The present invention relates to high temperature water heaters and more specifically to a double glass coated steel tank for use with such water heaters and which is highly water resistant and corrosion resistant and its method of fabrication.
High temperature water heaters are known to increase the ability of a water heater to supply a larger quantity of hot water as an alternative to increasing the volume of the tank. Increasing the volume of the tank is more expensive and requires a larger space for installation and this is not desirable, particularly for use in small apartments and condo dwellings where space is limited. In order to operate the water heater at higher temperatures, without the risk of scalding the user person, the hot water drawn from the tank, usually at a high temperature of about 180 degrees F., is mixed in a mixing valve with the cold household water supply before it is directed to the hot water distribution system. For safety reasons, a temperature detecting safety shut off valve can also be installed downstream of the mixing valve to shut off the hot water supply should the mixing valve be defective.
When operating a water heater at such high temperature, it is also desirable to have a control whereby to heat the water to such high temperature during off-peak hours when the energy is at a much lower cost than during peak hours. This results in a cost saving to the consumer and a reduction of the load on the grid during peak hours when there is a greater demand for energy. By reducing the demand during peak hours the risk of overloading the gird is also reduced which is a benefit to the energy supplier.
Another advantage of operating a water heater at high temperature is to ensure that the consumer has a sufficient supply of hot water permitting the use of larger volumes of hot water which is desirable such as when filing a bath tub, for example. It is also desirable to have ample hot water when hot water consuming appliances are operating at the same time, for example a dishwasher and a shower wherein the person in the shower is not subjected to an abrupt water temperature change due to a lack of hot water. When hot water is drawn from the tank, it is replaced by cold water which is released to the bottom of the tank and this causes the water in the tank to gradually fall in temperature. Also, the heating elements or the burner for a gas-fired water heater does not become activated until the water temperature falls to a preset low temperature of the water in the tank which is often set much lower than the high temperature set point. By maintaining the water temperature at a much higher temperature than the conventional temperature of about 120 to 140 degrees F., this problem can be greatly reduced.
It is known that the high temperature water in the tank of a water heater causes the glass lining on the inner surface of the tank to slowly dissolve and particularly so in areas where the coating is thinner such as in the areas of fittings where there are sharp edges where the glass lining is thinner because of sharp edges and the risk of exposing the steel tank to the water is greatest. The higher is the temperature of the water in the tank, the higher is the risk of dissolving of the glass coating in its weak areas. In my U.S. Pat. No. 8,869,399 there is described a method of eliminating these sharp edges with the inner surface of the tank.
It is a feature of the present invention to provide an improved steel tank for use with high temperature water heaters and wherein the tank has a double glass coat on the inner surface thereof which is highly water resistant to water at temperatures of at least up to 190 degrees F. and wherein the outer glass coat has a fine bubble size not exceeding 10 microns.
Another feature of the present invention is to provide an improved steel tank for use with high temperature water heaters and wherein the tank is provided with fittings and steel parts connections which protrudes to the inner surface of the tank and form smooth edges with the inner surface whereby a double glass coat can be fired over the inner surface and the smooth edges to provide a double coat of substantially constant thickness throughout.
Another feature of the present invention is to provide a method of fabricating a high temperature water heater steel tank having a double glass coating on the inner surface thereof and which coating is substantially of constant thickness throughout.
According to the above features, from a broad aspect, the present invention provides a high temperature water heater which is comprised of a steel tank for holding a predetermined volume of water to be heated. Heating means is associated with the steel tank to heat water therein to a temperature up to about 190 degrees Fahrenheit. The tank is constructed of steel welded parts and has fittings secured thereto. The steel tank has an inner surface wherein the fittings and connected parts form smooth edges with the inner surface of the tank to create a smooth inner surface. The smooth inner surface is coated with a first water resistant base coat of a glass primer cobalt enriched with ZIRCON (trademark) which is heat fired, and a second high temperature water resistant glass coat is applied over the first coat and subjected to a second firing producing a hard glass outer surface which is highly water and corrosion resistant and wherein the second glass coat has a fine gas bubble size not exceeding 10 microns.
According to another broad aspect of the present invention there is provided a method of fabricating a water heater steel tank for the containment of a predetermined volume of water to be heated to a temperature of up to about 190 degrees F. The method comprises the following steps:
A preferred embodiment of the present invention will now be described with reference to the accompanying drawings in which:
With reference now to the drawings, and more particularly to
Fittings 16 are mounted on the top wall 13 and extend to the inner surface 17 of the tank to receive pipes, not shown, for the extraction of hot water from the top of the tank and to admit a cold water dip tube, not shown but obvious to a person skilled in the art, which extends close to the bottom of the tank to supply water thereto. Other fittings 18 are mounted to the tank side wall and project to the inner surface to permit the mounting of resistive heating elements 15 or for other reasons. The tank inner surfaces 17 including the side wall 11, bottom wall 12 and top wall 13 are covered with a double glass coating 20.
As mentioned above, it is important that the double glass coating 20 be of substantially constant thickness throughout the inner surface of the tank side wall, bottom wall and top wall and in the area of the fittings, such as the fittings 16 and 18.
The method of fabricating the water tank 10 of the present invention can be summarized as follows. Firstly, it is important to construct the tank whereby there are no abrupt transition areas in the inner surface 17 of the tank at its junctures of its welded parts, namely the side wall 11 with the bottom wall 12 and the top wall 13. Also, the fittings 16 and couplings 18 and others not illustrated must not form sharp abrupt areas with the tank inner surface 17. The first water resistant cobalt base glass coat primer “blue coat” is applied to a thickness in the order of from about 0.009 to 0.012 of an inch and the tank is fired to a temperature of about 1600 degrees F. to adhere the first coat to its inner surface. The second glass coat “red coat” is applied over the first coat to a thickness of about 0.008 of an inch and the tank is again fired. This results in a smooth double glass coated tank inner surface which is highly water resistant and corrosion resistant.
It is within the ambit of the present invention to cover any modifications of the preferred embodiment disclosed herein provided such modifications fall within the scope of the appended claims.