiner, low consistency stock arrangement for such a refiner that helps maximize uniformity of the distribution of fiber in stock entering each refining zone of the refiner, and an improved low consistency stock refining method.
In accordance with a preferred aspect of the present invention, a refiner for in refining low consistency stock is provided with an inducer that is coupled to a rotating shaft used to rotate one of each pair of refiner disks positioned within the refiner.
According to another aspect of the present invention, the rotation of the inducer imparts at least a slight spin or rotation to flow of the incoming low consistency stock such that the flow characteristics, such as fibrous matter momentum of a plurality of fibrous matter entrained in the stock, are desirably altered in a manner that helps prevent agglomeration while also helping to break up already formed clumps. Even where an inducer constructed in accordance with the invention does not impart such a spin or rotation to flow, the inducer more evenly distributes individual fibers in low consistency stock through a mixing action, which improves refining quality of refined stock discharged from both refining zones of the refiner, better optimizes efficiency, and increases and better balances refiner throughput.
According to still another aspect of a preferred embodiment, the inducer is coupled to the shaft in a manner that provides sufficient space between the outermost radial edge of the inducer and the interior of the inlet for the refiner to enable any contaminants or debris contained within the low consistency stock to be diverted or removed from the stock inlet flow and deposited in an area of the inlet separate from the entrances to the pairs of refining disks. By doing so, an inducer constructed in accordance with the invention that achieves this aspect reduces and preferably minimizes the impact of any such contaminants or debris on stock flow while also reducing refining surface wear.
In one preferred embodiment, the inducer is formed to include a number of vanes extending radially outward from and circumferentially around a central housing of the inducer connected to the rotating shaft so as to help control the flow of low consistency stock into the refiner. Depending upon the particular type of low consistency stock material or the particular flow attributes or rotation desired for the incoming flow of the low consistency stock, the configuration of the vanes on and/or the rotational speed of the inducer can be varied as necessary to achieve the desired results. Thus, the incoming stock material flow can be manipulated or pumped by the inducer to flow more evenly between the separate pairs of disks in the refiner. The vanes preferably are spaced from the inner edge of the inlet for the low consistency stock material to enable any foreign bodies contained within the stock material to be removed from the incoming stock material and deposited in an area of the inlet spaced from the actual refining disks of the refiner. Further, in the case of any clumps of fibers found in the incoming low consistency stock, the vanes serve to agitate the stock material to prevent the formation of clumps and also break up the fibers forming any already-existing clumps in order to provide the refiner disks with a more uniform stock material for refining.
In a still further aspect, the effect the inducer has on the flow of low consistency stock that has entered a double disk refiner helps reduce the pressure drop across a perforate hub of the refiner that is disposed between the refining zones of the refiner. In one preferred embodiment, the inducer imparts a rotation or spin to the low consistency stock at a rate of rotation or spin that better matches that of the perforate hub, which decreases pressure drop across the hub by reducing the magnitude of stock fluid shear by the hub. Reducing the pressure drop increases stock flow through the perforate hub which better balances stock flow through both refining zones of the double disk refiner.
One preferred inducer has at least one helically shaped flight with a leading edge that is canted relative to the general direction of flow of low consistency stock along the shaft carrying the inducer. Such a canted leading edge helps impact clumps to break them up while minimizing the creation of retarding eddies and turbulence. As a result of the flight being helical, rotation of the shaft causes the flight to propel or pump the stock toward both refining zones. Preferably, at least a slight rotation or spin is imparted by the inducer to the stock.
Another preferred inducer has a plurality of helically shaped flights that each has a leading edge that is canted relative to the general direction of flow of low consistency stock along the shaft carrying the inducer. Each flight also has a canted trailing edge. Such a canted leading edge helps impact clumps to break them up while minimizing the creation of retarding eddies and turbulence. Such a canted trailing edge reduces and preferably prevents cavitation during operation.
In still another preferred embodiment, the inducer comprises a turbulator having a plurality of curved flights disposed along the flow path of low consistency stock that has entered the double disk refiner that need not rotate in unison with the refiner rotor shaft. Preferably, each such flight extends along the shaft in a direction generally parallel to the rotational axis of the shaft.
Advantages of the present invention include at least one of the following: only a single inducer is needed, an inducer constructed in accordance with the invention is of simple and economical construction, an inducer made in accordance with the invention is durable and long-lasting, an inducer made in accordance with the invention improves refiner performance by reducing low consistency stock pressure drop between the refining zones of a double disk refiner,
Various additional features, embodiments and alternatives of the present invention will be made apparent from the following detailed description taken together with the claims.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout and in which:
Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Referring additionally to
During operation of the refiner 30, an input shaft 42 that is coupled to a rotor 44 that carries one refiner disk 34 and 36 of each disk pair, respectively, is rotated, causing both refiner disks 34, 36 to rotate in unison with the shaft 42. The low consistency stock enters the refiner 30 through an inlet 46 where it flows downwardly through an inlet passageway 48 toward the shaft 42 until it reaches an intake chamber 50 that is located upstream of the first pair of opposed refiner disks 32, 34. At least some of the low consistency stock flows radially outwardly of the chamber 50 through a gap 52 between the first pair of disks 32, 34 which forms a first refining zone 53 for the first pair of disks 32, 34. The fiber in the low consistency stock is refined as it passes through the first refining zone 53 between the first pair of disks 32, 34 in a conventional manner. The refined low consistency stock then exits from the first refining zone 53 between the disks 32, 34 toward a radially outwardly located discharge 54, best shown in
At least some of the remainder of the low consistency stock not passing through the first refining zone 53 flows through one or more ports 56 disposed in the rotor 44 inwardly of the disk 34. The stock flows through the ports 56 until the stock reaches the second pair of opposed refiner disks 36, 38. However, the refiner 30 can be constructed to have as many spaced pairs of refiner disks as desired on the shaft 42. The portion of the low consistency stock reaching the second pair of disks 36, 38 then flows radially outwardly through a gap 58 defined between the second pair of disks 36, 38 that forms a second refining zone 60. The fiber in this portion of the low consistency stock is refined as it passes through the second zone 60 between the second pair of disks 36, 38 in the same manner as the stock flowing through the first zone 53. This refined stock portion then exits the second zone 60 between the second pair of disks 36, 38, flows radially outwardly toward the discharge 54 to be combined with the refined stock portion exiting the first zone 53, and exits the discharge 54.
The inducer 40 is formed of a generally rigid material and is positioned on the shaft 42 within the intake chamber 50 immediately upstream of the first pair of disks 32, 34. As the low consistency stock flows out of the passageway 48 and into the intake chamber 50, the inducer 40 rotates in conjunction with the shaft 42 such that a number of radially outwardly extending vanes or flights 62 on the inducer 40 mix the fiber in the low consistency stock to prevent clumping and/or to break up any clumps that have already formed in the stock material. The inducer 40 also advantageously propels or pumps the stock in a direction generally parallel to the axis of rotation of the shaft 42 and through the intake chamber 50, thereby changing the momentum of the stock. As a result, the fiber in the stock is more uniformly distributed as it enters the refining zone 53 between the first pair of disks 32, 34, which leads to increased throughput and increased refining efficiency. It also helps ensure that a sufficient portion of the stock reaches and is refined by is being refined by the second pair of disks 36, 38 and that this portion also has a more uniform fiber distribution. This is accomplished in part by the inducer 40 imparting a rotation to the incoming low consistency stock flow which serves to both lessen the clumping of the fibers in the stock and carry or urge a significant portion of the stock through the ports 56 in the rotor 44 to the second pair of disks 36, 38. Additionally, this reduction in the number of clumps and more uniform distribution of the fiber in the low consistency stock permits the gap 52 between the first pair of disks 32, 34 to be increased without reducing the uniformity of the stock existing the gap 52, which can desirably increase the amount of fiber-on-fiber fibrillation that can take place in the first zone 53. Preferably, the positioning of the inducer 40 upstream of both pairs of disks 32, 34 and 36, 38, permits the gap 58 between the second pair of disks 36, 38 to be similarly increased in size, leading to similar benefits regarding the fibrillation of the fibers in the low consistency stock between the disks 36, 38.
Referring still to
The inducer 40 is specifically disposed within the intake chamber 50 adjacent the mouth 70 of the stock inlet passageway 48. Each flight 62 on the inducer 40 preferably extends radially outwardly a sufficient extent such that, as the inducer 40 rotates, the flight 62 nearly touches a pair of opposed sidewalls 76 that define at least a portion of the intake chamber 50. For example, if the chamber 50 is square, the flight 62 nearly touches the center of each of the top, bottom and side walls of the chamber 50. Further, if the chamber is round, and the side walls 76 form a continuous wall for the chamber 50, the flight 62 is spaced a constant distance from the side walls 76 throughout the rotation of the flight 62 and the inducer 40. In one preferred embodiment, each flight 62 has an outer radial edge 78 that is spaced no closer to the intake sidewalls 76 than about ⅛ of an inch and no farther away than about ¾ of an inch. The spacing for the flight 62 is selected so as to ensure that the outer radial edge 78 of each flight 62 is disposed close enough to be located within a zone of laminar fluid present at the sidewall 76 during operation of the refiner 30 to help prevent any backflow of the low consistency stock within the chamber 50. This helps provide a good seal between the flights 62 of the inducer 40 and the sidewall 76 to help ensure efficient operation of the inducer 40. Additionally, such spacing also is designed to be large enough to allow various types of debris (not shown) that can be present in the stock, such as stones, to pass between the flight 62 and the sidewall 76 into a waste collection area at the bottom of the chamber 50 and not through the chamber 50 to the pair of disks 32, 34 and/or 36, 38.
In a preferred embodiment, the inducer 40 has an axial length of no more than about five (5) inches such that the inducer 40 is compact in construction and can be completely contained in the intake chamber 50, yet provides enough surface area on the flights 62 to not only uniformly mix the fibers in the stock but to propel the low consistency stock outwardly from the chamber 50 as well. Such dimensions also enable each inducer 40 to be constructed with flights 62 having a sufficient axial length that preferably completely overlie the mouth 70 such that substantially all of the low consistency stock entering the intake chamber 50 from the passageway 48 comes into contact with the inducer 40.
The inducer 40 is positioned in the chamber 50 such that a leading edge 80 of each flight 62 on the inducer 40 passes into and through the mouth 70 of the inlet passageway 48 during rotation of the inducer 40. As the leading edge 80 passes upwardly into and though the mouth 70, the edge 80 contacts and breaks up clumps of fiber present in the low consistency stock entering the intake chamber 50. Additional rotation of the inducer 40 causes the remainder of the flight 62 trailing the leading edge 80 to pass also through the mouth 70 and urge the stock out of the mouth 70 and toward the refining zone entranceway 72 and the pairs of refiner disks 32, 34 and 36, 38.
The flights 62 of the inducer extend outwardly from a hub 82 that preferably is cylindrical, but can also have other shapes depending upon the shape of the shaft 42, and that is positioned around and received on the input shaft 42. While the hub 82 can be keyed to the shaft 42 for rotation in unison therewith, it preferably is attached to the shaft 42 by a plurality of axially extending fasteners 84, only one of which is shown in
The preferred embodiment of the inducer 40 depicted in
Further, in the preferred embodiment of the inducer 40 shown in
In an alternative embodiment (not shown), the impeller 88 can have a single flight 62. Where a single flight 62 is used, the flight 62 preferably encompasses at least three hundred sixty (360) degrees of the circumference of the periphery of the hub 82. Preferably, its ends overlap but are axially spaced apart from each other. In still another alternative embodiment (not shown), the impeller 88 can have four flights 62 that each overlap an adjacent flight 62 and encompasses a circumferential extent of at least ninety (90) degrees.
Referring specifically to
As is shown in
The rigid material used to form each inducer 40, 94, 112 or 124 preferably is a metal, such as stainless steel, that has adequate corrosion resistance. A particularly preferred material is CA-40 steel as this provides good corrosion resistance, good toughness, and good cavitation resistance.
Referring once again to
Fiber in the low consistency stock entering the inducer 40 is thoroughly mixed by contact between each flight 62 of the inducer 40 and the stock. More specifically, the leading edge 80 of each flight 62 contacts the stock, producing a shearing action that facilitates mixing. Also, the leading surface 63 (
Due to the rotation of the inducer 40, the stock entering both refining zones 53 and 60 is better and more uniformly mixed enabling the respective refining gaps 52, 58 to be increased between one (0.001) and three (0.003) thousandths of an inch. For both the gap 52 and the gap 58, the width of each gap can range between 0.005 inches (0.127 mm) and 0.125 inches (3.175 mm), with each gap being no greater than 0.200 inches (5.08 mm), to maximize the operation of the refiner 30 including the inducer 40. This increase in the widths of each gap 52, 58 advantageously promotes fiber-on-fiber fibrillation, which increases both strength and toughness of the resultant fiber product produced. In addition to a more uniform mixture of the stock and reducing plate clashing by maintaining a more uniform gap throughout both refining zones 53, 60, plate clashing is further reduced because the pairs of disks 32, 34 and 36, 38 are spaced farther apart from one another. As a result of the disks 32, 34 and 36, 38 being spaced farther apart, each refining zone 53, 60 can accommodate a greater volumetric flow rate of the low consistency stock, which means that a greater amount of stock can be refined in a given period of time. In the end, refining quality, quantity, and consistency are all improved while plate clashing is reduced and preferably substantially completely prevented, leading to an increased useful life for the refiner disks 32–38. All of this is achieved preferably using a single inducer 40 located upstream of both pairs of refiner disks 32, 34 and 36, 38.
It is understood that the various preferred embodiments are shown and described above to illustrate different possible features of the invention and the varying ways in which these features may be combined. Apart from combining the different features of the above embodiments in varying ways, other modifications are also considered to be within the scope of the invention.
The invention is not intended to be limited to the preferred embodiments described above, but rather is intended to be limited only by the claims set out below. Thus, the invention encompasses all alternate embodiments that fall literally or equivalently within the scope of these claims.
This application claims priority from U.S. Provisional Patent Application Serial No. 60/347,111, which was filed on Jan. 9, 2002, the entirety of which is expressly incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
782293 | Warner | Feb 1905 | A |
1123494 | Craig | Jan 1915 | A |
2172151 | Dick | Sep 1939 | A |
2968444 | Jones | Jan 1961 | A |
3441227 | Fisher | Apr 1969 | A |
3893631 | Fisher et al. | Jul 1975 | A |
4036443 | Saltarelli | Jul 1977 | A |
4223847 | Tantalo et al. | Sep 1980 | A |
4253613 | Reinhall | Mar 1981 | A |
4269365 | Berggren | May 1981 | A |
4283016 | Reinhall | Aug 1981 | A |
4401280 | Reinhall | Aug 1983 | A |
4610400 | Sjobom | Sep 1986 | A |
5076892 | Fisher et al. | Dec 1991 | A |
5383608 | Dahiqvist et al. | Jan 1995 | A |
5626300 | Kohler | May 1997 | A |
5947394 | Egan et al. | Sep 1999 | A |
Number | Date | Country | |
---|---|---|---|
20030155457 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
60347111 | Jan 2002 | US |