The present invention relates to a double pipe type heat exchanger and a method for manufacturing the same and, more particularly, to a double pipe type heat exchanger capable of increasing the efficiency of heat exchange between fluids and capable of preventing frictional contact between an inner pipe and an outer pipe and occurrence of contact noises and contact wear and a method of manufacturing the same.
An air-conditioning system for motor vehicles is provided with various kinds of heat exchangers, e.g., a double pipe type heat exchanger. As shown in
A second fluid flows through the second flow path 30 between the inner pipe 10 and the outer pipe 20. The second fluid flowing through the second flow path 30 differs in temperature from the first fluid flowing through the first flow path 12. Accordingly, a heat exchange action occurs between the first fluid and the second fluid when the second fluid makes contact with the first fluid.
With the double pipe type heat exchanger mentioned above, the first fluid and the second fluid differing in temperature from each other are respectively introduced into the first flow path 12 and the second flow path 30 and brought into indirect contact with each other. This enables a heat exchange action to occur between the first fluid flowing through the first flow path 12 and the second fluid flowing through the second flow path 30.
However, the conventional double pipe type heat exchanger has a drawback in that a gap G is generated between the inner pipe 10 and the outer pipe 20 due to the assembling tolerance. This may reduce the heat exchange efficiency and may cause the inner pipe 10 and the outer pipe 20 to make frictional contact with each other.
In other words, with a view to assure smooth assembling of the inner pipe 10 and the outer pipe 20, the double pipe type heat exchanger is designed such that the inner diameter L1 of the outer pipe 20 is greater than the outer diameter L2 of the inner pipe 10. Thus, an assembling tolerance exists between the inner pipe 10 and the outer pipe 20.
The assembling tolerance may become a cause of generating a gap G between the inner pipe 10 and the outer pipe 20. The existence of this gap G poses a problem in that the second fluid introduced into the second flow path flows along a straight line. This tends to sharply reduce the heat exchange time between the first fluid flowing through the first flow path 12 and the second fluid flowing through the second flow path 30. The reduction of the heat exchange time between the first fluid and the second fluid leads to a remarkable reduction of the heat exchange efficiency, which in turn significantly reduce the performance of the heat exchanger.
Another problem of the conventional double pipe type heat exchanger resides in that the gas G existing between the inner pipe 10 and the outer pipe 20 allows the inner pipe 10 to move within the outer pipe 20. Thus, the inner pipe 10 is likely to make contact with the inner circumferential surface of the outer pipe 20.
In particular, if the vibration of a motor vehicle is transferred to the inner pipe 10, the inner pipe 10 vibrates at a high speed. This causes the inner pipe 10 and the outer pipe 20 to make frictional contact with each other. As a result, contact noises may be generated between the inner pipe 10 and the outer pipe 20, and the contact portions of the inner pipe 10 and the outer pipe 20 may be worn. The contact wear of the inner pipe 10 and the outer pipe 20 may significantly reduce the durability of the heat exchanger, thereby shortening the lifespan of the heat exchanger.
In view of the above-noted problems, it is an object of the present invention to provide a double pipe type heat exchanger capable of allowing a fluid to spirally flow along a flow path between an inner pipe and an outer pipe, and a method for manufacturing the same.
Another object of the present invention is to provide a double pipe type heat exchanger capable of increasing the time of heat exchange between a fluid flowing along a first flow path defined within an inner pipe and a fluid flowing along a second flow path defined between an inner pipe and an outer pipe, and a method for manufacturing the same.
A further object of the present invention is to provide a double pipe type heat exchanger capable of maximizing the efficiency of heat exchange between a fluid flowing along a first flow path defined within an inner pipe and a fluid flowing along a second flow path defined between an inner pipe and an outer pipe, and a method for manufacturing the same.
A still further object of the present invention is to provide a double pipe type heat exchanger capable of preventing an inner pipe and an outer pipe from making frictional contact with each other, and a method for manufacturing the same.
A yet still further object of the present invention is to provide a double pipe type heat exchanger capable of preventing generation of contact noises and contact wear in an inner pipe and an outer pipe, and a method for manufacturing the same.
An even yet still further object of the present invention is to provide a double pipe type heat exchanger capable of enjoying enhanced durability and extended lifespan, and a method for manufacturing the same.
In one aspect of the present invention, there is provided a double pipe type heat exchanger, including:
an inner pipe having a first flow path defined therein; and
an outer pipe arranged around the inner pipe to define a second flow path between the inner pipe and the outer pipe,
wherein the inner pipe includes a spiral groove formed on an outer circumferential surface of the inner pipe to extend along a longitudinal direction of the inner pipe, the outer pipe including a reduced diameter portion protruding inwardly so that the inner surface of the outer pipe is intermittently contacted with the outer circumferential surface of the inner pipe.
In another aspect of the present invention, there is provided a double pipe type heat exchanger, including:
an inner pipe having a first flow path defined therein; and
an outer pipe arranged around the inner pipe to define a second flow path between the inner pipe and the outer pipe, the second flow path including a longitudinally-extending gap existing between the inner pipe and the outer pipe and a spiral groove formed on an outer circumferential surface of the inner pipe, the outer pipe including a flow direction changing member for changing a flow direction of a fluid flowing along the second flow path.
In a further aspect of the present invention, there is provided a method for manufacturing a double pipe type heat exchanger including an inner pipe having a first flow path defined therein and an outer pipe arranged around the inner pipe to define a second flow path between the inner pipe and the outer pipe, comprising the steps of:
a) forming a spiral groove on an outer circumferential surface of the inner pipe and forming a pair of enlarged pipe portions in opposite end portions of the outer pipe;
b) inserting the inner pipe into the outer pipe;
c) fixing both ends of the inner pipe and the outer pipe together; and
d) deforming the outer pipe to form a reduced diameter portion protruding toward the outer circumferential surface of the inner pipe.
According to the double pipe type heat exchanger of the present invention and the method of manufacturing the same, the gap existing between the inner pipe and the outer pipe is intermittently blocked so that the second fluid introduced into the second flow path can spirally flow in the closed gap areas. This enables the second fluid flowing along the second flow path to efficiently exchange heat with the first fluid flowing along the first flow path.
The efficient heat exchange between the first fluid flowing along the first flow path and the second fluid flowing along the second flow path helps significantly enhance the performance of the heat exchanger.
Since the outer pipe has the reduced diameter portions for holding the inner pipe against movement, it is possible to reliably prevent the inner pipe from moving within the outer pipe. This makes it possible to prevent the inner pipe and the outer pipe from making frictional contact with each other.
By preventing the frictional contact between the inner pipe and the outer pipe, it is possible to prevent generation of contact noises and contact wear in the inner pipe and the outer pipe. This makes it possible to enhance the durability of the heat exchanger and to prolong the lifespan thereof.
The above and other objects and features of the present invention will become apparent from the following description of preferred embodiments, given in conjunction with the accompanying drawings.
Certain preferred embodiments of a double pipe type heat exchanger in accordance with the present invention and a method for manufacturing the same will now be described in detail with reference to the accompanying drawings. The same reference symbols as used in describing the prior art will be used to designate the same elements.
Referring to
Spiral grooves 14 are formed on the outer circumferential surface of the inner pipe 10. The spiral grooves 14 extend spirally along the outer circumferential surface of the inner pipe 10. The spiral grooves 14 are formed by, e.g., pressing the outer circumferential surface of the inner pipe 10 with a rolling tool (not shown).
The outer pipe 20 is arranged around the inner pipe 10 so that a second flow path 30 can be defined between the inner pipe 10 and the outer pipe 20. In particular, the second flow path 30 is formed into a spiral shape due to the existence of the spiral grooves 14.
In general, the inner diameter L1 of the outer pipe 20 is set greater than the outer diameter L2 of the inner pipe 10. This is to set to an assembling tolerance and to generate a longitudinally-extending gap G between the inner pipe 10 and the outer pipe 20. The existence of the gap G between the inner pipe 10 and the outer pipe 20 makes it possible to smoothly assemble the inner pipe 10 and the outer pipe 20 together.
A second fluid flows along the spiral second flow path 30 defined between the inner pipe 10 and the outer pipe 20. The second fluid flowing along the spiral second flow path 30 differs in temperature from the first fluid flowing along the first flow path 12. Accordingly, a heat exchange action occurs between the first fluid and the second fluid when they flow through the first flow path 12 and the second flow path 30.
Next, the double pipe type heat exchanger of the present invention will be described in more detail with reference to
In the double pipe type heat exchanger of the present invention, the outer pipe 20 includes one or more reduced diameter portions 40 that serve as a flow direction changing means for changing the flow direction of the second fluid flowing along the second flow path 30. The reduced diameter portions 40 have a diameter L3 smaller than the diameter L4 of the remaining portions of the outer pipe 20. The reduced diameter portions 40 are formed in the portion of the outer pipe 20 extending between an inlet pipe 24 and an outlet pipe 26 and are arranged in a spaced-apart relationship along the longitudinal direction of the outer pipe 20. In this regard, the inlet pipe 24 is connected to one end of the outer pipe 20 so that the second fluid can be introduced into the second flow path 30 through the inlet pipe 24. The outlet pipe 26 is connected to the other end of the outer pipe 20 so that the second fluid can be discharged from the second flow path 30 through the outlet pipe 26.
The reduced diameter portions 40 of the outer pipe 20 protrude radially inwards and come into contact with the outer circumferential surface of the inner pipe 10. In particular, the reduced diameter portions 40 are configured to make contact with spiral ridge portions 16 of the inner pipe 10 formed between the spiral grooves 14.
By making contact with the outer circumferential surface of the inner pipe 10, the reduced diameter portions 40 at least intermittently blocks the gap G existing between the inner pipe 10 and the outer pipe 20 with the spiral grooves 14 kept opened. Thus, the second fluid flowing straightforward along the gap G is baffled by the reduced diameter portions 40 so that it can flow spirally along the spiral grooves 14.
As a result, it is possible to increase the time of heat exchange between the first fluid flowing along the first flow path 12 and the second fluid flowing along the second flow path 30. This helps maximize the efficiency of heat exchange between the first fluid and the second fluid.
Since the reduced diameter portions 40 remains in contact with the outer circumferential surface of the inner pipe 10, the outer pipe 20 holds the inner pipe 10 in place, thereby preventing the inner pipe 10 from moving within the outer pipe 20. This prevents occurrence of frictional contact between the inner pipe 10 and the outer pipe 20 otherwise caused by the movement of the inner pipe 10 with respect to the outer pipe 20. As a result, it is possible to prevent generation of contact noises and contact wear in the inner pipe 10 and the outer pipe 20. This assists in enhancing the durability of the heat exchanger and prolonging the lifespan thereof.
It is preferred that the reduced diameter portions 40 be formed along the longitudinal direction of the outer pipe 20 at relatively small intervals. This is to restrain the second fluid from flowing straightforward through the gap G and to cause the second fluid to spirally flow along the spiral grooves 14. As a consequence, the second fluid spirally flowing along the second flow path 30 can efficiently exchange heat with the first fluid flowing through the first flow path 12.
The outer pipe 20 is composed of a straight pipe portion as shown in
It is preferred that the reduced diameter portions 40 be formed by a rolling work in which the outer circumferential surface of the outer pipe 20 is pressed with a forming roller to form the reduced diameter portions 40.
If necessary, the reduced diameter portions 40 may be formed by a press work in which the outer circumferential surface of the outer pipe 20 is pressed with a press mold to form the reduced diameter portions 40.
Preferably, the reduced diameter portions 40 are formed by the rolling work rather than the press work. The reason is that, if the reduced diameter portions 40 are formed by the press work, they may be restored to the original position by the elasticity of the outer pipe 20. In the event that the reduced diameter portions 40 are restored to the original position, they are spaced apart from the outer circumferential surface of the inner pipe 10. Thus, the reduced diameter portions 40 fail to close the gap G existing between the inner pipe 10 and the outer pipe 20.
One example of the operation of the double pipe type heat exchanger configured as above will be described with reference to
In a state that the inner pipe 10 is fitted into the outer pipe 20 to make contact with the reduced diameter portions 40, the first fluid is introduced into the first flow path 12 of the inner pipe 10 and the second fluid is introduced into the second flow path 30 defined between the inner pipe 10 and the outer pipe 20. The first fluid flowing along the first flow path 12 makes indirect contact with the second fluid flowing along the second flow path 30 such that heat exchange occurs between the first fluid and the second fluid.
In the areas of the second flow path 30 where the reduced diameter portions 40 do not exist, the second fluid flows straightforward along the gap G between the inner pipe 10 and the outer pipe 20 and also flows spirally along the spiral grooves 14 formed on the inner pipe 10. While flowing both straightforward and spirally along the second flow path 30, the second fluid exchanges heat with the first fluid flowing along the first flow path 12.
In the areas of the second flow path 30 where the gap G is closed by the reduced diameter portions 40, the second fluid flows spirally along the spiral grooves 14 formed on the inner pipe 10. Thus, the second fluid flowing long way along the spiral grooves 14 can efficiently exchange heat with the first fluid flowing along the first flow path 12.
In this manner, the second fluid repeats the straight and spiral flow and the spiral flow as it passes through the second flow path 30. This enhances the efficiency of heat exchange between the first fluid and the second fluid, thereby significantly improving the performance of the heat exchange.
With the double pipe type heat exchanger configured as above, the gap G existing between the inner pipe 10 and the outer pipe 20 is intermittently blocked so that the second fluid introduced into the second flow path 30 can spirally flow in the closed gap areas. This enables the second fluid flowing along the second flow path 30 to efficiently exchange heat with the first fluid flowing along the first flow path 12.
The efficient heat exchange between the first fluid flowing along the first flow path 12 and the second fluid flowing along the second flow path 30 helps significantly enhance the performance of the heat exchanger.
Since the outer pipe 20 has the reduced diameter portions 40 for holding the inner pipe 10 against movement, it is possible to reliably prevent the inner pipe 10 from moving within the outer pipe 20. This makes it possible to prevent the inner pipe 10 and the outer pipe 20 from making frictional contact with each other.
By preventing the frictional contact between the inner pipe 10 and the outer pipe 20, it is possible to prevent generation of contact noises and contact wear in the inner pipe 10 and the outer pipe 20. This makes it possible to enhance the durability of the heat exchanger and to prolong the lifespan thereof.
Next, a method for manufacturing the double pipe type heat exchanger will be described in detail with reference to
As shown in
Upon finishing formation of the spiral grooves 14 and the enlarged pipe portions 22, the inner pipe 10 is inserted into the outer pipe 20 as shown in
Thereafter, the inner pipe 10 and the outer pipe 20 are bent into a desired shape as shown in
Then, as shown in
The double pipe type heat exchanger manufactured through the afore-mentioned steps has a first flow path 12 through which a first fluid can flow, a second flow path 30 through which a second fluid can flow and a plurality of reduced diameter portions 40 arranged along the outer pipe 20 at a specified interval.
The reduced diameter portions 40 of the outer pipe 20 protrude radially inwards to make contact with the outer circumferential surface of the inner pipe 10. Thus, the gap G existing between the inner pipe 10 and the outer pipe 20 is at least intermittently blocked by the reduced diameter portions 40. The inner pipe 10 is held against movement by the reduced diameter portions 40 of the outer pipe 20.
While certain preferred embodiments of the invention have been described hereinabove, the present invention is not limited to these embodiments. It is to be understood that various changes and modifications may be made without departing from the scope of the invention defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0079940 | Aug 2010 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
2157252 | Visser et al. | May 1939 | A |
2259433 | Kitto | Oct 1941 | A |
2864588 | Booth et al. | Dec 1958 | A |
3104735 | Ludlow et al. | Sep 1963 | A |
3259206 | Straw | Jul 1966 | A |
3566615 | Roeder, Jr. | Mar 1971 | A |
3730229 | D'Onofrio | May 1973 | A |
3864937 | Asher et al. | Feb 1975 | A |
3916504 | Thorne et al. | Nov 1975 | A |
4194560 | Matsuzaki | Mar 1980 | A |
4372374 | Lee | Feb 1983 | A |
4559999 | Servas et al. | Dec 1985 | A |
4878537 | Verkaart | Nov 1989 | A |
5375654 | Hougland et al. | Dec 1994 | A |
6092287 | Thoms | Jul 2000 | A |
7011150 | Komatsubara et al. | Mar 2006 | B2 |
7866378 | Nakamura et al. | Jan 2011 | B2 |
7886420 | Naganawa et al. | Feb 2011 | B2 |
8590604 | Higashiyama et al. | Nov 2013 | B2 |
20010045275 | Banno et al. | Nov 2001 | A1 |
20040007350 | Wu | Jan 2004 | A1 |
20040178627 | Takasaki | Sep 2004 | A1 |
20060096314 | Nakamura et al. | May 2006 | A1 |
20070187067 | Horiguchi et al. | Aug 2007 | A1 |
20110036544 | Shirai et al. | Feb 2011 | A1 |
20110168369 | Kim et al. | Jul 2011 | A1 |
20120097380 | Hilgert et al. | Apr 2012 | A1 |
20130192804 | Matsuda et al. | Aug 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20120043055 A1 | Feb 2012 | US |