This device relates generally to hand tools and, more particularly, to striking tools.
Striking tools are a category of hand tools used in construction, carpentry, and other fields, which leverage force in order to deal a blow to a target, such as a fastener head or a working surface. This class of hand tools is dominated by the hammer.
Hammers comprise a head with at least one face intended for striking the target or working surface, mounted on a generally cylindrical handle such that the axis of the hammer head is generally perpendicular to the axis of the handle. The head is typically formed of metal or other sufficiently rigid or resilient material, and is shaped according to its intended application: nail hammers and rip hammers, for example, are used for carpentry, and are provided with a head with a striking face at a first end, and a two-pronged claw at a second end for drawing nails. A mallet has a generally cylindrical head with two striking faces for use in upholstery and furniture assembly, and other uses where it is desirable to avoid marking the working surface. Ball pein hammers are used for riveting and shaping soft metal, having a generally circular, flat striking face at a first end of the head, and a hemispherical striking face at a second end for shaping metal. Other hammers have been developed to suit other tasks and working materials. A single project, incorporating different stages of construction and finishing as well as different materials, may thus require the use of more than one hammer as well as other hand tools.
The hammer handle is preferably manufactured from wood, as it is considered to be superior to other materials in dampening the reverberations travelling from the head to the handle once a blow has been dealt with the hammer head. The handle itself is often contoured to accommodate the user's grip, and may be cushioned or padded in order to reduce the effect of vibration on the user's hand. However, the user may still experience physical stress due to the impact between the head and the work surface.
Moreover, because users are generally advised to grip the hammer handle loosely in order to reduce the vibrations felt through the hand and wrist, safety in inclement weather conditions is a concern. Because the hammer handle is generally cylindrical, the handle may slip through the user's grasp. Some handles are accordingly prevented with a wrist tether to add some measure of security.
The generally cylindrical shape of the hammer handle does not permit the user to quickly acquire a positive, aligned grip, which may result in glancing blows on the target, or over- or under-estimating the distance between the user's hand and the target (overstrike and understrike). Consequently, users attempting to drive a fastener into a surface are sometimes advised to choke up on a longer-handled hammer for the first blow, which establishes the position of the fastener by causing the fastener to shallowly penetrate the surface, and then to reposition their grip towards the end of the handle in order to deliver further blows with greater momentum. However, changing the grip reduces the accuracy of further blows, as the user's visual estimate of the distance between the hand gripping the hammer and the point of impact is no longer correct. In attempting to compensate for the change in distance, the user may overstrike the intended target. Overstriking may result in the hammer handle impacting the fastener head, potentially damaging the handle and rendering the tool unsafe for further use.
Furthermore, the irregular shape of a hammer restricts the possible means by which a hammer may be carried by a worker while leaving the hands free. A solution to this problem has been to provide a loop on a belt or an item of clothing, large enough to receive the hammer handle but small enough to prevent the hammer head from passing therethrough. When such a carrying means is used, the user must use both hands to retrieve the hammer and jockey it into a working grip; first, the hammer must be grasped by the head with a first hand, then gripped by the handle using the second hand. Attempting to jockey the hammer into position using only one hand, by choking up the hammer from the head to the handle while throwing the hammer upwards, is potentially dangerous as the worker may lose control of the hammer.
It is therefore desirable to provide an improved striking tool that provides multiple striking faces and increased comfort and accuracy to the user. It is also desirable to provide an efficient carrier for such a striking tool.
According to an aspect of the invention there is provided a double-headed tool. As an example of a preferred embodiment, the tool is provided with a handle having an axis, a first head mounted to a first end of the handle, and a second head having substantially the same mass as the first head, opposedly mounted to a second end of the handle at a substantially right angle to the first head in a plane perpendicular to the axis of the handle.
In a further aspect of the invention, the first end and the second end of the handle have substantially the same cross-sectional area, and the midpoint of the handle has a cross-sectional area greater than the cross-sectional area of either the first or second end. As an example of the preferred embodiment, the first end and the second end each have a cross-section defined by a longer dimension and a shorter dimension, such as a rectangle, such that the longer dimension of the first end of the handle is at a substantially right angle to the longer dimension of the second end, and the midpoint of the handle has a substantially square cross-section.
A further aspect of the tool is that at least one of the first head and the second head is provided with a strike face, and further that at least one of the heads is provided with a claw. In another aspect, each head of the tool is provided with two opposedly-facing strike faces, or two opposedly-facing claws.
In yet a further aspect of the tool, at least one of the first head and the second head is provided with an engagement surface for engaging a grip while the other of the first head and second head is used for striking.
Another aspect provides a carrier for a striking tool having a strike face with a first predetermined dimension and a neck having a second, smaller, predetermined dimension, for mounting on a harness or belt. The carrier has a plate member, a first receptacle formed within the plate member sized for receiving the strike face, and a second receptacle formed within the plate member, in communication with the first receptacle, sized for receiving the neck. The carrier may be provided with a backing plate.
In drawings which illustrate by way of example only a preferred embodiment of the invention,
a and 2b are plan views of the double-headed striking tool of
a, 4b, and 4c are cross-sectional profiles of the handle of
a, 5b, and 5c are cross-sectional profiles of a further embodiment of the handle of
a, 9b, and 9c are perspective views of a grasping action on the tool of
a, 15b, and 15c are perspective views of the double-headed striking tool of
As shown in
The second head 30 is mounted on the handle 40 by means known in the prior art; however, unlike the prior art, the second head is mounted on the handle 40 such that the longitudinal axis y′ of the second head 30 is at a substantially right angle to the axis y of the first head 20. The two heads, 20 and 30, have substantially the same mass. The heads 20, 30 may be formed of tempered steel, although a person skilled in the art will appreciate that the composition of the heads will vary according to the hammer's intended use. When heads having two different opposing ends are mounted on the handle 40 with their longitudinal axes y, y′ aligned at a right angle in the plane perpendicular to the handle axis x, the second head 30 may be mounted such that it is rotated ninety degrees either clockwise or counter-clockwise around the axis x, as shown in
Referring to
In other, less preferred, embodiments, the profile of the handle may be consistently square, or range between circular and oblong, as shown in
The length of the handle 40 may depend according to the intended use of the tool 10, or the weight of the heads 20, 30; however, if the handle is manufactured to a standard length, such as sixteen inches, the handle may be used to estimate distances when approximate measurements are appropriate.
A carrier 50 is provided for transporting a double-headed striking tool 10, such as that shown in
The carrier 50 is mounted directly on a belt or to an attachment provided on a belt (not shown), for example by threading a belt through the slots 57, or alternatively by fastening the plate 52 or the backing 59 to the belt or belt attachment. Preferably, the belt is formed of webbing or other sufficiently durable material, such that when worn, the lower portion 68 of the plate 52 stands away from the body, thus providing space between the lower portion 68 and the backing 59 to accommodate the neck 23 and strike face 22 of the double-headed tool 10, as shown in phantom lines in
To mount the tool 10 in the carrier 50, the strike face 22 and the neck 23 are passed through the expanded section 56 of the aperture 54, and then the tool is lowered so that the neck 23 engages the slot portion 55. The tool 10 is thus suspended from the carrier 50 by the neck 23 and the slot portion 55. The tool 10 may be disengaged from the carrier 50 by raising the neck 23 to a point where the strike face 22 may pass through the expanded portion 56 of the aperture 54.
Referring to
The preferred grip is facilitated by the generally rectangular profile of the handle 40, which allows the user to determine by touch that the tool 10 is aligned properly within the hand. If the tool 10 is picked up by the user by means of the handle 40, the preferred grip can be located by allowing the handle 40 and the user's grasp to slide with respect to each other, until the engaging surface 38 of the counterweighting head 30 engages the user's hand.
When the tool 10 is used to strike a target, such as a fastener or working surface (not shown), it will be appreciated that the additional weight of the tool 10 due to the counterweighting head 30 provides the user with increased momentum for dealing blows or driving fasteners. As the position of the counterweighting head 30 is at or behind the fulcrum (the user's wrist), additional stress that would otherwise be placed on the user's wrist when swinging the tool 10 is reduced. Furthermore, it can be seen that the generally rectangular profile of the handle 40 in combination with the engagement surface 38, by providing an aligned grip on the tool 10, increases the amount of control exerted by the user when dealing a blow; there is reduced risk of glancing off the target, as the user is assured by the preferred grip that the tool 10 will swing in the intended direction, and will not rock or torque as the wrist is moved during the swing, unless the wrist itself is twisted during the swing. Therefore, the need to choke up on the striking tool 10 to deliver a first, less powerful blow to a fastener is reduced; the user can deal all blows to the fastener using the preferred grip at a consistent distance from the fastener, with increased likelihood of striking the “sweet spot” of the strike face 22. In addition, the added weight of the counterweighting head 30 tends to induce understrike, thus compensating a potential overstrike.
The counterweighting head further absorbs a portion of the reverberation felt throughout the tool 10 upon impact of the striking head, thus reducing stress on the user's joins and muscles.
In addition, because the first and second heads 20, 30 are oriented at a right angle to each other, the double-headed tool 10 may be easily picked up from a flat surface as one head 20 or 30 rests on either its striking face or claw, while the other head 30 or 20 rests on a side edge; this elevates the one end of the handle 40 above the working surface so that the user may reach under the handle 40 to grip it. The double-headed striking tool 10 is further more stable than the prior art, single-headed hammer when lying on the striking face or claw of one head 20, 30, as the other head 30 or 20 provides increased contact between the tool 10 and the working surface. By contrast, the prior art handle must be balanced on its face or claw and the edge of the handle end; there is therefore less contact area between the prior art hammer and the working surface, resulting in increased instability.
The enhanced stability of the double-headed tool 10 is also apparent when the tool is suspended from the first head 20, using the claw 26, over a panel, door, rafter, ladder rung, or the like. The second head 30, being aligned at a right angle to the first head 20, provides increased inertia and resists accidental displacement. This increased inertia due to the second head also provides another useful striking face on the heads 20, 30, on the upper face 21, 31.
A further feature of the double-headed tool 10 is its bi-directional nature. The counterweighting head 30, providing an engagement surface 38, eliminates the need for a flare or stop point at the end of the handle 40, as is often used with prior art hammers to prevent the hammer from slipping out of the user's grip. The counterweighting head 30 also eliminates the need for a tether strap for use in inclement weather.
In the preferred embodiment in which the counterweighting head 30 is a claw-type hammer, or indeed in any embodiment where the end of the counterweighting head 30 nearest the outside of the hand extends beyond the outside of the hand, when gripped using the preferred grip shown in
If at least one of the heads is provided with a claw for ripping fasteners, such as nails, out of a working surface, the alignment of the remaining head provides an improved grip for applying leverage to the fastener, as shown in
Again, if at least one of the heads is provided with a claw, the tool 10 may also serve as an arm extender or panel carrier. As shown in
The double-headed tool 10, also when gripped as describe above as for ripping fasteners or carrying panels, may also be used for stud straightening work. As shown in
As noted above, the two striking heads 20, 30 of the double-headed striking tool 10 may have different configurations according to their intended usage, thus eliminating the need to carry two separate, single-headed tools. Without limiting the generality of the present invention, the configurations of either of the heads 20, 30 may include the features of the striking heads of rock climbers', ball pein, riveting, magnetic tack, magnetic upholsterers', hand drilling, welders' chipping, blacksmiths', double-faced, lineman's', maul, double-faced sledge, rig builders', shingling, drywall, bricklayers', straight claw, curved claw, framers', rip claw, rawhide, copper, split, dead blow, soft face, nylon, plastic, rubber, pickaxe, prospecting, oyster, broad hatchet, drywall hatchet, and geological hammers. While a preferred material for hand tool handles for many users is wood, other materials including fibreglass, steel, and other materials known in the art may be employed. The heads and the handle may be formed integrally of a suitable material, such as steel, if suitable for the intended use of the tool.
As can be seen in
Various embodiments of the present invention having been thus described in detail by way of example, it will be apparent to those skilled in the art that variations and modifications may be made without departing from the invention. The invention includes all such variations and modifications as fall within the scope of the appended claims.