Not applicable.
Not applicable.
1. Field of the Invention
The invention relates to vehicle doors capable of opening further than ninety degrees. In another of its aspects the invention relates to multiple pivot hinge mechanisms.
2. Description of Related Art
Automobiles have side doors for occupant entry that generally pivot out from the automobile at an angle approaching ninety degrees. These doors are usually attached to the automobile at a leading edge of the door and door opening.
In certain applications, specifically in pickup trucks having an oversized cab, a second door is mounted to the trailing edge of the door opening. The two doors cooperate to fill the door opening. It has been found, however, that when the second door only opens to ninety degrees, access to the interior of the truck cab, particular in close quarters, is restricted.
It would be advantageous to develop a hinge mechanism for a vehicle door that allows the door to pivot further than ninety degrees, and preferably to pivot flat against the vehicle exterior, to enable ready access to the interior of the vehicle.
A dual pivot concealed hinge mechanism comprises a body side hinge support having a stop pin, a door side hinge support having a cam surface, the cam surface terminating in a detent, and a U-shaped hinge arm pivotally connected to the body side hinge support and the door side hinge support and including a rocker arm pivotally mounted to the hinge arm and having a cam follower biased against the cam surface, and a stop linkage pivotally connected between the hinge arm and the body side hinge support, whereby the hinge mechanism is adapted to operate through a substantially semi-circular range of motion, a first portion of the range of motion pivoting the door side hinge support relative to the hinge arm as the cam follower traverses the cam surface, until the cam follower engages the detent, and a second portion of the range of motion pivoting the hinge arm relative to the body side hinge support until the stop linkage engages the stop pin.
In a further embodiment of the hinge mechanism, the body side hinge support further comprises a torsion rod having a reaction leg, and the stop linkage further comprises a roller adapted to engage the reaction leg. The stop linkage can include a bell crank arm pivotally mounted to the body side hinge support, with the roller mounted on the bell crank arm. The stop linkage is biased against the stop pin by the reaction leg.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Referring to
Door side hinge support 20 is adapted to be secured to a concealed face 11 of a vehicle door 16 by fasteners 17 inserted through apertures 22. Body side hinge support 40 is adapted to be secured to a concealed, outwardly directed face 12 of the vehicle body 14 by fasteners 15 inserted through apertures 42. Hinge arm 60 is pivotally mounted to door side hinge support 20 by door side hinge pin 24 and to body side hinge support 40 by body side hinge pin 44.
Door side hinge support 20 includes upper and lower flanges 26, 28, at least one of which has a cam edge 30. Upper and lower flanges 26, 28 are connected by a bridge portion 32 parallel to hinge pin 24.
Body side hinge support 40 includes upper and lower flanges 46, 48 connected by bridge portion 50. Upper flange 46 is stepped from a lower section 52 to an upper section 54.
With particular reference to FIGS. 2 and 4–5, a rocker arm 70 is pivotally mounted to an upper surface 62 of hinge arm 60 by a pivot pin 64. Rocker arm 70 includes a cam follower 72 at one end, arranged to bear against cam edge 30. Rocker arm 70 is further mounted to rocker arm bracket 76, which is also pivotally mounted to hinge arm 60. Rocker arm 70 and bracket 76 are biased by compression spring 74 operably positioned between a pocket 63 on hinge arm 60 and bracket 76. As a result, cam follower 72 is biased into contact with cam edge 30.
At the body side hinge support 40, a link 80 and bell crank arm 82 form a pivotal linkage between hinge arm 60 and lower flange 48. Lower flange 48 further comprises a pivot stop 88 functionally positioned relative to bell crank arm 82.
A star-wheeled roller bearing 84 is mounted on bell crank arm 82 at an opposing end to link 80. A torsion rod 90 is mounted on body side hinge support 40. Torsion rod 90 includes a reaction leg 92 positioned proximate lower flange 48 of body side hinge support 40 and arranged to interact with star-wheeled roller bearing 84 during pivoting operation of the hinge mechanism 10 about hinge pin 44.
Referring now to
As door side hinge support 20 pivots about hinge pin 24, hinge arm 60 is prevented from rotating about hinge pin 44 by retainer arm 78 engaging face 58 of stop 56. As door side hinge support 20 reaches the partially open position shown in
As cam follower 72 enters detent 34, rocker arm 70 can rotate about pin 64, and is biased to do so by compression spring 74. Cam follower 72, biased into detent 34 by spring 74, provides resistance against door side hinge support 20 inadvertently returning to the closed position, thereby acting as a door check for the first portion of the door opening rotation.
As rocker arm 70 and rocker arm bracket 76 rotate about pin 64, retainer arm 78 is retracted away from face 58 of stop 56. This occurs with a rotation of door side hinge support 20 about hinge pin 24 of approximately 80–100 degrees.
As the vehicle door 16 is urged toward opening further, hinge arm 60, now released to rotate about hinge pin 44, begins to pivot relative to body side hinge support 40. Retainer arm 78 is clear to travel about bell-shaped stop 56 along arcuate face 59.
Referring now to
As bell crank arm 82 rotates when drawn by link 80, star-wheeled roller bearing 84 presses against reaction leg 92 of torsion rod 90. Reaction leg 92 is deflected by star-wheeled roller bearing 84 so that roller bearing 84 can pass by reaction leg 92, which then rebounds behind roller bearing 84. The assembly is configured such that bell crank arm 82 is biased by reaction leg 92 against pivot stop 88. Reaction leg 92 and bell crank arm 82 thus provide resistance against hinge arm 60 rotating counterclockwise toward the closed position.
In order for the vehicle door to be closed, a force exceeding the biasing force of reaction leg 92 on star-wheeled roller bearing 84 and bell crank arm 82 must be exerted on the door. Torsion rod 90, reaction leg 92, and bell crank arm 82 are configured so that the force required to overcome the bias of the reaction leg 92 against star-wheeled roller bearing 84 is less than the force required to dislodge cam follower 72 from detent 34. The pivoting action of the hinge arm 60 about hinge pin 44 will therefore occur first when the vehicle door is being closed. After hinge arm 60 rotates to its fully nested position in body side hinge support 40, additional force exerted on the vehicle door will act to dislodge cam follower 72 from detent 34, and then continue to move the door to the closed position as cam follower 72 traverses cam edge 30.
In the event of a failure of compression spring 74 or reaction leg 92, the hinge mechanism is still prevented from closing out of sequence. During the opening sequence, hinge arm 60 is prevented from rotating relative to body side hinge support 40 because retainer arm 78 is positioned against face 58 by rocker arm 70. Upon entry of cam follower 72 into detent 34, rocker arm bracket 76 rotates and retainer arm 78 is released from face 58. As hinge arm 60 rotates relative to body side hinge support 40, retainer arm 78 closely traverses arcuate face 59 of stop 56, as shown particularly in
The bumper 18 is useful to prevent the hinge arm 60 from striking vehicle body 14 and particularly prevents the rocker arm 70 from contacting vehicle body 14. If rocker arm 70 contacts vehicle body 14, cam follower 72 could become jammed in detent 34, preventing door side hinge support 20 from rotating relative to hinge arm 60, and preventing the vehicle door from being closed. A further function of bumper 18 is to serve as a noise and vibration damper, and, in concert with vehicle doors seals (not shown), to account for tolerances within the hinge mechanism 10 when the vehicle door 16 is closed.
A further embodiment of a hinge mechanism 110 according to the invention is depicted in
While the invention has been described in the specification and illustrated in the drawings with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined in the claims. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out this invention, but that the invention will include any embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
452685 | Webster | May 1891 | A |
2870477 | Anthony et al. | Jan 1959 | A |
3065497 | Faber | Nov 1962 | A |
3370317 | Marchione | Feb 1968 | A |
3729772 | Marchione | May 1973 | A |
4266321 | Pelchat et al. | May 1981 | A |
4285098 | Hicks et al. | Aug 1981 | A |
4672715 | Beckwith | Jun 1987 | A |
4719665 | Bell | Jan 1988 | A |
4744127 | Shadley | May 1988 | A |
5491875 | Siladke et al. | Feb 1996 | A |
5561887 | Neag et al. | Oct 1996 | A |
5570498 | Hipkiss et al. | Nov 1996 | A |
5575037 | Tolle et al. | Nov 1996 | A |
5632065 | Siladke et al. | May 1997 | A |
5685046 | Neag et al. | Nov 1997 | A |
6038738 | Neag et al. | Mar 2000 | A |
6053561 | Hojnowski et al. | Apr 2000 | A |
6149222 | Schambre et al. | Nov 2000 | A |
6550845 | Pietryga | Apr 2003 | B1 |
6606763 | Brückner | Aug 2003 | B1 |
6609748 | Azzouz et al. | Aug 2003 | B1 |
6629337 | Nania | Oct 2003 | B2 |
6681448 | Liang | Jan 2004 | B2 |
6842945 | Hiramatsu | Jan 2005 | B2 |
20030056323 | Liang et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
2203483 | Oct 1988 | GB |
Number | Date | Country | |
---|---|---|---|
20050086770 A1 | Apr 2005 | US |