The present invention relates to buildings, and more particularly to a building system with frame elements, and inner and outer insulated cladding panels of roll formed light gauge metal.
Many prior known metal buildings systems lack innovative and efficient means for insulation against heat transfer, or efficient means for applying or assembling the insulation. The two main categories of metal buildings are frameless, and frame and cladding. Frameless buildings are made from arch shaped panels that can be roll formed at the assembly site and seamed together, U.S. Pat. No. 3,967,430 to the present applicant, and the related patents, disclose an example of a building system of roll formed, arch shaped panels.
Frameless buildings are usually insulated with spray-on insulation material such as urethane foam or cellulose applied to the inside surface of the finished building. A sealer or flame resistant coating is usually required over the insulation. Only moderate R-values and poor surface finishes are achieved with these spray-on insulations. Also, frameless building systems are not as suitable for traditional building shapes that have vertical walls and a flat or pitched roof
Known frame and cladding metal buildings are generally designed and fabricated in-plant as kits for complete buildings of a specified dimension, then packaged and shipped to the distributor and ultimately the end user where the parts are finally assembled at the job site. This assembly process requires heavy cranes to erect relatively heavy steel frames and hundreds of hours to screw fasten the metal outer cladding sheets onto the purlin structures of these frames. Some of the disadvantages of these prior building practices are that the ultimate user must often order the building well in advance of installation, must absorb high costs in packaging, shipping, and insurance as well as final assembly. Nor do these prior practices provide any opportunity for changes in the final dimension or size in the building. Once ordered, the user cannot readily change an original choice.
U.S. Pat. No. 5,651,230 to the present applicant discloses an example of a metal building system with vertical walls and a pitched roof having a relatively simple frame and cladding panels. The components can be formed on site and the framing jig disclosed is adjustable in size and shape to form buildings of different heights and widths. The framing jig rotates to erect building sections, so that a heavy crane is not required to erect the frame. A building system with fewer frame parts in each frame element will reduce fabrication and assembly costs. Greater cross-section strength in the cladding panels will reduce the number of sections and frame elements required for a building of a given size, and thereby reduce material, fabrication and assembly costs.
Frame and cladding metal buildings are usually insulated with cumbersome roll-batten insulation applied across the purlins that connect the frame elements. The insulation is covered by light-gauge inner cladding secured by screws that extend through the cladding and insulation, and into the purlins. The screws allow heat transfer between the inner cladding, the frame elements and the outer cladding.
A metal building system includes a foundation, a plurality of longitudinally spaced building sections, and inner and outer batten panels. The foundation has a substantially flat floor and two laterally spaced, longitudinally extending sets of spaced base rails that project upwardly relative to the floor. The building sections each have two longitudinally spaced frame elements, inner skin panels and outer skin panels. The frame elements each include two laterally spaced wall portions each having a lower end and an upper end, and two roof portions that each connect to the upper end of one of the wall portions and extend upwardly and inwardly to connect together at a roof peak. The wall and roof portions have an inner frame chord with an inner edge having a shaped inner flange, a spaced outer frame chord with an outer edge having a shaped outer flange and a plurality of struts connecting the inner and outer chords. The inner and outer chords are spaced to receive and connect to the base rails at the lower end. The inner and outer skin panels extend between the wall and roof portions of the frame elements, and have spaced side edges with seams that connect to the inner and outer chords. The inner and outer batten panels extend between and connect consecutive building sections The inner and outer skin panels, and the inner and outer batten panels have a metal layer and an insulation layer attached to and substantially coextensive with the metal layer, with the insulation layer facing towards the wall and roof portions, so that the insulation layer spaces the metal layer from the wall and roof portions and thermally isolates the inner and outer skin panels, and the inner and outer batten panels from the frame elements.
Details of this invention are described in connection with the accompanying drawings that bear similar reference numerals in which:
Referring to
Each building section 15 includes two longitudinally spaced frame elements 24, inner skin panels 25 and outer skin panels 26. As shown in
The wall portions 28 have an inner edge 35 with a shaped inner flange 36 and a spaced outer edge 37 with a shaped outer flange 38. The roof portions 29 have an inner edge 40 with a shaped inner flange 41 and a spaced outer edge 42 with a shaped outer flange 43. The wall portions 28 include an L-shaped inner frame chord 45 along the inner edge 35, a spaced, L-shaped outer frame chord 46 along the outer edge 37 and a plurality of struts 47 connecting the inner and outer chords 45 and 46. The roof portions 29 include an L-shaped inner frame chord 49 along the inner edge 40, a spaced, L-shaped outer frame chord 50 along the outer edge 42 and a plurality of struts 47 connecting the inner and outer chords 49 and 50. The struts 47 generally extend diagonally between the inner frame chords 45 and 49 and the outer frame chords 46 and 50 of the wall and roof portions 28 and 29, in a zigzag arrangement.
The inner and outer frame chords 45 and 46 shown of the wall portions 28 diverge slightly upwardly. The base rails 21 are spaced to fit between the inner and outer frame chords 45 and 46 at the lower end 31 of each wall portion 28. Referring to
The inner frame chords 45 and 49 and the outer frame chords 46 and 50 of the wall and roof portions 28 and 29, and generally the struts 47 are roll formed from light gauge metal. The well and roof portions 28 and 29 connect at a hip 57. As shown in
The outer frame chords 46 and 50 of the wall and roof portions 28 and 29 are connected at the hip 57 by an outer hip bar 65 that angles between the substantially vertical outer frame chord 46 of the wall portion 28 and the sloped outer frame chord 50 of the roof portion 29. Outer hip bolster bars 66 are connected with bolts 55 to the outer frame chords 46 and 50 from the outer hip bar 65 along a portion of the outer frame chord 46 and from the outer hip bar 65 along a portion of the outer frame chord 50 to reinforce the hip 57.
Referring to
The inner and outer skin panels 25 and 26 are generally the same shape. The inner skin panels 25 are assembled to be concave inwardly with the insulation layer 75 facing outwardly. The outer skin panels 26 are assembled to be concave outwardly with the insulation layer 75 facing inwardly. The inner and outer skin panels 25 and 26 have a center section 77 with two wide, shallow, spaced channels 78 connected by a flat ridge 79, and edge portions 80 along the side edges 73. Large corrugations 81 extend across the center section 77 to rigidity between the side edges 73 of the inner and outer skin panels 25 and 26. Small corrugations 82 extend from the large corrugations 81 across the edge portions 80.
The building section 15 is assembled with the inner flanges 36 and 41 of wall and roof portions 28 and 29 of the two frame elements 24 projecting towards each other and the outer flanges 38 and 43 of wall and roof portions 28 and 29 of the two frame elements 24 projecting towards each other. The side edges 73 of the inner skin panels 25 each include a seam 84 the connects the inner skin panels 25 to the inner flanges 41 of the two frame elements 24. The side edges 73 of the outer skin panels 26 each include a seam 84 the connects the outer skin panels 26 to the outer flanges 43 of the two frame elements 24.
Referring to
The small corrugations 82 facilitate forming the seam 84 while balancing stress and shrinkage from the forming of the large corrugations 81. The insulation layer 75 is on the inside of the slots 87, mechanically attaching the insulation layer 75 to the metal layer 74. The insulation layer 75 is on the inside of the slots 87 so that the metal layer 74 does not contact the frame elements 24, thermally isolating the inner and outer skin panels 25 and 26 from the frame elements 24.
The inner chords 45 and 49 of the wall and roof portions 28 and 29 can be assembled and seamed to an inner skin panel 25 at a factory, without the inner hip bar 58 or a bend at the hip 57, to provide a substantially flat, stackable unit for shipping. The outer chords 46 and 50 of the wall and roof portions 28 and 29 can be assembled and seamed to an outer skin panel 26 at a factory, without the outer hip bar 65 or a bend at the hip 57, to provide a substantially flat, stackable unit for shipping. After arrival at the job site, the inner skin panel 25 can be bent at the hip 57, and the inner hip bar 58, bolster bars 59 and inner hip chord 51 can be assembled. After arrival at the job site, the outer skin panel 25 can be bent at the hip 57, and the outer hip bar 65 and bolster bars 66 can be assembled.
As shown in
The frame elements 24, and inner and outer skin panels 25 and 26 of the building section 15 can be assembled in a substantially horizontal position on the foundation 14 with the bolts 55 through the anchor apertures 22 and the attachment apertures 53 of one of the frame elements 24. After assembly of the building section 15, the building section 15 can be rotated to the final, vertical position and the bolts 55 can be assembled through the anchor apertures 22 and the attachment apertures 53 of the other frame element 24. As each consecutive building section 15 is assembled, inner and outer batten panels 16 and 17 are applied to connect adjacent building sections 15.
Referring to
The inner and outer batten panels 16 and 17 can include large corrugations 94 across the center portion 90 to provide rigidity between the side edges 73, and small corrugations 95 extending from the large corrugations 94 to the side edges 73. Alternatively, the inner and outer batten panels 16 and 17 can include small corrugations 95 across the center portion 90 and the side edges 73. As shown in
The side portions 91 shown in
Although the present invention has been described with a certain degree of particularity, it is understood that the present disclosure has been made by way of example and that changes in details of structure may be made without departing from the spirit thereof.