Embodiments of the present invention relate to a double knitted element, in particular a sports article, and to a method of manufacturing such a double knitted element.
In order to provide a knitted element with desired functional properties such as stiffness, stretch, recovery or compression properties through knitting, there exists various manufacturing methods.
In particular, stiffness is usually achieved by plating a melting yarn together with a base yarn (e.g. polyester) or just mixing melting yarns with the base yarn into the same yarn feeder. Another possibility to achieve stiffness is provided by knitting thermoplastic polyurethane (TPU) yarns or by knitting hybrid yarns, which represent a mixture of polyester and melting yarn. Furthermore, stretch, recovery or compression properties are usually achieved by in-laying covered elastic yarns, by plating or mixing spandex yarns together with the base yarn (e.g. natural fiber, artificial, synthetic) directly into the feeder or by knitting covered elastic yarns.
Tucked-in yarns are usually used on a single layer knit base, for example in fleece fabrics. In these fabrics, the yarns that are too thick for regular knitting are thus inserted into the fabric by tucking. Furthermore, an elastic yarn may be used as an inlay or even in a tuck-float structure for sock knitting, but this use is only known for a single jersey or a single knit layer.
When using plating or mixing to achieve stiffness, the melting yarn follows the same knitting sequence as the base yarn. Further, the amount of melting yarn is difficult to control as it depends on the knitting structure. In addition, if the melting yarn is only needed on one side of the fabric, then the knitting sequence needs to be modified accordingly, which results in a different visual appearance or property of the fabric. When the melting yarn is mixed together with the base yarn it is impossible to control which of the two yarns will show up on the surface of the fabric. Plating the melting yarn can improve this shortcoming, but it is usually difficult or time consuming to set it up on the knitting machine. In particular, plating is usually difficult to adjust on the knitting machine.
When using elastic yarns to achieve stretch, recovery or compression as in-laid yarns, there is always a risk of pulling out the elastic yarn because it is not connected to the fabric. In particular, the in-laid yarn is just a long float inside the double layer knit.
US 2017/0029989 A1 relates to textile constructions formed with fusible filaments. In particular, the document is directed to a textile construct wherein thermoplastic yarns or fibers are melted to form a fused film on one side or layer of the construct while another side or layer is maintained in a discrete knitted structure. The fused film may provide a membrane side or layer that has desired attributes, such as one or more of waterproofness, water resistance, wind resistance, and breathability.
The above-outlined problems are addressed and are at least partly solved by the different aspects of the present disclosure, which provides a knit fabric and a respective manufacturing method to achieve enhanced functional properties in the knit fabric. In particular, there is a need to create functional properties in the knit independently of the knitting sequence, to avoid the possibility of pulling out the in-laid threads, to keep the appearance of the fabric as it is, but with added functional properties, and/or to activate the melting yarn at targeted locations of the knit fabric.
According to a first aspect, the above problem is solved by a double layer knitted element, in particular for a sports article. The double layer knitted element comprises a first layer comprising a first yarn, a second layer comprising a second yarn and a third yarn arranged at least in part between the first and second layer, wherein the third yarn is attached to at least one of the first and second layer by a plurality of tuck stitches, wherein there is at least one miss stitch between two successive tuck stitches of the third yarn.
In some embodiments, the third yarn is locked to the fabric because of the tucks. Compared to the tucked-in third yarn of the present disclosure, inlay strands are free floating inside the double layer fabric and could be removed from the knitted fabric if pulled.
In some embodiments, the third yarn is independent of the main knitting structure and does not influence it, but further enhances the properties of the knit. In fact, the tuck stitches that are visible on the surface of one of the knitted layers are minimalistic so they do not significantly affect the surface finish of that knitted layer. In addition, as the third yarn is sandwiched in between the two layers, additional protection of the third yarn is provided. This means that yarns that would fail testing (abrasion, color migration etc.) could be still tucked in and provide extra function to a double layer knitted element.
In some embodiments, the third yarn of the double knitted element may comprise a functional yarn. The use of a functional yarn as the third yarn allows to create functional properties in the knit independent of the knitting sequence.
In some embodiments. the first yarn of the first layer and the second yarn of the second layer may be a same type of yarn but it can also be two different types of yarns.
In some embodiments, the functional yarn may be at least one of a melting yarn, thermoplastic polyurethane (TPU) yarn, water repellent yarn, volume/puff yarn, natural fiber yarn (e.g. wool and cotton), cellulose yarn, hybrid yarn, anti-microbial (anti-bacterial) yarn (e.g. copper, zinc, silver, etc.), elastic yarn, conductive yarn, or at least one of a yarn with at least one of a heat resistance, UV protection, heat retention, moisture absorbance, water resistance, chemical resistance, flame resistance, moisture wicking capability, or at least one of a yarn with a compression, shrinkability, cushioning, conductive, insulation, or durability property.
Advantageously, by using a functional yarn as the third yarn, the double layer knitted element can be provided with different properties, depending on the functionality of the yarn. For example, stretch, recovery, or compression properties of the double layer knitted element can be influenced by using an elastic yarn as a functional yarn. On the other hand, stiffness can be achieved by using melting yarn, TPU yarn, or hybrid yarn as a functional yarn. For example, melting or TPU functional yarns can be used to stiffen the heel and toe cap areas of an upper, wherein elastic functional yarns can be used to create stretch or recovery in the instep area or in the collar of a fabric. In general, using elastomeric material generates reinforced areas after an application of heat.
An additional advantage is that the use of plating or mixing the functional yarn with the base yarn into the yarn feeder or the use of in-laid functional yarns is not necessary.
In some embodiments, the third yarn may be attached to only one of the first and second layer by tuck stitches in the respective layer.
In some embodiments, when the third yarn is attached to only one of the first or second layer by using tuck stitches, the third yarn is not visible at the respective other layers. Thus, the appearance of the top of the one layer is kept as it is, wherein desired functional properties are provided by the third yarn. Further, the tuck stitches that are visible on the surface of one of the knitted layers are minimalistic so they do not significantly affect the surface finish of that knitted layer. In fact, the third yarn is more or less independent of the main knitting structure and does not influence it. Rather, the tuck stitches that are visible on the surface of one of the knitted layers are minimalistic so they do not significantly affect the surface finish of that knitted layer, at the same time the surface finish of the other knitted layer is completely unaffected.
In addition, in some embodiments, if a melting yarn is provided between the first and second layer and attached only to one layer, it is possible to activate the melting yarn only on the inner side of one of the two layers. For example, if the melting yarn is connected (tucked) to the back side layer, after thermal activation, the melting yarn will be absorbed mostly by the back side layer, but the external side of the front layer may not show any traces of the melting yarn. Thus, further post processes can be applied to the top side of the fabric, without using or reactivating the melted yarn.
In some embodiments, the third yarn may be attached to at least one of the first and the second layer by immediately successive tuck stitches.
In some embodiments, a ratio between the number of tuck stitches and the number of miss stitches may be variable within a course or a row.
In particular, the amount of support in a respective area of the double layer knitted element, can be engineered by the tuck-miss ratio. More tucks close to one another will add more yarn in the respective area. Changing the tuck-miss ratio of the third yarn in different areas can provide different stretch or stiffness properties. In contrast to that, an inlay strand would have the same property along its width.
In some embodiments, the ratio between the number of tuck stitches and the number of miss stitches can be at least one of 1:1, 1:2, or 1:3. One miss stitch means one needle is skipped in the needle bed and the third yarn is floated over that one needle between two tuck stitches. Thus, a tuck-miss ratio of 1:2, for example, means that two needles are skipped and the third yarn is floated over those two needles between two tuck stitches.
In some embodiments, the support of a double layer knitted element can be engineered by the tuck-miss ratio. More tucks close one to another provides a higher amount of the third yarn. Thus, a tuck-miss ratio of 1:1 provides a higher support than 1:2, wherein 1:2 provides a higher support than 1:3 and so on.
In some embodiments, a distance between two successive tuck stitches may be less than 2.54 cm.
In general, 2.54 cm of a needle bed of a knitting machine corresponds to 14 needles on a gauge 14 machine or 7 needles on a gauge 7 machine, wherein the gauge of a knitting machine corresponds to the number of needles in 2.54 cm (one inch). For safety reasons, floats are usually kept shorter than 2.54 cm. If the floats are longer, there is the risk that the needles are not catching the yarn.
In some embodiments, the first yarn of the first layer may be attached to the second layer, and/or the second yarn of the second layer may be attached to the first layer by tuck or loop stitches.
In some embodiments, the third yarn may be knitted at least twice in between two knitting rows. In other words, there are at least two courses of the third yarn knitted in between two knitting rows.
Thus, an increased support may be provided by keeping the same tuck-miss ratio but knitting the third yarn multiple times in between two knitting rows. For example, knitting the third yarn several times between two knitting rows can be used to increase the stiffness in a particular area of a fabric (for example in the heel of an upper).
In some embodiments. the third yarn may be partially knitted in between two knitting rows.
Partially knitting allows the third yarn to be provided in a different amount in different areas of the double layer knitting element. In particular, when the third yarn is partially knitted multiple times in between two knitting rows. Thus, different support may be provided in different areas, depending on the amount of the third yarn. Thus, the provided support of a certain area or zone can be engineered by keeping the same tuck-miss ratio but partially knitting the third yarn one or multiple times in a certain area.
Further, partially knitting the third yarn is technically easier compared to an inlay strand. The reason is that the third yarn is connected by tuck to the fabric and it will not jump out when the knitting direction is changed.
In some embodiments, the thickness of the third yarn may vary within the knitted element. By varying the thickness of the third yarn, the support of the double layer knitted element can also be influenced.
In some embodiments, the third yarn may be provided in repetitive structures, jacquard structures, or in spacer-based structures.
Thus, structures like repetitive structures, jacquard structures, or spacer-based structures may be engineered by using a functional yarn, wherein the appearance of at least one layer of the structures remains the same.
In some embodiments, the element may be manufactured by intarsia, interlock, plating, inverted plating, and/or inlay techniques.
Thus, various double-layer elements with different structures and functional properties can be provided by the present disclosure.
A further aspect of the present disclosure is directed to an upper for a shoe, in particular a sports shoe, comprising a double layer knitted element as described herein.
A further aspect of the present disclosure is directed to a shoe, in particular a sports shoe, comprising an upper as described herein, i.e. with a knitted element according to the present disclosure, and a sole attached to the upper.
Thus, an upper or a shoe are provided, which comprise the previously described beneficial properties of the double layer knitted element.
According to another aspect of the present disclosure, a method of manufacturing a double layer knitted element in accordance with one of the previous aspects is provided. In particular, the method comprises the steps of providing a first layer comprising a first yarn, providing a second layer comprising a second yarn, and arranging a third yarn at least in part between the first and second layer, wherein the third yarn is attached to at least one of the first and second layer by a plurality of tuck stitches, wherein there is at least one miss stitch between two successive tuck stitches of the third yarn.
Aspects of the present disclosure will be described in more detail with reference to the following figures:
In the following, embodiments of the present disclosure are described in more detail referring to a double layer knitted element, in particular for a sports article. While specific combinations of features are described in relation to the exemplary embodiments of the present disclosure, it is to be understood that the disclosure is not limited to such embodiments. In particular, not all features need to be present in order to realize the present disclosure, and the embodiments may be modified by combining certain features of one embodiment with one or more features of another embodiment. For example, the present disclosure can be used for a shoe upper, clothing, or accessories where various functional properties like stiffness, elasticity, stretch, recovery or compression are required, without influencing the appearance.
The use of a third tucked-in yarn enables a double knitted element that comprises desired functional properties while it still has an uninfluenced outward appearance. The various functional properties comprise stiffness, elasticity, stretch, recovery, or compression, for example. The techniques used in order to achieve such properties or functions will be described in the following.
The described techniques include suitable knitting techniques comprising different combinations of the number of tuck and miss stitches of the third yarn, as well as the selection of fibers and yarns. These and other techniques will be explained in the following, before embodiments of shoe uppers will be described in which these techniques are applied.
In some embodiments, the main double layer knit structure is independent of the tucked-in yarn. The tucked-in yarn is an addition to the existing structure and is sandwiched in between the two layers.
In some embodiments, when using melt or TPU yarns as the third yarn 310, stiffness can be applied to only one of the two layers.
In some embodiments, stiffness is achieved within the fabric without affecting its external appearance.
In some embodiments, the first 110 and second 210 yarns may be different. In some embodiments, the first 110 and second 210 yarns may be equal.
In some embodiments, as illustrated in
In some embodiments, the third yarn is locked to the fabric because of the tucks. Compared to the tucked-in third yarn of the present disclosure, inlay strands would be free floating inside the double layer fabric and could be removed from the knitted fabric if pulled.
Further, in various embodiments of the present disclosure, the third yarn may comprise a functional yarn.
In some embodiments, the functional yarn can be at least one of a melting yarn, thermoplastic polyurethane (TPU) yarn, water repellent yarn, volume/puff yarn, natural fiber yarn (e.g. wool and cotton), cellulose yarn, hybrid yarn, anti-microbial (anti-bacterial) yarn (e.g. copper, zinc, silver, etc.), elastic yarn, conductive yarn, or at least one of a yarn with at least one of a heat resistance, UV protection, heat retention, moisture absorbance, water resistance, chemical resistance, flame resistance, moisture wicking capability, or at least one of a yarn with a compression, shrinkability, cushioning, conductive, insulation, durability property.
In some embodiments, applications of knitting a conductive yarn could be heating certain parts of the upper or for transferring electricity to LED lights in the upper or tooling, wherein wool yarns can heat up the upper and cotton yarns can absorb moisture.
In some embodiments, for example as illustrated in
In some embodiments, the support (with respect to stiffness or stretch properties) of a double layer knitted element can be engineered by the tuck-miss ratio. More tucks close to one another provide a higher amount of the third yarn 310. Thus, a tuck-miss ratio of 1:1 provides a higher support than 1:2, wherein 1:2 provides a higher support compared to 1:3 and so on.
In some embodiments, a distance between two successive tuck stitches may be less than 2.54 cm (one inch). In particular, 2.54 cm of the needle bed of a knitting machine corresponds to 14 needles on a gauge 14 machine or 7 needles on a gauge 7 machine, wherein the gauge of a knitting machine corresponds to the number of needles in 2.54 cm which corresponds to 1 inch. For safety reasons, floats are usually kept shorter than 2.54 cm. If the floats are longer, there is the risk that the needles are not catching the yarn.
In some embodiments, for example as shown in
In some embodiments, the third yarn is attached to at least one of the first and the second layer by tuck stitches. For example, the third yarn 310 may be tucked to the first layer 100 and the second layer 200. In some embodiments, the third yarn may be tucked to only the first layer by immediately successive tuck stitches.
In some embodiments, as shown for example in
In some embodiments, knitting the third yarn 310 several times in between two knitting rows can be used for example to increase the stiffness of a fabric.
In some embodiments, the amount of support can also be engineered by using finer or thicker yarns (150 den to 900 den). In some embodiments, a melt yarn can have a thickness of 2,000 den and for sock knit even more is possible. In particular, higher denier means thicker yarns.
In some embodiments, as shown for example in
In some embodiments, as shown for example in
In some embodiments, not explicitly shown here, the third yarn 310 may be tucked only to the first layer 100, or tucked to the first layer 100 and the second layer 200 by using tuck stitches.
In some embodiments, the third yarn is independent of and can be combined with all double knit structures. That means that the structure can stay the same, but with function (e.g., stretch, stiffness, and conductive yarn) being applied in various places of the upper.
In some embodiments, the third yarn can be inserted in repetitive structures as shown for example in
In some embodiments, the tucked-in third yarn may be combined with knitting techniques such as partial knitting, intarsia (zone knitting), plating, inverted plating, devore, inlay, etc.
In some embodiments, as shown for example in
In some embodiments, the third yarn can also be inserted in spacer-based structures, as shown, for example, in
A variation of the tuck-miss ratio of the third yarn in different areas can provide different stretch or stiffness properties in the respective areas. In contrast to that, an inlay strand has the same property along its width.
In some embodiments, the ratio between the number of tuck stitches and the number of miss stitches can be at least one of 1:1, 1:2, or 1:3.
In some embodiments, as shown for example in
In some embodiments, partial knitting of the third yarn, as shown for example in
Further, partially knitting the third yarn is technically easier compared to an inlay strand. The reason is that the third yarn is connected by tuck to the fabric and it will not jump out when the knitting direction is changed.
In some embodiments, a third yarn 310 with an elastomer material may be used to generate reinforced areas after the application of heat. Besides elastomer, other polymer based yarns can also be used that provide a reinforcing effect on application of heat, pressure or other treatments.
Further, due to the knitting method, no pre-twisting of materials is needed and manual labor is reduced and high-performance upper materials can be created.
In some embodiments, as shown, for example, in
In some embodiments, a shoe 10, in particular a sports shoe, may comprise an upper 15, which comprises a double layer knitted element 20 of the present disclosure and a sole 25, which is attached to the upper 15.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 214 449.4 | Nov 2020 | DE | national |