1. Field of the Invention
The present invention relates generally to hinge assemblies and electronic devices using the same, more particularly to a double hinge assembly and an electronic device using the same.
2. Discussion of the Related Art
An electronic device such as a mobile phone, a notebook computer, or a personal digital assistant (PDA) generally has a main body and a cover with a display and a camera lens pivotally mounted on the main body via a hinge. A typical hinge includes a first cam, a second cam, a spring, and an O-ring. A shaft extends from a center of the second cam, and the shaft defines a groove on an outer surface. The slide cam defines a central hole. The shaft extends through the first cam and the spring, and the 0-ring engages in the groove of the shaft, thus the typical hinge is assembled.
By using the typical hinge, a cover of the electronic device can be turned around a horizontal axis in order to change a viewing angle. However, the cover cannot be turned 180 degrees for purposes of, for example, viewing a display located in the cover while taking a self portrait using the camera of the device, thus affecting the efficiency and image. In addition, the cover can only be turned in a direction relative to the main body, but more and more users want the cover be rotatable and slidable relative to the main body for convenient use, such as showing the display to a person in front of the user. That is, the electronic device with the typical hinge is quite inconvenient for use.
Therefore, a double hinge assembly and an electronic device using the same to solve the aforementioned problems is desired.
In one aspect, a double hinge assembly includes a first hinge assembly, a second hinge assembly, a guide rail, a sliding member, a first bracket, a second bracket. The sliding member is slidably positioned on the guide rail. The first hinge assembly includes a first rotatable pivot shaft. The second hinge assembly includes a second rotatable pivot shaft. The first bracket is fixed to the first rotatable pivot shaft, and the guide rail rotatably connects to the first rotatable pivot shaft. The second bracket is fixed to the second rotatable pivot shaft, and the sliding member rotatably connects to the second rotatable pivot shaft. A rotating axis of the first rotatable pivot shaft is substantially parallel to a rotating axis of the second rotatable pivot shaft.
In another aspect, exemplary double hinge assembly includes a first hinge assembly, a second hinge assembly, a guide rail, a sliding member, a first bracket, a second bracket. The sliding member is slidably positioned on the guide rail. The first hinge assembly includes a first rotatable pivot shaft. The second hinge assembly includes a second rotatable pivot shaft. The first bracket is fixed to the first rotatable pivot shaft, and the second bracket is fixed to the second rotatable pivot shaft. The guide rail defines a first pivot hole. The sliding member defines a second pivot hole therein. The first rotatable pivot shaft extends through the first pivot hole of the guide rail. The second rotatable pivot shaft extends through the second pivot hole of the sliding member.
In still another aspect, an electronic device includes a main body, a cover, and a double hinge assembly. The double hinge assembly is one of the hinge assemblies as described in the previous two paragraphs. The cover has a display body. The double hinge assembly connects the main body and the cover such that the cover is rotatable around two horizontal axes relative to the main body.
Other advantages and novel features will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present double hinge assembly and the electronic device using the same. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The present double hinge assembly may be used in electronic devices such as mobile phones, notebook computers, and personal digital assistants. For the purposes of conveniently describing an exemplary application of the double hinge assembly, a preferred embodiment of the double hinge assembly as used in a mobile phone is described and illustrated.
Referring to the drawings in detail,
Referring to
The second hinge assembly 32 includes a second rotatable pivot shaft 321, a second cam 323, a plurality of resilient rings 325, and a flat washer 327. The second rotatable pivot shaft 321 is substantially a hollow shaft. A cross-section of the second rotatable pivot shaft 321 perpendicular to an axis of the second rotatable pivot shaft 321 is double-D shaped. A flange 3211 is formed around an end 3215 of the second rotatable pivot shaft 321, and two protrusions 3212 are formed at the opposite sides of another end 3214 of the second rotatable pivot shaft 321 opposite to the end 3214. The flange 3211 defines a limiting guide groove 3213 in the cylindrical surface. The second cam 323 is approximately a ring. A center of the second cam 323 defines a second cam pivot hole 3233. The second cam pivot hole 3233 is a non-circular hole corresponding to the cross-section of the second rotatable pivot shaft 321. The second cam 323 includes two protrusions 3231 formed on opposite sides of a bottom engaging surface 3232. The second cam 323, the resilient rings 325, and the flat washer 327 are configured to sleeve on the second rotatable pivot shaft 321. The second cam 323 is configured to be non- rotatable relative to the second rotatable pivot shaft 321.
The guide rail 33 includes a guiding portion 331 and a pivot socket 333 formed at an end of the guiding portion 331. The guiding portion 331 defines a sliding groove 3311, and a blind hole 3313 in a center of the bottom surface of the sliding groove 3311. A center of the pivot socket 333 defines a circular pivot hole 3331. Two teeth 335 extend out of a bottom surface of the pivot socket 333 and configured for engaging with the engaging surface 3132 of the first cam 313. A top surface the pivot socket 333 also forms a limiting protrusion 336 adjacent to the pivot hole 3331, and is configured to be slidable along the limiting guide groove 3134 of the first cam 313.
The sliding member 34 includes a pivot socket 342 and two arms 341. The arms 341 extend from opposite sides of the pivot socket 342. A center of the pivot socket 342 defines a circular hole 3421. The pivot socket 342 defines two depressions 3422 in a top surface for engaging with the engaging surface 3232 of the second cam 323. The pivot socket 342 also forms a limiting projection 345 adjacent to the circular hole 3421 at a bottom surface thereon, and the limiting projection 345 can slide along the limiting guide groove 3213 of the flange 3211. Each arm 341 defines a receiving hole 3411 and a blind hole 3412 adjacent to the receiving hole 3411 at an end away from the pivot socket 342. A size of a bottom side of the receiving hole 3411 is gradually reduced. A flange 3413 is form around a surface opposite to the guide rail 33 of each arm 341. The flange 3413 is configured for receiving in the sliding groove 3311.
The positioning assemblies 35 are positioned in opposite ends of the sliding member 34. Each positioning assembly 35 includes a rivet 351, a fixing piece, a spring 353 and a positioning ball 354. The fixing piece 352 defines a through hole 356 at an end for the rivet 351 extending there through. A cylindrical protrusion 3521 is formed on a bottom surface of the fixing piece 352, and configured for inserting into the receiving hole 3411 of the sliding member 34. The positioning ball 354 and the spring 353 are configured for receiving in the receiving hole 3411 of the sliding member 34.
The first bracket 36 includes a pivotal plate 361 and a mounting plate 362. The pivotal plate 361 perpendicularly extends from one side of the mounting plate 362. A center of the pivotal plate 361 defines a pivotal hole 363. The pivotal hole 363 is a double-D shaped hole corresponding to the first rotatable pivot shaft 311. The mounting plate 362 is configured for connecting the double hinge assembly 30 to a main body of the electronic device.
The second bracket 37 includes a sheet portion 371 defining an assembling hole 373 in a center. The assembling hole 373 is a double-D shaped hole corresponding to the second rotatable pivot shaft 321. The sheet portion 371 perpendicularly forms a pair of connecting pieces 372 at a same side. The connecting pieces 372 are configured for connecting the double hinge assembly 30 to a cover of the electronic device.
Referring to
Referring to
The sliding member 34 could slide on the guide rail 33 to a predetermined position such that axes of one receiving hole 3411 and the blind hole 3313 are aligned in a straight line. Then, the positioning ball 354 will be partially inserted into the blind hole 3313 of the sliding member 34 due to an elastic force of the spring 353, thus positioning the sliding member 34 on the guide rail 33. When the first bracket 36 is rotated relative to the guide rail 33 about the first rotatable pivot shaft 311, the first rotatable pivot shaft 311 will rotate along with the first bracket 36. Since the first cam 313 is non-rotatable relative to the first rotatable pivot shaft 311, the first cam 313 also rotate in unison with the first rotatable pivot shaft 311. The first bracket 36 and the first rotatable pivot shaft 311 rotate until the limiting protrusion 336 reaches the ends of the limiting guide groove 3134 of the first cam 313. When the second bracket 37 rotates relative to the sliding member 34 about the second rotatable pivot shaft 321, the second rotatable pivot shaft 321 rotates in unison with the second bracket 37. Since the second cam 323 and the flat washer 327 are non-rotatable relative to the second rotatable pivot shaft 321, the second cam 323 and the flat washer 327 also rotate in unison with the second rotatable pivot shaft 321. The second bracket 37 and the second rotatable pivot shaft 321 keep being rotated until the limiting projection 345 reaches the ends of the limiting guide groove 3213 of the flange 3211.
Referring to
When the cover 51 of the mobile phone 50 has to be rotated 180 degrees, the cover 51, along with the second hinge assembly 32, is first rotated to a predetermined angle via the first hinge assembly 31, then, the cover 51 can be further rotated to a predetermined position via the second hinge assembly 32. Thus, when the camera is configured in the main body 52 of the mobile phone 50, and a display body 511 is configured in the cover 51, the cover 51 can be rotated 180 degrees to preview self-portrait and other photos. The cover 51 can fold over the main body 52 such that the display 511 faces outwards (as shown in
It should be pointed out that, the cross-sections of the first rotatable pivot shaft 311 and the second rotatable pivot shaft 321 can be other shape, such as hexagon shaped. Accordingly, a corresponding cam also defines a hexagonal hole therein. Furthermore, the first bracket 36 can be rotatably connected to the first rotatable pivot shaft 311, when the first rotatable pivot shaft 311 is fixed to the guide rail 33. Correspondingly, the second bracket 37 can rotatably connects to the second rotatable pivot shaft 321, when the second rotatable pivot shaft 321 is fixed to the sliding member 34. Still further, both the first bracket 36 and the first rotatable pivot shaft 311 can be rotatably connected to the guide rail 33, correspondingly, both the second bracket 37 and the second rotatable pivot shaft 321 can be rotatably connected to the sliding member 34. In addition, the fixing piece 352 can be fixed to the sliding member 34 by jointing.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200710203485.4 | Dec 2007 | CN | national |