1. Field of the Invention
The present invention relates to devices and methods which are used to close septal openings. In particular, this invention is directed to devices and methods which are used to close a patent foramen ovale (PFO) in the septum between the left atrium and right atrium.
2. Background Information
A PFO, illustrated in
The foramen ovale serves a desired purpose when a fetus is gestating in utero. Since blood is oxygenated through the umbilical chord, and not through the developing lungs, the circulatory system of a heart in a fetus allows the blood to flow through the foramen ovale as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale. This functional closure is subsequently followed by anatomical closure of the two over-lapping layers of tissue the septum secundum 14 and septum primum 15. However, a PFO has been shown to persist in a number of adults.
The presence of a PFO is generally considered to have no therapeutic consequence in otherwise healthy adults. However, patients suffering a stroke or transient ischemic attack (TIA) in the presence of a PFO and without another cause of ischemic stroke paradoxical embolism via a PFO is considered in the diagnosis. While there is currently no proof for a cause-effect relationship, many studies have confirmed a strong association between the presence of a PFO and the risk for paradoxical embolism or stroke. In addition, there is good evidence that patients with PFO and paradoxical embolism are at increased risk for future, recurrent cerebrovascular events.
Accordingly, patients with an increased future risk are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event. These patients are commonly treated with oral anticoagulants, which have the potential for adverse side effects, such as hemorrhaging, hematoma, and interactions with a variety of other drugs. The use of these drugs can alter a person's recovery and necessitate adjustments in a person's daily living pattern.
In certain cases, such as when anticoagulation is contraindicated, surgery may be necessary or desirable to close the PFO. The surgery would typically include suturing a PFO closed by attaching the septum secundum to the septum primum. This sutured attachment can be accomplished with either an interrupted or a continuous stitch and is a common way a surgeon shuts a PFO under direct visualization.
Umbrella devices and a variety of other similar mechanical closure designs, developed initially for percutaneous closure of atrial septal defects (ASDs), have been used in some instances to close PFOs. These devices have the potential to allow patients to avoid the potential side effects often associated with anticoagulation therapies and the risks of invasive surgery. However, umbrella devices and the like which are designed for ASDs are not optimally suited for use as a PFO closure device.
Currently available designs of septal closure devices present drawbacks, including that the implantation procedure is technically complex. Additionally, there are not insignificant complication rates due to thrombus, fractures of the components, conduction system disturbances, perforations of heart tissue, and residual leaks. Many devices have high septal profile and may include large masses of foreign material which may lead to unfavorable body adaptation of a device. Since ASD devices are designed to occlude a hole, many lack anatomic conformability to the PFO flap-like anatomy. That is, when inserting an ASD into the heart to close a PFO, the narrow opening and the thin flap may form impediments to proper deployment. Even if an occlusive seal is formed, the device may be deployed in the heart on an angle which could leave some components not securely seated against the septum. Finally, some septal closure devices are complex to manufacture, which may result in lack of consistency in product performance.
Nitinol (an alloy of nickel and titanium) is known to be used in medical devices because of its biocompatablity and, especially, its unique properties. Nitinol is a member of a class of materials which exhibit shape memory characteristics. Specifically, nitinol has the ability to “remember” a shape and, after being deformed, will return to that shape once a certain temperature is reached. Hence, nitinol has been used to create medical devices that have a desired configuration in the body, e.g., a vena cava filter. The device is deformed into a delivery configuration (generally a reduced profile for delivery through a catheter). Once the device is delivered to the desired site, the nitinol changes configuration into the desired shape upon achieving a certain temperature. This is generally considered thermal responsive shape memory. Nitinol, and other materials, also exhibit superelastic shape memory. In this case, the nitinol can be restrained in a delivery configuration and then will return to the desired configuration as the device leaves the delivery catheter. Of course, some devices can be a combination of thermally induced shape memory and superelastic shape memory.
The present invention is designed to address these and other deficiencies of the prior art septal closure devices.
The present invention provides a device which is adapted to press together the septum primum and the septum secundum between the atrial chambers to close any tunnel in the septum. The device in its preferred form has two clamping members, one on each side of the septum and a central connector which connects the two clamping members and passes through the tunnel. The device is configured to conform to the anatomy such that the tunnel is not substantially deformed by the device. The central connector, in its preferred form has two wires that are spaced apart so that the wires are proximate the lateral sides of the tunnel. The spacing allows the device to be centered at an appropriate location.
In a preferred form of the device, the clamping members are spirals which are formed from nitinol. The spirals may be constructed of wire, or alternatively, may be constructed of nitinol sheets which have been cut or shaped to form the spirals. The spirals may circle around more or less than 360 degrees and may have the a helical form. In one preferred embodiment the connector may be attached to the inner end of the wire that forms the spiral, in another, the connector may be attached to the outer end of the wire that forms the spiral. Of course, depending on the desired configuration, the connector may be connected to the inner location on one side of the device and the outer location on the other side of the device.
The clamping member may be a spiral or some other structure or configuration which secures the septum together. For example, a plurality of wires may be used which could be spread out along the septum to provide the desired clamping force. Other shapes and orientations could be used which would spread the clamping force over a sufficient surface area to accomplish the desired effect.
The connecting member may be two or more wires which are configured to spread apart in the PFO tunnel. The spacing of the wires is sized to center the device in the desired clamping location in the septum. In one preferred embodiment, the wires are joined at ends and bow apart from each other to fit within the PFO tunnel. Alternatively, the wires may form an S-shaped curve to improve the centering location. Other shapes and configurations are possible.
In an alternate form the connecting member may be formed of thin wires that are wound into a helix (e.g., in the shape of a coil spring). The connecting member may have one or more helically wound wires that form the connecting member. The resultant connector may be shaped in the same manner as the other embodiments. In other embodiments, the connecting member may have an abrasive surface so that a healing response may be stimulated by the abrasive surface. Additionally, the abrasive surface may be directionally oriented. That is, if one were to feel the surface of the wire in one direction, the wire would feel smooth and in the other direction, the wire would feel abrasive or rough.
In still other embodiments, the connecting member may include a film which extends between the connecting wires. The film may be comprised of and/or impregnated with biological and/or bioresorbable material. In another embodiment a joint may be formed at a location along the length of the connecting member. The joint reduces the trauma of the closure device within the PFO. The device may also have a hook or some other piercing element to maintain the PFO closure device in the desired location. Of course, each of the configurations could be used in combination.
The device, in its preferred form, is adapted to be delivered through a catheter into the atria. The device is constrained into a delivery profile and introduced into a catheter for delivery to the heart. Once the catheter is located at the desired delivery site, the device is deployed into the site and changes shape into the desired configuration. The shape change could be a result of a thermally induced shape change or a change due to the superelastic character of the material. Once in the delivery location, the catheter is withdrawn.
With reference to
Referring to
With continued reference to
The ball 30 of the right atrial spiral section 20 may be grasped and drawn into a protective sheath. As the free end 28 of the right atrial spiral section is drawn inwardly into the protective sheath, the coils of the spiral section straighten as they are drawn into the sheath until the inclined central loop 22 is reached. Then as the central loop enters the sheath, the sides of the central loop are compressed together, and as the central loop is enclosed by the sheath and moves inwardly, it draws the loops of the left atrial spiral section 18, beginning with the innermost loop 26, as a straight section into the sheath.
In
The spiral sections 18 and 20 are formed to be urged toward one another. Also, since the loops of each opposed spiral section 18 and 20 are in different planes and since the inclined central loop 22 joins the innermost loops 26 of each spiral section, the spiral section 18 will draw the spiral section 20 against the atrial septum once it is deployed from sheath 32.
Since the inclined central loop 22 which joins the spiral sections 18 and 20 is seated in the PFO channel, it prevents shift or rotation of the spiral sections which might occur if a straight non-looped joined piece was used between the spiral sections.
To form the double spiral PFO closure clamp 16, an elongate length of wire is formed upon each of the cone shaped sections 38 and 40 as shown in
With reference to
As shown by
To form the left atrial spiral section 80 in opposed alignment with the right atrial spiral section, the outermost loop 90 is connected to the top of the central loop 82 at 92 as shown by
The outermost loops 84 and 90 are configured to position the left atrial spiral section and right atrial spiral section in aligned, opposed relationship.
Instead of connecting the two spiral sections 78 and 80 with a central loop which rests in the PFO channel, the central loop can be replaced with the double “S” shaped connector 96 of
With reference to
As shown in
The double spiral PFO closure clamp 76 can be straightened with a tubular delivery device for delivery and may be delivered across the PFO by catheter using a pusher wire. The left atrial spiral section 80 is delivered first into the left atrium and flattened against the septum. The central double “S” shaped connector 96 is then unsheathed in the PFO channel, and finally the right atrial spiral section 78 is released against the septum in the right atrium.
Other configurations for the wires of the center joint are possible.
In another configuration, illustrated in
In the embodiment of the invention illustrated in
In a slightly modified configuration, the wires may be provided that are in a configuration illustrated in
This application is a divisional application of U.S. application Ser. No. 11/008,539 filed Dec. 4, 2004, now abandoned; and claims priority to provisional patent application 60/528,022 filed Dec. 9, 2003, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3824631 | Burstein et al. | Jul 1974 | A |
3874388 | King et al. | Apr 1975 | A |
3875648 | Bone | Apr 1975 | A |
3924631 | Mancusi, Jr. | Dec 1975 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4007743 | Blake | Feb 1977 | A |
4149327 | Hammer et al. | Apr 1979 | A |
4425908 | Simon | Jan 1984 | A |
4610674 | Suzuki et al. | Sep 1986 | A |
4626245 | Weinstein | Dec 1986 | A |
4693249 | Schenck et al. | Sep 1987 | A |
4696300 | Anderson | Sep 1987 | A |
4710181 | Fuqua | Dec 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4738666 | Fuqua | Apr 1988 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4840623 | Quackenbush | Jun 1989 | A |
4902508 | Badylak et al. | Feb 1990 | A |
4915107 | Rebuffat et al. | Apr 1990 | A |
4917089 | Sideris | Apr 1990 | A |
4921479 | Grayzel | May 1990 | A |
4956178 | Badylak et al. | Sep 1990 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5049131 | Deuss | Sep 1991 | A |
5063640 | Link | Nov 1991 | A |
5078736 | Behl | Jan 1992 | A |
5106913 | Yamaguchi et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5149327 | Oshiyama | Sep 1992 | A |
5163131 | Row et al. | Nov 1992 | A |
5167363 | Adkinson et al. | Dec 1992 | A |
5167637 | Okada et al. | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5176659 | Mancini | Jan 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5226879 | Ensminger et al. | Jul 1993 | A |
5234458 | Metais | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5245023 | Peoples et al. | Sep 1993 | A |
5245080 | Aubard et al. | Sep 1993 | A |
5250430 | Peoples et al. | Oct 1993 | A |
5257637 | El Gazayerli | Nov 1993 | A |
5275826 | Badylak et al. | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5284488 | Sideris | Feb 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5316262 | Koebler | May 1994 | A |
5320611 | Bonutti et al. | Jun 1994 | A |
5334217 | Das | Aug 1994 | A |
5350363 | Goode et al. | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5354308 | Simon et al. | Oct 1994 | A |
5364356 | Hofling | Nov 1994 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5411481 | Allen et al. | May 1995 | A |
5413584 | Schulze | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5451235 | Lock et al. | Sep 1995 | A |
5453099 | Lee et al. | Sep 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5480353 | Garza, Jr. | Jan 1996 | A |
5480424 | Cox | Jan 1996 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5507811 | Koike et al. | Apr 1996 | A |
5522788 | Kuzmak | Jun 1996 | A |
5534432 | Peoples et al. | Jul 1996 | A |
5540712 | Kleshinski et al. | Jul 1996 | A |
5562632 | Davila et al. | Oct 1996 | A |
5577299 | Thompson et al. | Nov 1996 | A |
5601571 | Moss | Feb 1997 | A |
5603703 | Elsberry et al. | Feb 1997 | A |
5618311 | Gryskiewicz | Apr 1997 | A |
5620461 | Muijs Van De Moer et al. | Apr 1997 | A |
5626599 | Bourne et al. | May 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5649950 | Bourne et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5663063 | Peoples et al. | Sep 1997 | A |
5683411 | Kavteladze et al. | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5702421 | Schneidt | Dec 1997 | A |
5709707 | Lock et al. | Jan 1998 | A |
5713864 | Verkaart | Feb 1998 | A |
5717259 | Schexnayder | Feb 1998 | A |
5720754 | Middleman et al. | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5733294 | Forber et al. | Mar 1998 | A |
5733337 | Carr, Jr. et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5772641 | Wilson | Jun 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5776183 | Kanesaka et al. | Jul 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5810884 | Kim | Sep 1998 | A |
5820594 | Fontirroche et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5853420 | Chevillon et al. | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5902287 | Martin | May 1999 | A |
5902319 | Daley | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5928250 | Koike et al. | Jul 1999 | A |
5944691 | Querns et al. | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5955110 | Patel et al. | Sep 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5980505 | Wilson | Nov 1999 | A |
5989268 | Pugsley, Jr. et al. | Nov 1999 | A |
5993475 | Lin et al. | Nov 1999 | A |
5993844 | Abraham et al. | Nov 1999 | A |
5997575 | Whitson et al. | Dec 1999 | A |
6010517 | Baccaro | Jan 2000 | A |
6019753 | Pagan | Feb 2000 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6027509 | Schatz et al. | Feb 2000 | A |
6027519 | Stanford | Feb 2000 | A |
6030007 | Bassily et al. | Feb 2000 | A |
6056760 | Koike et al. | May 2000 | A |
6071998 | Muller et al. | Jun 2000 | A |
6077291 | Das | Jun 2000 | A |
6077880 | Castillo et al. | Jun 2000 | A |
6079414 | Roth | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6096347 | Gedees et al. | Aug 2000 | A |
6106913 | Scardino et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6117159 | Buscemi et al. | Sep 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6143037 | Goldstein et al. | Nov 2000 | A |
6152144 | Van Der Burg et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168588 | Wilson | Jan 2001 | B1 |
6171329 | Shaw et al. | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6183443 | Kratoska et al. | Feb 2001 | B1 |
6187039 | Hiles et al. | Feb 2001 | B1 |
6190353 | Garibotto et al. | Feb 2001 | B1 |
6190357 | Ferrari et al. | Feb 2001 | B1 |
6197016 | Fourkas et al. | Mar 2001 | B1 |
6199262 | Martin | Mar 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6214029 | Thill et al. | Apr 2001 | B1 |
6217590 | Levinson | Apr 2001 | B1 |
6221092 | Koike et al. | Apr 2001 | B1 |
6227139 | Nguyen et al. | May 2001 | B1 |
6228097 | Levinson et al. | May 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6245080 | Levinson | Jun 2001 | B1 |
6245537 | Williams et al. | Jun 2001 | B1 |
6261309 | Urbanski | Jul 2001 | B1 |
6265333 | Dzenis et al. | Jul 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6306150 | Levinson | Oct 2001 | B1 |
6306424 | Vyakarnam et al. | Oct 2001 | B1 |
6312443 | Stone | Nov 2001 | B1 |
6312446 | Huebsch et al. | Nov 2001 | B1 |
6315791 | Gingras et al. | Nov 2001 | B1 |
6316262 | Huisman et al. | Nov 2001 | B1 |
6319263 | Levinson | Nov 2001 | B1 |
6322548 | Payne et al. | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6334872 | Termin et al. | Jan 2002 | B1 |
6342064 | Koike et al. | Jan 2002 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6348041 | Klint | Feb 2002 | B1 |
6352552 | Levinson et al. | Mar 2002 | B1 |
6355052 | Neuss et al. | Mar 2002 | B1 |
6356782 | Sirimanne et al. | Mar 2002 | B1 |
6358238 | Sherry | Mar 2002 | B1 |
6364853 | French et al. | Apr 2002 | B1 |
6371904 | Sirimanne et al. | Apr 2002 | B1 |
6375625 | French et al. | Apr 2002 | B1 |
6375671 | Kobayashi et al. | Apr 2002 | B1 |
6379368 | Corcoran et al. | Apr 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6398796 | Levinson | Jun 2002 | B2 |
6402772 | Amplatz et al. | Jun 2002 | B1 |
6419669 | Van Der Burg et al. | Jul 2002 | B1 |
6426145 | Moroni | Jul 2002 | B1 |
6432134 | Anson et al. | Aug 2002 | B1 |
6436088 | Frazier et al. | Aug 2002 | B2 |
6440152 | Gainor et al. | Aug 2002 | B1 |
6450987 | Kramer | Sep 2002 | B1 |
6460749 | Levinson et al. | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6488706 | Solymar | Dec 2002 | B1 |
6494846 | Margolis | Dec 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6514515 | Williams | Feb 2003 | B1 |
6548569 | Williams et al. | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551344 | Thill | Apr 2003 | B2 |
6554842 | Heuser et al. | Apr 2003 | B2 |
6585719 | Wang | Jul 2003 | B2 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6596013 | Yang et al. | Jul 2003 | B2 |
6599448 | Ehrhard, Jr. et al. | Jul 2003 | B1 |
6610764 | Martin et al. | Aug 2003 | B1 |
6623506 | McGuckin et al. | Sep 2003 | B2 |
6623508 | Shaw et al. | Sep 2003 | B2 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6626936 | Stinson | Sep 2003 | B2 |
6629901 | Huang | Oct 2003 | B2 |
6656206 | Corcoran et al. | Dec 2003 | B2 |
6666861 | Grabek | Dec 2003 | B1 |
6669722 | Chen et al. | Dec 2003 | B2 |
6689589 | Huisman et al. | Feb 2004 | B2 |
6712804 | Roue et al. | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6726696 | Houser et al. | Apr 2004 | B1 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6828357 | Martin et al. | Dec 2004 | B1 |
6838493 | Williams et al. | Jan 2005 | B2 |
6867248 | Martin et al. | Mar 2005 | B1 |
6867249 | Lee et al. | Mar 2005 | B2 |
6921410 | Porter | Jul 2005 | B2 |
6936058 | Forde et al. | Aug 2005 | B2 |
6949116 | Solymar et al. | Sep 2005 | B2 |
7022102 | Paskar | Apr 2006 | B2 |
7097653 | Freudenthal et al. | Aug 2006 | B2 |
7186251 | Malecki et al. | Mar 2007 | B2 |
7192435 | Corcoran et al. | Mar 2007 | B2 |
7288105 | Oman et al. | Oct 2007 | B2 |
20010010481 | Blanc et al. | Aug 2001 | A1 |
20010014800 | Frazier et al. | Aug 2001 | A1 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20010034537 | Shaw et al. | Oct 2001 | A1 |
20010034567 | Allen et al. | Oct 2001 | A1 |
20010037129 | Thill | Nov 2001 | A1 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20010039436 | Frazier et al. | Nov 2001 | A1 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20010041915 | Roue et al. | Nov 2001 | A1 |
20010044639 | Levinson | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020010481 | Jayaraman | Jan 2002 | A1 |
20020019648 | Akerfeldt et al. | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020026208 | Roe et al. | Feb 2002 | A1 |
20020029048 | Miller | Mar 2002 | A1 |
20020032459 | Horzewski et al. | Mar 2002 | A1 |
20020032462 | Houser et al. | Mar 2002 | A1 |
20020034259 | Tada | Mar 2002 | A1 |
20020035374 | Borillo et al. | Mar 2002 | A1 |
20020043307 | Ishida et al. | Apr 2002 | A1 |
20020049457 | Kaplan et al. | Apr 2002 | A1 |
20020052572 | Franco et al. | May 2002 | A1 |
20020058989 | Chen et al. | May 2002 | A1 |
20020077555 | Schwartz | Jun 2002 | A1 |
20020095174 | Tsugita et al. | Jul 2002 | A1 |
20020096183 | Stevens et al. | Jul 2002 | A1 |
20020099389 | Michler et al. | Jul 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020111537 | Taylor et al. | Aug 2002 | A1 |
20020111637 | Kaplan et al. | Aug 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020120323 | Thompson et al. | Aug 2002 | A1 |
20020128680 | Pavlovic | Sep 2002 | A1 |
20020129819 | Feldman et al. | Sep 2002 | A1 |
20020164729 | Skraly et al. | Nov 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020183786 | Girton | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183823 | Pappu | Dec 2002 | A1 |
20020198563 | Gainor | Dec 2002 | A1 |
20030004533 | Deck et al. | Jan 2003 | A1 |
20030023266 | Welch et al. | Jan 2003 | A1 |
20030028213 | Thill et al. | Feb 2003 | A1 |
20030045893 | Ginn | Mar 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030055455 | Yang et al. | Mar 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030059640 | Marton et al. | Mar 2003 | A1 |
20030065379 | Babbas et al. | Apr 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030139819 | Beer et al. | Jul 2003 | A1 |
20030171774 | Seigner et al. | Sep 2003 | A1 |
20030191495 | Ryan et al. | Oct 2003 | A1 |
20030195530 | Thill | Oct 2003 | A1 |
20030204203 | Khairkhahan et al. | Oct 2003 | A1 |
20030225421 | Peavey et al. | Dec 2003 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040073242 | Chanduszko | Apr 2004 | A1 |
20040087968 | Core | May 2004 | A1 |
20040158124 | Okada | Aug 2004 | A1 |
20040176799 | Chanduszko et al. | Sep 2004 | A1 |
20040210301 | Obermiller | Oct 2004 | A1 |
20040234567 | Dawson | Nov 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20050025809 | Hasirci et al. | Feb 2005 | A1 |
20050043759 | Chanduszko | Feb 2005 | A1 |
20050080430 | Wright et al. | Apr 2005 | A1 |
20050113868 | Devellian et al. | May 2005 | A1 |
20050131341 | McGuckin et al. | Jun 2005 | A1 |
20050251154 | Chanduszko et al. | Nov 2005 | A1 |
20050267523 | Devellian et al. | Dec 2005 | A1 |
20050273135 | Chanduszko et al. | Dec 2005 | A1 |
20050288786 | Chanduszko | Dec 2005 | A1 |
20060052821 | Abbott et al. | Mar 2006 | A1 |
20060122647 | Callaghan et al. | Jun 2006 | A1 |
20060265004 | Callaghan et al. | Nov 2006 | A1 |
20060271089 | Alejandro et al. | Nov 2006 | A1 |
20070010851 | Chanduszko et al. | Jan 2007 | A1 |
20070073337 | Abbott et al. | Mar 2007 | A1 |
20070167981 | Opolski | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
94 13 645 | Oct 1994 | DE |
0 362 113 | Apr 1990 | EP |
0 474 887 | Mar 1992 | EP |
0 839 549 | May 1998 | EP |
0 861 632 | Sep 1998 | EP |
1 013 227 | Jun 2000 | EP |
1 046 375 | Oct 2000 | EP |
1 222 897 | Jul 2002 | EP |
WO-9625179 | Aug 1996 | WO |
WO-9631157 | Oct 1996 | WO |
WO-9807375 | Feb 1998 | WO |
WO-9808462 | Mar 1998 | WO |
WO-9816174 | Apr 1998 | WO |
WO-9829026 | Jul 1998 | WO |
WO-9851812 | Nov 1998 | WO |
WO-9905977 | Feb 1999 | WO |
WO-9818864 | Apr 1999 | WO |
WO-9918862 | Apr 1999 | WO |
WO-9918864 | Apr 1999 | WO |
WO-9918870-AI | Apr 1999 | WO |
WO-9918871 | Apr 1999 | WO |
WO-9930640 | Jun 1999 | WO |
WO-9966846 | Dec 1999 | WO |
WO-0027292 | May 2000 | WO |
WO-0044428 | Aug 2000 | WO |
WO-0108600 | Feb 2001 | WO |
WO-0119256 | Mar 2001 | WO |
WO-0121247 | Mar 2001 | WO |
WO-0128432 | Apr 2001 | WO |
WO-0130268 | May 2001 | WO |
WO-0149185 | Jul 2001 | WO |
W0-0178596 | Oct 2001 | WO |
WO-0193783 | Dec 2001 | WO |
WO-0217809 | Mar 2002 | WO |
WO-0224106 | Mar 2002 | WO |
WO-020198563 | Dec 2002 | WO |
WO-03001893 | Jan 2003 | WO |
WO-03024337 | Mar 2003 | WO |
WO-03053493 | Jul 2003 | WO |
WO-03059152 | Jul 2003 | WO |
WO-03063732 | Aug 2003 | WO |
WO-03077733 | Sep 2003 | WO |
WO-03082076 | Oct 2003 | WO |
WO-03103476 | Dec 2003 | WO |
WO-2004032993 | Apr 2004 | WO |
WO-2004037333 | May 2004 | WO |
WO-2004043266 | May 2004 | WO |
WO-2004043508 | May 2004 | WO |
WO-2004052213 | Jun 2004 | WO |
WO-20040210301 | Oct 2004 | WO |
WO-2005006990 | Jan 2005 | WO |
WO-2005018728 | Mar 2005 | WO |
WO-2005027752 | Mar 2005 | WO |
WO-2005074813 | Aug 2005 | WO |
WO-2005092203 | Oct 2005 | WO |
WO-2005110240 | Nov 2005 | WO |
WO-2005112779 | Dec 2005 | WO |
WO-2006036837 | Apr 2006 | WO |
WO-2006102213 | Sep 2006 | WO |
Entry |
---|
Ruddy, A.C. et al., “Rheological, Mechanical and Thermal Behaviour of Radipaque Filled Polymers”, Polymer Processing Research Centre, School of Chemical Engineering, Queen's University of Belfast, pp. 167-171, 2004. |
International Search Report, International Application No. PCT/US03/17390, mailed Oct. 6, 2003 (4 pgs). |
Kimura, A., et al., “Effects of Neutron Irradiation on the Transformation Behavior in Ti-Ni Alloys,” Abstract, Proceedings of the Intl Conf. on Mariensitic Transformations, 1992, pp. 935-940. |
Meier, MD, Bernhard et al., “Contemporary Management of Patent Foramen Ovale,” American Heart Association, Inc., Circulation, 2003, vol. 107, pp. 5-9. |
Nat'l Aeronautics and Space Administration, “55-Nitinol—The Alloy with a Memory: Its Physical Metallurgy, Properties and Applications,” NASA Report, pp. 24-25. |
Ramanathan, G., et al., “Experimental and Computational Methods for Shape Memory Alloys,” 15th ASCE Engineering Mechanics Conference, Jun. 2-5, 2002. |
Ruiz, et al, “The Puncture Technique: A New Method for Transcatheter Closure of Patent Foramen Ovale,” Catheterization and Cardiovascular Interventions, 2001, vol. 53, pp. 369-372. |
Shabalovskaya, S., “Surface, Corrosion and Biocompatibility Aspects of Nitinol as an Ir,nplant Material,” Bio-Medical Materials and Engineering, 2002, vol. 12, pp. 69-109. |
SMST-2000, “Proceedings of the International Conference on Shape Memory and Superelastic Technologies,” Apr. 30 to May 4, 2000, Asilomar Conference Center. |
Stockel, “Nitinol Medical Devices and Implants,” SMST-2000 Conference Proceedings, 2001, pp. 531-541. |
Uchil, J , “Shape Memory Alloys—Characterization Techniques,” Pramana—Journal of Physics, 2002, vol. 58(5)(6), pp. 1131-1139. |
Athanasiou, T., “Coronary Artery Bypass with the Use of a Magnetic Distal Anastomotic Device: Surgical Technique and Preliminary Experience,” The Heart Surgery Forum #20041024, 2004, 4 pgs. |
Bachthaler, M. et al., “Corrosion of Tungsten Coils After Peripheral Vascular Embolization Theraphy: Influence on Outcome and Tungsten Load”, Catherization and Cardiovascular Interventions, vol. 62, pp. 380-384, 2004. |
European Examination Report, European Application No. 03729663.9, mailed Jul. 16, 2008 (5 Pages). |
European Examination Report, European Application No. 03731562.9, mailed Jul. 18, 2008 (3 Pages). |
European Examination Report, European Application No. 03779297.5, mailed Mar. 15, 2007 (6 Pages). |
European Examination Report, European Application No. 04781644.2, mailed Aug. 23, 2007 (3 Pages). |
Ruddy, A.C. et al., “Rheological, Mechanical and Thermal Behaviour of Radipaque Filled Polymers”, Polymer Processing Research Centre, School of Chemical Engineering, Queen's University of Belfast, 5 pages. |
Vaajanen, A. et al., “Expansion and Fixation Properties of a New Braided Biodegradable Urethral Stent: An Experimental Study in the Rabbit”, The Journal of Urology, vol. 169, pp. 1771-1174, Mar. 2003. |
Number | Date | Country | |
---|---|---|---|
20140025095 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
60528022 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11008539 | Dec 2004 | US |
Child | 14030964 | US |