This disclosure relates generally to fenestration and more particularly to the management of rainwater leakage in double hung window units to prevent the interior pressure drop seals of such window units from becoming wet, which can result in leaks.
Sealing window units better against water leakage, particularly in driving rainstorm conditions, has long been a goal of window manufacturers. In fact, in order to earn the Hallmark certification of the Window and Door Manufacturers Association (WDMA) for water penetration resistance (and other certifications), a window must pass a rigorous test such as tests conducted under the ASTM E547-00 and ASTM E331-00 test methods. The test generally seeks to model a severe rainstorm with wind driven rain and may require a window to be exposed, for instance, to a pressure drop (based on 15% of required wind resistance design pressure) with water sprayed at a rate of 5 gallons per square foot per hour. This rate of water theoretically creates a film of water on all surfaces of the window to assure that the water bridges any breaches in the weatherstrip seals around the window sashes. If a leak through these seals occurs, water can be propelled through the breach due to the lower pressure on the interior side of the window, which results in a water penetration failure.
Double hung windows are especially hard to seal against water penetration in a driving rain because there are two parallel vertically sliding sashes in different planes. To accomplish a seal, horizontal compression seals generally are applied along the top rail of the upper sash and the bottom rail of the lower sash to seal against the header and sill respectively of the window. Single vertical sliding compression seals generally are applied between the interior edges of the stiles of the upper sash and the jambs, while single vertical sliding exterior compression seals generally are applied between the exterior edges of the stiles of the lower sash and the jambs. A horizontal compression checkrail seal resides between the check rails of the upper and lower sashes when the sashes are closed. Finally, a horizontal sliding seal bridges the upper and lower sash vertical sliding compression seals and the end of the checkrail seal. The complexity introduced by changes in plane and functionality of sliding sashes in double hung windows creates barriers to the success of developing a watertight single barrier seal. While the upper sash is often the easiest to seal successfully, it customarily is more difficult to create reliable seals at the transition from the upper sash seals to the lower sash seals and at the bottom corners of the lower sash seals. As a consequence, some leakage of water at these and perhaps other locations is inevitable, particularly in a blowing rainstorm.
Some window manufacturers have addressed water leakage past the seals of a double hung window by catching water that does leak in a reservoir. Many times, the reservoir is formed by an interior sill stop that projects upwardly from the sill along its interior edge and overlies some of the interior face of the lower sash bottom rail. The resulting reservoir will catch and contain a given volume of water. However, if the volume of water that leaks through the seals exceeds the volume of the reservoir, which can happen in prolonged storms, the reservoir can overflow the sill stop resulting in an unacceptable interior leak. Another technique is to catch water that has leaked through the seals in a reservoir and purposefully drain the water back out through a defined path such as a weep hole. This technique requires a reservoir with a water column height great enough to ensure that the water pressure in the reservoir overcomes the exterior pressure in a blowing rainstorm. Water is then able to flow back out to the higher pressure outdoor or exterior side of the window. This drains water from the reservoir and prevents water from overflowing into the interior of the building.
An improved water management system for double hung windows is needed and it is to the provision of such a system that the present disclosure is primarily directed.
Briefly described, a double hung window with improved water management system includes a frame with jambs and a sill and upper and lower sashes slidably disposed in the frame with the lower sash residing in an interior plane relative to the upper sash. An interior pressure drop seal is disposed between each of the stiles of the lower sash and the jambs along the interior of the sash. A similar pressure drop seal extends along the bottom rail of the lower sash and, when the sash is closed, resides between the bottom rail and the sill along the interior of the lower sash. A generally U-shaped seal is thus formed around the interior of the bottom sash by the pressure drop seals.
To seal around the exterior of the lower sash, a shingling exterior seal is disposed between each of the stiles of the lower sash and the jambs along the exterior of the sash. Another shingling seal may be disposed between the bottom rail of the lower sash and the sill along the outside of the sash. Finally, a bridge seal is disposed at the tops of the stiles of the lower sash bridging and sealing the space between the interior pressure drop seals and the exterior shingling seals.
With the just described configuration, a generally U-shaped cavity or volume is defined between the lower sash and the window frame by the interior pressure drop seals and the shingling seals extending along the styles and the bottom rail of the lower sash and the bridge seal at the tops of the styles of the lower sash. A vent is provided to vent this U-shaped volume to the exterior of the building, i.e. to the outdoor environment. In one embodiment, the vent is defined by a vent channel in the window jambs at the bottom corners of the window frame and, in another, the bottom rail shingling seal is at least partially eliminated along the outside of the bottom rail of the lower sash to provide a vent space along the bottom rail itself. In either case, the vent assures that the pressure within U-shaped volume is maintained as close as possible to the pressure on the exterior side of the window. Thus, in a blowing rainstorm, where the pressure on the exterior of the window is higher than the pressure on the interior of the window, the pressure in the U-shaped volume stays close to the higher exterior pressure. Accordingly, water is less likely to seep past the exterior shingling seals and any water that does seep in is not likely to be propelled against the interior pressure drop seals, where it can be sucked by lower interior pressure into a building. Instead, the seepage simply flows in an orderly fashion down the sides of the U-shaped volume, where it drains to the exterior through the vent.
Thus, an improved water management system for double-hung windows is now provided. The water management system enhances a windows capacity to withstand blowing rainstorms without leakage of water into the interior of a dwelling. These and other aspects, features, and advantages of the invention will become more apparent upon review of the detailed description set forth below taken in conjunction with the accompanying drawing figures, which are briefly described as follows.
Referring now in more detail to the drawing figures, wherein like reference numerals indicate like parts throughout the several views,
The double-hung window includes a lower sash 21 that is vertically slidably disposed in the window frame and an upper sash (not shown) that also is vertically slidably disposed in the window frame. The upper sash is omitted in the drawings for the sake of clarity since the invention relates to a water management system for the lower sash. The lower sash 21 has a pair of vertical stiles 23 (only the right stile is shown in the Figures), a bottom rail 22, and a top or check rail 56 (
An interior pressure-drop seal 34 is disposed between the jambs 12 and the interior leg 28 of the stiles 23 and is configured such that the lower sash 21 can slide vertically along the seal 34. A horizontal pressure-drop seal 36 is disposed along the interior leg 26 of the bottom rail 22 and is configured to form a seal between the interior leg 26 and the top of the interior sill stop 17 when the bottom sash is closed. Thus, the vertical pressure drop seals 34 and the horizontal pressure drop seal 36 form a generally U-shaped seal around the interior of the bottom sash. These seals can be separate items, or they can be formed by one continuous U-shaped seal extending around the sides and bottom of the sash.
Exterior shingling seals 37 (only one of which is visible in the figures) are disposed between the exterior legs 29 of the stiles 23 and the jambs 12 (or jamb liners as the case may be). These exterior shingling seals and the interior pressure drop seals function to seal the outside and inside edges of the stiles and seal the channel 27 therealong. In the embodiment of
The interior pressure drop seals and the exterior shingling seals and perhaps other seals can be any appropriate type of weatherstrip seal such as, for instance, a urethane foam seal with polyethylene cladding such as is available from the Schlagel company or a TPV foam coated with TPV cladding as is available from the Foam-Tite company. In general, any weatherstrip with a slip coat and low compression set is preferable and may be employed as the interior and exterior seals. Further, in the illustrated embodiment, the interior and exterior seals are fixed to the jamb; however, they also may be fixed to the stiles of the sashes if desired.
Referring again to
The water management system shown in
As the outside pressure rises due to wind, an airflow can be created through the vent channel 43 into the channel 27 due to the likelihood that the primary seal is not perfect and some air will leak through, the primary seal causing an air flow to exist through vent channel 43 into channel 27. The vents are sized sufficiently to keep air flow velocity through the channel 27 relatively low. This is important because, if the vent channel is too small, the velocity of air flowing through the vent channel can be high, and can carry water droplets with it into the channel 27 and splash the water onto the interior pressure drop seal, which can easily result in an interior leak. With an appropriately sized vent channel, the velocity of air flowing through the channel is kept relatively low and the volume of air within the channel 27 is kept close to the exterior air pressure. Thus, water droplets do not get carried to the interior pressure-drop seals and interior leaks are prevented. Another consideration is that the vent channel should be kept large enough that water cannot span the vent channel due to surface tension and capillary action, which can turn the vent into a straw, drawing water directly into the channel 27, 25. The drain channel 46 should be sufficiently sized to allow any water that overcomes or penetrates the exterior shingling seals to drain out through the drain channel.
Another embodiment of the invention is illustrated in
The invention has been described within the context of preferred embodiments and methodologies considered by the inventors to represent the best mode of carrying out the invention. However, a wide variety of additions, deletions, and modifications to the illustrated embodiments might be made by those of skill in the art without departing from the spirit and scope of the invention as set forth in the claims. For example, while venting through the side jambs has been illustrated, the vent may be formed through the sill, or through any other part of the window frame or through the sashes so long as the channel between the exterior and interior seals is vented to the outside atmosphere.
Number | Name | Date | Kind |
---|---|---|---|
2608277 | Storms | Aug 1952 | A |
2733487 | Hauck | Feb 1956 | A |
3319381 | Muessel | May 1967 | A |
3383815 | Smith, Jr. | May 1968 | A |
3410027 | Bates | Nov 1968 | A |
3466819 | Giger | Sep 1969 | A |
3503169 | Maki et al. | Mar 1970 | A |
3636660 | Peterson | Jan 1972 | A |
3638372 | Rosenthal | Feb 1972 | A |
3849938 | Thompson | Nov 1974 | A |
4003171 | Mitchell | Jan 1977 | A |
4553361 | Ralph | Nov 1985 | A |
4586291 | Swan | May 1986 | A |
4742647 | Pacca | May 1988 | A |
5044121 | Harbom et al. | Sep 1991 | A |
5121951 | Harbom et al. | Jun 1992 | A |
5123212 | Dallaire et al. | Jun 1992 | A |
5379824 | Carvalho | Jan 1995 | A |
5787659 | Rinehart | Aug 1998 | A |
5887387 | Dallaire | Mar 1999 | A |
6243999 | Silverman | Jun 2001 | B1 |
6276099 | O'Shea | Aug 2001 | B1 |
6357186 | Gould | Mar 2002 | B1 |
6374557 | O'Donnell | Apr 2002 | B1 |
6679002 | Davies et al. | Jan 2004 | B2 |
20030177699 | Fukuro et al. | Sep 2003 | A1 |
20050072076 | Fulton et al. | Apr 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20100205866 A1 | Aug 2010 | US |