A. Field of the Invention
The present invention relates to a double side scanner module, especially to a scanner module consisting of a U-shaped inversion device, and two image information reading devices, thereby to read the images on both sides of an original in a single pass.
B. Description of the Prior Art
A conventional scanner or facsimile machine can only scan one side of an original. If a user wants to scan two sides of an original, he has to manually turn over the original to the other side and scan the original once again. To provide a scanner with the functions of double side scanning, an U.S. Pat. No. 4,743,974, “Dual Scanning Array Raster Input Scanner” by Dan F. Lockwood disclosed a scanner which uses two Charge Coupled Devices (CCD) disposed face to face so as to read the images on the two sides of an original in a single pass.
Refer to
In practice, it would be difficult for the invention of Lockwood to avoid the shadows caused by the fluorescent light emitted from the two face-to-face CCDs 11, 12 even though Lockwood taught that the two CCDs 11, 12 shall be arranged biased with an offset. For one thing, since the two CCDs 11, 12 read the image information almost simultaneously, they cannot be located far apart. In other words, they must be arranged closely enough to be able to read the entire page without missing the image on the front end or the lower end. In that case, the fluorescent light emitted by the two CCDs 11, 12 is so strong that the shadow effects can hardly be avoided according to the structure as illustrated in FIG. 1. Moreover, the scanner module of Lockwood is too complicated to be implemented inside a small image reading apparatus, such as a scanner or a facsimile machine.
Accordingly, it is an object of the present invention to provide a double side scanner module which is simple in structure and small in size, so as to read the images on the two sides of an original, thereby to improve the efficiency of image reading.
It is another object of the present invention to provide a scanner module which can be adapted to various still image reading apparatus, such as a facsimile machine and a scanner, so as to improve the efficiency of image reading.
In accordance with the present invention, a scanner module characterized in the U-shaped inversion device and two image information reading devices is provided for reading images on the two sides of an original in a single pass. The U-shaped inversion device has two ends for providing a paper feeding path and a paper output path respectively. The two ends are at the same side for the convenience of operation. At each of the paper feeding path and the paper output path, there is a glass window for an original to pass through. Beneath each of the glass windows, there is an image information reading device. When an original is fed into the paper feeding path and conveyed through the first glass window, the first image information reading device starts to read the image on the first side of the original. When the original is conveyed through the U-shaped inversion device, the scanned side will be inverted to the other side. Consequently, when the original is conveyed through the second glass window, the second image information reading device can read the image on the second side of the original and complete the image reading on both sides of an original. Since the inventive scanner module is small in size, so it can be easily adapted to a scanner or a facsimile machine to read the images on both sides of an original in a single pass, thereby to improve the efficiency of image reading. Moreover, the inventive module is simple in structure, so the manufacture cost can be remarkably reduced. More importantly, since the two image information reading devices are not disposed face-to-face, the shadows can be successfully avoided.
These and other objects and advantages of the present invention will become apparent by reference to the following description and accompanying drawings wherein:
A preferred embodiment of the invention is described below. This embodiment is merely exemplary. Those skilled in the art will appreciate that changes can be made to the disclosed embodiment without departing from the spirit and scope of the invention.
To solve the problems and achieve the objects mentioned above, the present invention uses a U-shaped inversion device and two independent image information reading devices for reading images on both sides of an original. The preferred embodiment of the present invention is illustrated in FIG. 2. It mainly consists of a U-shaped inversion device 22, a first glass window 21, a first contact image sensor module 23, a second glass window 24, and a second contact image sensor module 25.
Refer to
The paper feeding path and the paper output path are at the same side, so as to reduce the size of the housing and make the operation more easily. The contact image sensor module 23, 25 can also be replaced with a Charge Coupled Device (CCD), as illustrated in FIG. 3.
Refer to
On the other hand, since the inventive scanner module is small in size and simple in structure, so it can be easily adapted to a scanner or a facsimile machine to provide the function of double-side scanning. Refer to
To sum up, the inventive scanner module is simple in structure, low in cost and adaptable to various scanner devices. More importantly, it can improve the scanning efficiency by reading the images on both sides of an original in a single pass. Moreover, since the image information reading devices of the present invention are not disposed face-to-face, therefore the shadow effects can be successfully avoided.
Various modifications and combinations of the illustrative embodiment, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4743974 | Lockwood | May 1988 | A |
| 4908719 | Nonoyama | Mar 1990 | A |
| 4975749 | Tsunoda et al. | Dec 1990 | A |
| 5298937 | Telle | Mar 1994 | A |
| 5339139 | Fullerton et al. | Aug 1994 | A |
| 5463451 | Acquaviva et al. | Oct 1995 | A |
| 5610731 | Itoh | Mar 1997 | A |
| 5619343 | Amemiya | Apr 1997 | A |
| 5689792 | Acquaviva et al. | Nov 1997 | A |
| 5812279 | Fukushima et al. | Sep 1998 | A |
| 5943451 | Lee | Aug 1999 | A |
| 6400472 | Yoshimizu | Jun 2002 | B1 |
| 6721074 | Kao | Apr 2004 | B1 |
| 7518767 | Chen et al. | Apr 2009 | B2 |
| 20040027620 | Tseng | Feb 2004 | A1 |
| 20040184120 | Araki et al. | Sep 2004 | A1 |
| 20040233479 | Hashizume | Nov 2004 | A1 |
| 20050111064 | Iwasaki | May 2005 | A1 |
| 20070070449 | Poletto | Mar 2007 | A1 |
| 20090122367 | Murakami et al. | May 2009 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 09311600 | May 1999 | US |
| Child | 11405042 | US |