This disclosure relates to double row thrust bearings; and, more particularly, to double row tapered roller thrust bearings having an increased load capacity without a concomitant increase in the size of the bearing.
The increasing demand for power density in mechanical systems often requires a rolling element bearing to support increased loads while occupying the same, and in some instances, a smaller space. For example, in the oil and gas industry, the thrust load on a top drive assembly has increased 20%; while, at the same time, the envelope size for the supporting bearing has remained the same. Doing so has made it possible to avoid redesign of the drive system. Because of this and similar situations, bearing makers are now challenged to meet this new demand of developing new bearings having an improved load carrying capacity while still fitting within the same space as previous bearings having less load carrying capacity.
Thrust roller bearings have higher axial load carrying capacities than their ball bearing counterparts. Further, tapered roller thrust bearings are often favored over cylindrical thrust bearings because of the essentially pure rolling motions between a roller body (i.e., rolling element) and its raceway contacts. This pure rolling motion results from the so-called “on apex” design as illustrated in
The present disclosure is directed to a double row thrust bearing assembly which occupies the same spatial envelope as a single row thrust bearing assembly which can only support a lesser load. The assembly includes a bottom plate with inner and outer conical raceways, a top plate with a flat raceway, a set of identically formed inner rollers and a set of identically formed outer rollers. The assembly may further include an inner cage to separate the rollers forming the set of inner rollers and an outer cage to separate the rollers forming the set of outer rollers. When the bearing is fully assembled, the apices of the respective inner and outer rollers are directed at the same point on an axis of the bearing.
Various relationships with respect to the size and shapes of the rollers are used to maximize the bearing assembly's load carrying capacity.
A bearing assembly made in accordance with the present disclosure has an increased load carrying capacity as compared to that of a single row thrust bearing assembly even though the double row thrust bearing assembly occupies the same envelope as the single row thrust bearing assembly.
The result is bearing assembly which does not have to be made larger in order to support greater loads to which it is subjected.
Other objects and features will be in part apparent and in part pointed out hereinafter.
The following detailed description illustrates the invention by way of example and not by way of limitation. This description clearly enables one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention. Additionally, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or carried out in various ways. Also, it will be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Referring to
Inner and outer rollers 16, 17 are tapered rollers with each roller having a tapered body. The large end of each roller is larger in diameter than the small end thereof with the outer end of each roller being a spherical outer end 16s, 17s respectively (see
As shown in
When bearing 10 is fully assembled as shown in
Referring to the right half of
where Di=EE′ is the roller diameter at the large end of inner rollers 16, Do=DD′ is the roller diameter at the large end of outer rollers 17, α is the half included angle for the outer rollers and β is the half included angle for the inner rollers (see
where li and lo are the effective roller lengths for the inner and outer rollers respectively. For geometry and load capacity considerations, the roller aspect ratio ρo for outer rollers 17 is chosen in accordance with the following relationship:
The aspect ratio ρo for the outer roller is also chosen with respect to the aspect ratio of the inner rollers ρi, the number of rollers Zi for the inner rollers 16, and the number Zo of rollers for the outer rollers 17; such that, the following inequality is met
The number of rollers Zi for the inner rollers is less than the number Zo for the outer rollers. To maximize the load carrying capacity of a double row tapered roller thrust bearing 10, it is desirable to maximize the following function F,
For practical considerations, the following geometrical relationships are recommended
where α, Do, ρ, and Zo are independent variables, whose values can be taken from a corresponding single row thrust tapered roller bearing (not shown) having a similar spatial envelope; β, Di, ρo, ρi and Zi are dependent values whose values are determined such that F in equation (4) is maximized and the relationships set forth in equations (5)-(7) are met.
In practice, maximization of F can be carried out iteratively by maximizing the first term in equation (4) while, at the same time, minimizing the second term in this equation. The former yields Zi and the latter, together with equation (6), yields β. The other parameters (Di, ρo, ρi) are then obtained using equations (5)-(7).
Those skilled in the art will understand that multi-row (three or more rows) tapered roller thrust bearings can be constructed using the same design format and following similar design and analysis techniques as used to produce double-row bearing 10.
It will be understood by those skilled in the art that bearing 10 can be a full complementary bearing; in which instance, no cages are required. Further, the rollers may have a layer of coating to minimize friction during possible roller-to-roller contacts.
Those skilled in the art will understand that the multi-row tapered roller thrust bearing 10 can be produced through various manufacturing methods. One manufacturing method involves forging, heat treatment, and then hard turning. The raceways 12, 13, and 15 and ribs 20, 21 will be made through a turning operation after heat treated for proper surface hardness. Macro profiles as well as micro profiles can be put on the raceways 12, 13, and 15 to reduce contact stresses. The turning operation can be carried out in a computer numerical controlled turning machine (CNC) for greater accuracy and consistency. Then, the raceways 12, 13, and 15 can be subsequently honed after the hard turning operation to further improve surface finishes.
Various features and advantages of the invention are set forth in the following claims.
The present application claims the benefit of U.S. provisional patent application No. 61/839,451 entitled “Double Row Tapered Roller Thrust Bearing for Improved Loading Capacity” filed Jun. 26, 2013, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/043840 | 6/24/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61839451 | Jun 2013 | US |