The present disclosure relates to a double-reeved lifting device for a lifting machinery, as well as a lifting machinery and a lifting method associated thereto.
The present disclosure finds an application, yet without limitation, for a lifting machinery such as a crane, and in particular a tower crane.
In a known manner, a double-reeved lifting device is adapted to be reversibly configured between two reeving configurations including a simple-reeved configuration with two lifting strands and a double-reeved configuration with four lifting strands, wherein the double-reeved lifting device comprises a reeving change system to perform a change of reeving between the simple-reeved configuration and the double-reeved configuration.
Conventionally, such a double-reeved lifting device comprises two reeve blocks, namely a lower reeve block secured to a lifting hook and an upper reeve block, and these two reeve blocks comprise reversible connection means adapted to be reversibly configured between:
The lower reeve block is hanging from the lifting machinery by a lifting rope connected to a lifting winch to make the lower reeve block ascend/descend, and this lifting rope passes through the upper reeve block, so that the connected configuration and the disconnected configuration respectively correspond to a double-reeved configuration and to a simple-reeved configuration, or vice versa, of the double-reeved lifting device, depending on the passage of the lifting rope at the level of the upper reeve block.
For example, the documents FR 1 520 612, FR 2 137 333, FR 2 368 431, FR 2 131 924, FR 2 228 024 describe double-reeved lifting devices in which the connected configuration corresponds to the double-reeved configuration, and the disconnected configuration corresponds to the simple-reeved configuration; the lifting rope passing under a pulley carried by the upper reeve block.
And conversely, the documents GB 2 176 456, FR 2 333 743, DE 31 49 690, DE 35 43 214 describe double-reeved lifting devices in which the connected configuration corresponds to the simple-reeved configuration, and the disconnected configuration corresponds to the double-reeved configuration; the lifting rope passing above a pulley carried by the upper reeve block.
However, the reversible connection means known in this prior art to connect/disconnect the two reeve blocks, are barely satisfactory. Indeed, some of them involve numerous parts which become loose, reduce the reliability of the mechanism and require a lot of maintenance, not to mention the high manufacturing costs, others require accessories to activate actuators located in general at the root of the jib, which limits the possibilities of replacement of the reeving at the root of the jib, posing an accessibility problem if the latter is in an inaccessible area of the work site, other still require manual operations on the ground for connecting/disconnecting the reeve blocks which might turn out to be dangerous if they are badly performed, and which are time-consuming.
The present disclosure aims at solving at least part of the aforementioned drawbacks, by providing a double-reeved lifting device equipped with robust reversible connection means that are reliable over time, and which does not need any part fastened on the jib to allow performing a reeving change, so that it is possible to perform such a reeving change irrespective of the span or location of the lower reeve block along the jib.
The present disclosure also aims at providing reversible connection means equipped with a locking mechanism with movable parts mounted only on one of the two reeve blocks, the other reeve block comprising no movable parts for the connection/disconnection of the two reeve blocks, which may be advantageous in terms of maintenance and reliability.
The present disclosure also aims at reducing the bulk of the lifting device, in particular in the double-reeved configuration in order to enhance the capability of displacement along the jib.
The present disclosure also aims at providing a double-reeved lifting device allowing switching automatically, without any manual intervention, from the double-reeved configuration into the simple-reeved configuration, and vice versa, in a reliable, rapid and reproducible way over time.
Thus, the present disclosure provides a double-reeved lifting device for a lifting machinery, such as for example a crane, comprising two reeve blocks, namely a lower reeve block secured to a lifting hook and an upper reeve block, wherein the two reeve blocks comprise reversible connection means adapted to be reversibly configured between:
wherein the connected configuration and the disconnected configuration respectively correspond to a double-reeved configuration and to a simple-reeved configuration, or vice versa, of the double-reeved lifting device,
said double-reeved lifting device being characterized in that the reversible connection means comprise a locking mechanism mounted on one of the two reeve blocks, and a complementary locking structure mounted on the other one of the two reeve blocks and adapted to cooperate with the locking mechanism;
wherein the complementary locking structure comprises a set forming a striker having at least one striker orifice, and the locking mechanism comprises a bolt mounted slidably movable along a spindle along a main axis and comprising at least one locking finger, wherein the bolt is also pivotally movable around the spindle and the main axis between:
and wherein the locking mechanism and the complementary locking structure comprise respective guide elements, cooperating together so as to convert a relative approach and a relative distancing between the two reeve blocks into concomitant slidings and rotations of the bolt.
Thus, embodiments of the present disclosure provides reversible connection means which are configured so as to convert ascending/descending movements of the lower reeve block (vertical translational movements) into rotational movements of the bolt, which will allow connecting/disconnecting the two reeve blocks easily, and that being so in a safe and reliable manner since few movable parts are necessary, only the bolt being movable, and also which will allow performing reeving change kinematics only thanks to the lifting movement allowing the rise/descent of the lower reeve block.
Thus, it should be noted that the bolt switches from a locking state into an unlocking state by performing a locking rotation, and switches from an unlocking state into a locking state by performing an unlocking rotation, wherein it is the rise/descent of the lower reeve block that will enable pivoting of the bolt.
Moreover, the connection/disconnection phases can be easily automated, since all it needs is to control the ascending/descending movements of the lower reeve block (by simply controlling the lifting movement, such as for example by controlling the motor-driven system of the lifting winch) to switch from a disconnected configuration into a connected configuration, and vice versa.
It should also be noted that the present disclosure allows performing a reeving change without the need for a part fastened on the jib, because the reversible connection means are integrated to the two reeve blocks, thereby allowing performing a reeving change anywhere along the jib.
In an embodiment, the complementary locking structure comprises a catch against which the bolt could abut during a relative approach between the two reeve blocks for a sliding of the bolt in a first sliding direction, and the locking mechanism comprises an elastic biasing element, such as for example a spring, urging the bolt to slide in a second sliding direction, opposite to the first sliding direction.
Thus, all it needs is to lift/lower the lower reeve block for the bolt to abut, or not, against this catch, with the elastic biasing element which acts against a push exerted by the catch on the bolt, which makes the movements more reliable and allows for simple maneuvers during the connection/disconnection phases.
According to one feature, the guide elements comprise complementary guide elements provided on the locking mechanism so as to cooperate in sliding bearing in order to convert a sliding of the bolt in the first sliding direction into a concomitant first rotation of the bolt, and a sliding of the bolt in the second sliding direction into a concomitant second rotation of the bolt.
Thus, when the bolt slides (by the action of the catch or of the elastic biasing element), the latter concomitantly pivots so as to engage with the set forming the striker or to disengage from the set forming the striker. In this embodiment, it should be noted that the locking rotation is decomposed into a combination of the first rotation and of the second rotation and, similarly, the unlocking rotation is also decomposed into a combination of the first rotation and of the second rotation.
According to one variant, the locking rotation is performed in one single rotation and, similarly, the unlocking rotation is also performed in one single rotation.
According to one possibility, the first rotation and the second rotation are performed in the same rotational direction.
Thus, all it needs is to successively perform the first rotation and then the second rotation, and therefore successively perform sliding of the bolt in the first sliding direction and then in the second sliding direction, to make the bolt switch from a locking state into an unlocking state, and vice versa.
According to one variant, the first rotation and the second rotation are performed in opposite rotational directions.
According to another possibility, a sequence of the first rotation and of the second rotation leads to an overall rotation of the bolt at an overall angular amplitude that is equivalent to 90 degrees or to 90 degrees plus N times 180 degrees, N being an integer other than zero.
Thus, a sequence of the first rotation and then of the second rotation leads to a pivoting of the bolt by 90 degrees, or by 270 degrees, . . . , so that the bolt lies orthogonally.
Advantageously, the first rotation is performed at a first angular amplitude and the second rotation is performed at a second angular amplitude, wherein each of the first angular amplitude and the second angular amplitude are equivalent to 45 degrees.
In general, the combination of the first angular amplitude and of the second angular amplitude leads to an overall angular amplitude that is equivalent to 90 degrees or to 90 degrees plus N times 180 degrees, N being an integer other than zero.
According to an embodiment, the locking mechanism comprises:
According to one feature, the locking housing has a bottom wall in which an opening is formed for the passage of the free end of the spindle and of its stop, said opening being delimited by a periphery forming the catch.
According to another feature, the set forming the striker comprises at least one lateral flange delimiting the locking housing and in which the striker orifice is provided.
According to one variant, the lateral flange extends parallel to the main axis.
According to one possibility, the bolt comprises two locking fingers, diametrically facing each other along the main axis, and the set forming the striker comprises two lateral flanges facing each other, disposed on either side of the catch, and in which two respective striker orifices are provided facing each other.
According to another possibility, the bolt comprises:
Thus, the outer sleeve protects the inner part including the distal and proximal guide elements thereof.
Advantageously, the at least one locking finger is fastened to the inner part and crosses the outer sleeve.
In other words, the locking finger(s) is or are fastened to the inner part and cross(es) the outer sleeve.
In an embodiment, the at least one proximal guide element comprises several proximal ramps successively distributed around the main axis on the proximal end of the bolt, and the at least one complementary proximal guide element comprises one or several proximal dowel pin(s) projecting radially on the spindle in order to slidably bear on one of the proximal ramps.
Similarly, the at least one distal guide element comprises several distal ramps successively distributed around the main axis on the proximal end of the bolt, and the at least one complementary distal guide element comprises one or several distal dowel pin(s) projecting radially on the spindle in order to slidably bear on one of the distal ramps.
According to one possibility, the proximal ramps and the distal ramps are inclined in opposite directions around the main axis, so that the first rotation and the second rotation of the bolt is performed in the same rotational direction, during the conversions of the slidings of the bolt in the first sliding direction and the second sliding direction respectively.
According to another possibility, the at least one locking finger extends orthogonally to the main axis, and the at least one striker orifice comprises a first oblong section along a direction perpendicular to the main axis and perpendicular to the locking finger in the locking state.
Such a first oblong section assists in the angular displacement of the locking finger(s).
According to another possibility, the at least one striker orifice comprises a second oblong section along a direction parallel to the main axis, disposed at the middle of the first oblong section.
Such a second oblong section allows following the bolt, and therefore the locking finger(s), during sliding of the bolt.
The present disclosure also relates to a lifting machinery, such as for example a crane, comprising a jib and a double-reeved lifting device formed so as to lift/lower a load along the jib, said double-reeved lifting device being in accordance with the embodiments herein, wherein the lower reeve block hangs from the jib by a lifting rope connected to a lifting winch to make the lower reeve block ascend/descend, this lifting rope passing through the upper reeve block, and wherein:
To the extent that the lifting winch allows making the lower reeve block ascend/descend, then the change in the configuration between the connected configuration and the connected configuration (and therefore between the double-reeved configuration and the simple-reeved configuration) take place only when controlling the lifting winch.
In one embodiment:
Advantageously, the lifting machinery comprises a dispensing carriage movably mounted on the jib and linked to a dispensing system adapted to displace the dispensing carriage along the jib in opposite forward direction and backward direction, and wherein the lower reeve block hangs from said dispensing carriage by the lifting rope.
The present disclosure also relates to a method for lifting a load in a lifting machinery, comprising:
In an embodiment:
The displacements of the lower reeve block, in the connection phase and in the disconnection phased, are automated.
According to one variant, in the connection phase and in the disconnection phase, the displacements of the lower reeve block are driven at a reduced speed, below a predefined speed threshold.
Other features and advantages of the present disclosure will appear upon reading the detailed description hereinafter, of a non-limiting example of implementation, made with reference to the appended figures in which:
Referring to
This double-reeved lifting device 1 comprises two reeve blocks 3, 4, namely:
Also, the lower reeve block 3 supports lower rope deflecting means, and the upper reeve block 4 supports upper rope deflecting means, such as for example a pulley 41, for the passage of the lifting rope. Thus, the double-reeved lifting device 1 is formed so as to lift/lower a load along the jib of the lifting machinery.
The two reeve blocks 3, 4 are equipped with reversible connection means adapted to be reversibly configured between:
Depending on the passage of the lifting rope in the lower rope deflecting means provided on the lower reeve block 3 and in the upper rope deflecting means provided on the upper reeve block 4, the connected configuration and the disconnected configuration respectively correspond to a double-reeved configuration and to a simple-reeved configuration, or vice versa, of the double-reeved lifting device 1; the simple-reeved configuration being associated to holding of the hook 30 (and therefore of the load) by two lifting strands of the lifting rope, and the double-reeved configuration being associated to holding of the hook 30 (and therefore of the load) by four lifting strands of the lifting rope.
The reeve block 4 supports, at the upper portion thereof, an upper stop 43 adapted to abut against the dispensing carriage 9, when the upper reeve block 4 is at the high stop on the jib, alone without the lower reeve block 3. For this purpose, and as shown in
The reversible connection means comprise a locking mechanism 5 mounted on the upper reeve block 4, and a complementary locking structure 6 mounted on the lower reeve block 3 and adapted to cooperate with the locking mechanism 5.
Referring to
The locking housing 62 is in the form of an elongate-configured groove along the main axis (and therefore along a vertical direction), opening onto an upper sear 63 of the frame 60.
This frame 60 comprises a set forming a striker provided with two lateral flanges 64 facing each other, extending parallel to the main axis (and therefore along a vertical direction) and orthogonal to the walls 61, wherein these two lateral flanges 64 laterally delimit the locking housing 62. Striker orifices 65 are formed facing each other in the respective lateral flanges 64, so that this set forming the striker has two striker orifices 65 facing each other.
This frame 60 also comprises a bottom wall 66 in which an opening 67 is formed delimited by a periphery forming a catch 68. This bottom wall 66 extends between the two lateral flanges 64, orthogonal to the main axis. Thus, the two lateral flanges 64 are disposed on either side of this catch 68.
Each striker orifice 65 has an inverted «T»-like general shape, and comprises a first oblong section 651 along a direction perpendicular to the main axis, and a second oblong section 652 along a direction parallel to the main axis, disposed at the middle of the first oblong section 651; wherein this second oblong section 652 extends upwards (in the direction of the upper reeve block 4) from the middle of the first oblong section 651.
Referring to
The bolt 52 has a distal end 521 facing the stop 51, and a proximal end 522 opposite to the distal end 521. The elastic biasing element 53 is in the form of a spring mounted around the spindle 50 and bearing on this proximal end 522 of the bolt 52 to urge it to slide in the direction of the stop 51 along a sliding direction called second sliding direction later on (sliding downwards in the illustrated example).
Referring to
It should be noted that the set comprising the spindle 50 and the bolt 52 is adapted to fit inside the locking housing 62 of the complementary locking structure 6 during a relative approach between the two reeve blocks 3, 4, until the stop 51 fits inside the opening 67 provided in the bottom wall 66 and then the distal end 521 of the bolt 52 abuts against the periphery of the opening forming the catch 68 and thus the bolt 52 slides in a first sliding direction (sliding upwards in the illustrated example) by the effect of the push exerted by the catch 68. Also, it should be noted that the opening 67 is sized for the passage of the free end of the spindle 50 and of its stop 51.
Conversely, the absence of such a push exerted by the catch 68 on the bolt 52, and therefore during a relative spacing between the two reeve blocks 3, 4, the elastic biasing element 53 urges the bolt 52 to slide in the second sliding direction (for recall, sliding downwards in the illustrated example), opposite to the first sliding direction.
Moreover, the locking mechanism 5 comprises complementary guide elements intended to cooperate in sliding bearing in order to: convert a sliding of the bolt 52 in the first sliding direction into a concomitant first rotation of the bolt 52, and
These complementary guide elements comprise the following means configured so as to convert a sliding of the bolt 52 in the first sliding direction into a concomitant first rotation of the bolt 52:
These complementary guide elements comprise the following means configured so as to convert a sliding of the bolt 52 in the second sliding direction into a concomitant second rotation of the bolt 52:
It should be noted that the shapes, dimensions and positioning of the proximal ramps 57, of the distal ramps 58, of the proximal dowel pins 570 and of the distal dowel pins 580, are such that the first rotation and the second rotation are performed in the same rotational direction, and that the first rotation is performed at a first angular amplitude of 45 degrees and the second rotation is performed at a second angular amplitude of 45 degrees. Also, a sequence of the first rotation and of the second rotation leads to an overall rotation of the bolt 52 at an overall angular amplitude that is equivalent to 90 degrees.
Thus, it is provided that the proximal ramps 57 and the distal ramps 58 are inclined in opposite directions around the main axis, so that the first rotation and the second rotation of the bolt 52 are performed in the same rotational direction. Moreover, each of the proximal ramps 57 and distal ramps 58 defines saw teeth-like profiles on the respective proximal and distal peripheral edges of the inner part 54, with ridges (in the form of tips) and valleys.
As it will be described later on, the bolt 52 is pivotally movable around the spindle 50 and the main axis between:
In the unlocking state, the locking fingers 55 extend parallel to the lateral flanges 64, so that the set comprising the spindle 50 and the bolt 52 could fit inside the locking housing 62 (upon a relative approach between the two reeve blocks 3, 4), and conversely could leave the locking housing 62 (upon a relative spacing between the two reeve blocks 3, 4), without the locking fingers 55 abutting against the lateral flanges 64.
In the locking state, the locking fingers 55 have pivoted by 90 degrees around the main axis, in comparison with the unlocking state, so that the locking fingers 55 could fit through the considered striker orifices 65 which are provided in the lateral flanges 64.
Thus, the complementary guide elements (proximal ramps 57, distal ramps 58, proximal dowel pins 570 and distal dowel pins 580), as well as the catch 68 and the elastic biasing element 53 together form respective guide elements to convert a relative approach and a relative spacing between the two reeve blocks 3, 4, into concomitant slidings and rotations of the bolt 52, to make this bolt 52 switch from a locking state into an unlocking state, and vice versa, and therefore to switch from a connected configuration into a disconnected configuration, and vice versa.
The locking mechanism 5 also comprises two slit walls 59, disposed on either side of the spindle 50, each having a slot open at the bottom (facing the lower reeve block 3), with a flared mouthpiece 590 adapted so that the frame 60 fits inside the slots of these slit walls 59 upon a relative approach between the two reeve blocks 3, 4 (as shown in
The following description covers a connection phase for the switch from the disconnected configuration into the connected configuration, with reference to
Referring to
To switch from the disconnected configuration into the connected configuration, the lower reeve block 3 begins by being raised, as schematized by the arrow MO, for a relative approach between the two reeve blocks 3, 4, until the stop 51 fits inside the opening 67 provided in the bottom wall 66 (as shown in
Because of this sliding of the bolt 52 in the first sliding direction, the distal ramps 58 leave contact with the distal dowel pins 580 and, on the contrary, the proximal ramps 57 come into contact with the proximal dowel pins 570, thereby making the bolt 52 pivot into the first rotation of 45 degree, as shown in
Referring to
Because of this sliding of the bolt 52 in the second sliding direction, the proximal ramps 57 leave contact with the proximal dowel pins 570 and, on the contrary, the distal ramps 58 come into contact with the distal dowel pins 580, thereby making the bolt 52 pivot into the second rotation of 45 degree, as shown in
Referring to
The following description covers a connection phase for switching from the connected configuration into the disconnected configuration.
To switch from the connected configuration into the disconnected configuration, the lower reeve block 3 is first raised (with the upper reeve block 4), until the upper reeve block 4 reaches the high stop on the jib, and more specifically until the upper stop 43 of the upper reeve block 4 abuts against the dispensing carriage 9, with its upper stop 43 fitted into the slot 90 provided on the underside of the dispensing carriage 9. It should be noted that the bolt 52 is in its locking state, with the locking fingers 55 which fit inside the second oblong sections 652 of the respective striker orifices 65.
Once the upper reeve block 4 is at the high stop, the lower reeve block 3 continues rising, while the upper reeve block 4 is blocked, so that the locking fingers 55 reach the first oblong sections 651 of the respective striker orifices 65, afterwards the stop 51 fits inside the opening 67 provided in the bottom wall 66 and afterwards the distal end 521 of the bolt 52 abuts against the periphery of the opening forming the catch 68 and thus the bolt 52 slides in the first sliding direction (sliding upwards in the illustrated example) by the effect of the push exerted by the catch 68.
This sliding of the bolt 52 in the first sliding direction leads to the first rotation of the bolt 52 by 45 degrees, as already described by the sliding contact between the proximal ramps 57 and the proximal dowel pins 570.
In a second step, the lower reeve block 3 is displaced in descent, so that the catch 68 descends with the lower reeve block 3, which enables the elastic biasing element 53 to make the bolt 52 slide in the second sliding directions.
This sliding of the bolt 52 in the second sliding direction leads to the second rotation of the bolt 52 by 45 degrees, as already described by the sliding contact between the distal ramps 58 and the distal dowel pins 580.
At the end of these two 45 degree rotations, the locking fingers 55 have pivoted by 90 degrees and have completely cleared the respective striker orifices 65; the bolt 52 then being in its unlocking state. Thus, the lower reeve block 3 and the upper reeve block 4 are disconnected, and then the lower reeve block 3 could continue its descent alone in the disconnected configuration, without the upper reeve block 4 which remains at the level of the dispensing carriage 9.
Thus, it should be noted that, in the connection phase and in the disconnection phase, only the control of the ascending/descending movements of the lower reeve block 3 allows switching from a connected configuration into the disconnected configuration, and vice versa. The control of the ascending/descending movements of the lower reeve block 3 is performed by controlling the lifting winch.
Also, it may be advantageous to automate the displacements of the lower reeve block 3, in the connection phase and in the disconnection phase, by means of a monitoring/control unit which drives the lifting winch. In this context of an automation of the connection and disconnection phases, it may be advantageous to provide for one or several sensor(s) allowing detecting relative positions between the lower reeve block 3 and the upper reeve block 4, such as for example a sensor allowing detecting when the upper reeve block 4 is at the high stop on the jib, and more specifically when the upper stop 43 of the upper reeve block 4 abuts against the dispensing carriage 9. Indeed, this position represents a starting point of the movements that will follow in the connection and disconnection phases.
Moreover, it could be considered to reverse the positions of the locking mechanism 5 and of the complementary locking structure 6 of the reversible connection means, by arranging the locking mechanism 5 on the lower reeve block 3 and by arranging the complementary locking structure 6 on the upper reeve block 4. It is also possible to operate with one single rotation of the bolt 52 for the locking mechanism 5. Alternatively, it is possible to operate with other rotational amplitudes or directions of the bolt 52. It could also be considered to provide for an elastic biasing element 53 other than a spring, such as for example an elastic leaf, a return mechanism, or other equivalent means.
Number | Date | Country | Kind |
---|---|---|---|
2009401 | Sep 2020 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
2805875 | Modrey | Sep 1957 | A |
2973942 | Schaper | Mar 1961 | A |
3280439 | McCarthy | Oct 1966 | A |
3306469 | Durand | Feb 1967 | A |
4927286 | Hobluigie | May 1990 | A |
4943182 | Hoblingre | Jul 1990 | A |
Number | Date | Country |
---|---|---|
2114418 | Oct 1972 | DE |
2845874 | Apr 1980 | DE |
3149690 | Jun 1983 | DE |
3543214 | Dec 1986 | DE |
1520612 | Apr 1968 | FR |
2131924 | Nov 1972 | FR |
2137333 | Dec 1972 | FR |
2228024 | Nov 1974 | FR |
2228024 | Jan 1975 | FR |
2333743 | Jul 1977 | FR |
2368431 | May 1978 | FR |
2368431 | Jun 1978 | FR |
3061164 | Jun 2018 | FR |
2176456 | Dec 1986 | GB |
2176456 | Dec 1986 | GB |
MI20101302 | Jan 2012 | IT |
MI20101302 | Jan 2012 | IT |
Entry |
---|
FR search report and written opinion issued by French Patent Office (INPI) dated May 27, 2021, in connection with corresponding FR Appl. 20/09401. |
Number | Date | Country | |
---|---|---|---|
20220081266 A1 | Mar 2022 | US |