The present invention relates to a loudspeaker driver. Such drivers are used in loudspeakers to convert the power signal from an amplifier or the like to sound.
In the art a number of different solutions to the construction of the magnet system have been suggested. When using magnet systems as drivers for generating the sound by moving the membrane it is customary to arrange a gap between two parts of the magnet system so that there will be a magnetic flux field arranged across this gap. In the gap is arranged a voice coil. The voice coil will move in the flux field in response to an alternating current induced in the coil. The magnetic flux field of the magnet will force the coil to move in the magnetic flux field substantially perpendicular to the direction of the flux lines making up the flux field and perpendicular to the direction of the current. The alternating current in the voice coil will when the voice coil is attached to a membrane generate the sound stemming from a loudspeaker.
In the art there are generally two types of magnet assembly designs, the first being overhung where a relatively wide voice coil is arranged in a relatively narrow gap in such a way that the actual extension of the coil exceeds the actual extension of the gap. The other principle commonly applied is a so-called underhung system where a relatively narrow coil is arranged in a relatively wide gap in such a way that the actual extension of the gap exceeds the actual extension of the voice coil.
The present invention is suitable with both types of designs as well as a neutral hung design, i.e. a design where the voice coil and the gap are of the same dimensions.
In general, it is desirable to obtain as linear a magnetic field across the air gap as possible in order to avoid distortion of the produced sound. The eddy currents will create distortion, and as such it is a desire to create a magnetic flux in the air gap which is substantially free of eddy currents.
A prerequisite for an accurate sound reproduction in a loudspeaker is that the sound waves produced by the moving membrane of the loudspeaker are as far as possible a true representation of the electrical voltage supplied to the loudspeaker. A wide range of parameters influence the accuracy of the wave form of the produced sound waves. One important parameter which has a great influence on the degree of the accuracy of the produced sound is the degree of linearity between the electrical signal supplied to the loudspeaker and the actual movement of the membrane.
Parameters influencing the accuracy in this movement of the membrane are at least two-fold. In order to obtain a high-fidelity response by the membrane on the supplied electrical signal the actual movement of the membrane should respond linearly to the electrical signal. In order to achieve such a linear response of the membrane the magnetic flux in the gap in which the coil is accommodated must be as homogenous as possible. The more homogenous flux the less distortion will result.
It is furthermore important that the roll-off strength of the B-field is as symmetrical as possible in that the curve representing the B-field as a function of the distance from the centre of the gap should exhibit similar characteristics in either actual direction from the centre of the gap. Hence, the curve representing the B-field as a function of the distance from the centre of the gap should as far as possible be symmetrical around the centre of the gap at distances falling within the gap as well as distances falling just outside the gap. In this way the so-called even harmonic distortion can be reduced. Furthermore, having a symmetrical roll-off strength of the B-field outside the gap implies that the coil may partly leave the gap without causing any unacceptable distortion. In other words, the less eddy currents present in the magnetic flux field between the conductive members surrounding the air gap, the better the linearity of the flux field is, and therefore the better the voice coil will respond in a linear fashion across the entire air gap and thereby in the loudspeaker's range.
The SMC material's characteristics depend on the composition of the SMC, i.e. the particle sizes, shapes, additives etc., but with the present invention it has been found that particles covered with an inorganic electrically insulating compound having a reduced air void content provides the advantages already mentioned above.
In a further advantageous embodiment the entire yoke and/or the entire top plate is made from the soft magnetic composite material.
The characteristics of the SMC material are such that it is possible to connect iron and SMC, for example by pressure (fuse them together) in such a manner that it is substantially indistinguishable where the limit is from one material to the other. Therefore, it is possible to produce raw blocks of composite materials forged with iron parts and thereafter work the pieces in to the desired shape.
The SMC material is distinguished from other materials by the fact that the iron powder particles are bound together in a ceramic sintering process, wherein an oxide layer is formed as the connecting boundary layer between the particles. As opposed to other materials where a polymer is used in order to connect/bind the particles together, a strong and rigid connection is provided. The polymer, although having very good electrically insulating properties is sensitive to temperature variations. In use the magnet system of a loudspeaker will heat up, whereby the polymer bound materials will become increasingly plastic and deformable. This will create distortion of the materials and thereby the sound generation.
In the art there are many different driver constructions suggested. The invention in question is of the dual coil type, meaning that on the voice coil are arranged two separate and distinct coils, and the magnet system has two pole pieces arranged with an air gap relative to a yoke, thereby creating two flux fields. The voice coils are energized and thereby due to electromagnetic forces move in the air gap/flux fields. When a membrane is attached to the voice coil, the membrane will move with the voice coil, thereby activate/excitate the ambient air (or particles in the air) creating a sound corresponding to the electrical signal activating the electromagnetic relationship between the magnets and the voice coils.
An example of a dual coil loudspeaker driver is disclosed in U.S. Pat. No. 6,768,806. In order to improve and/or control distortion etc. this loudspeaker driver uses shorting rings in various positions in the construction.
It is an object of the present invention to increase the performance of prior art loudspeaker drivers in a simplified manner.
The invention is consequently directed at a loudspeaker driver comprising a magnet system having at least one gap where in each gap a voice coil assembly is arranged for movement in the gap, wherein either two distinct coils are arranged on the voice coil assembly one above the other, and the magnet system comprises two pole pieces one above the other, creating a pair of magnetized areas between said pole pieces and a yoke, such that a magnetic flux field is created between each pole piece and the yoke, or where two concentric gaps are provided, where the voice coil assembly comprises two concentrically arranged sub-voice coils, where each sub-voice coil is provided with a distinct coil and the magnet assembly has two concentrically arranged magnet rings arranged with a yoke in the center, such that two concentric gaps are created, and that the voice coil assembly moves substantially orthogonal to the flux fields in the gap(s) and further that at least the part of each pole piece facing the gap(s) is made from a soft magnetic composite (SMC) material.
Especially the use of soft magnetic composite material (SMC) provides for an extremely low generation of eddy currents in the gap. As these materials are typically more expensive than traditional iron material used for electromagnetic drive units, it is advantageous only to arrange the soft magnetic composite material (SMC) where eddy currents may influence the voice coil.
SMC is an isotropic iron-based material with a very low electrical conductivity, but with very high magnetic permeability and high saturation induction. With these properties the flux saturation is very high whereby the resulting magnetic flux becomes more even and consistent.
For loudspeaker drivers of the electromagnetic drive unit type as described above it is important to have a high magnetic conductivity, but as small as possible electrically conductive characteristics. The electrically conductive materials will facilitate the creation of eddy currents and thereby the distortion already mentioned above. The SMC material is a poor electrical conductor whereas due to its relatively high iron content it has very good magnetic conductance. In comparison the electrical resistance, see also table 1, of for example pure iron is approximately 0.097 microΩmetre, for a sintered iron powder material the corresponding resistance is 1.0 microΩmetre whereas for SMC materials they have a resistance of approximately 400-8,000 microΩmetre depending on the composition of the soft magnetic composite. Consequently, using an SMC material in order to create a flux field the magnetic conductance is maintained whereas the electrical conductivity is a factor of approximately 10,000 less than that for traditional iron products whereby the creation of eddy currents is severely minimized. Therefore, the flux field in the air gap will be more homogenous such that increased linearity will be present.
Another factor influencing the performance over time of a flux field is the hysteresis magnetic property of the material which is discussed in for example GB 2022362. Due to its inherent construction with relatively poor electrical conductivity the SMC material will also have improved linearity relating to the hysteresis magnetic properties of the material.
In the variation of the invention where two concentric gaps are provided, and the voice coil assembly comprises two concentrically arranged sub-voice coils, such that each sub-voice coil is provided with a distinct coil and the magnet assembly has two concentrically arranged magnet rings arranged with a yoke in the center, whereby two concentric gaps are created, a sub-coil is arranged in each gap. This arrangement of the voice coil and the gaps provides for a very shallow construction height, but still a very powerful transducer unit, relative to its size.
In a further embodiment the two distinct coils on the voice coil are polarized in opposite directions. In this manner the self-induction being generated as the two coils move in the flux field is substantially canceled out by each other. Had the pole pieces been made from iron the generation of eddy-currents in the iron systems would have shielded the two coils from each other, such that the cancellation effect would not occur. However, using SMC reduces the generation of eddy-currents by a factor 100-10000, see the table above. Furthermore, at high frequencies this phenomenon is even more pronounced, such that the use of SMC becomes even more advantageous.
In another embodiment each pole piece has an extent “a” orthogonal to the flux field and each voice coil is arranged relative to the pole piece such that the voice coil when not polarized extends a distance of ½a into the flux field.
Clearly the flux field extends in both a linear and a non-linear manner from the pole pieces to the yoke, but at least for the purpose of this embodiment, reference to the flux field shall be construed as the strongest part of the flux-field, i.e. the substantially linear flux-lines between the pole piece and the yoke.
The condition of the voice coil as being not polarized, is intended to express a situation where no current is present in the coil and consequently no magnetic field is generated.
By arranging the coils according to this embodiment a substantial constant voice coil length is present in the flux field at any one time. As one voice coil moves out of the flux field the other voice coil moves further into the flux field. In this manner an even “power” is converted in the transducer.
In an embodiment each pole piece has an extent “a” orthogonal to the flux field and each voice coil when not polarized is arranged relative to the pole piece such that each voice coil overlaps a distance of ½a into the extent of each voice coil orthogonal to the flux field. With this arrangement the same effect is achieved—substantially the same length of voice coil is present in the gap at any time.
In a further embodiment of the loudspeaker, the voice coils are arranged with a minimum distance between the voice coils.
In this context the minimum distance is governed by at least two factors, the first factor being the physical dimensions of the pole pieces and the magnet separating the pole pieces. As the magnet will create a spacing between the pole pieces this allows the member on which the voice coils are arranged to have a certain length in the gap, accommodating the coils. The length of the coils, i.e. the number of windings, is also a limiting factor, i.e. the more windings the longer extend in the gap. It is therefore considered that the skilled person will recognize these limiting factors when carrying out the invention. The design of the pole pieces and the separating magnet is influenced by desired characteristics of the loudspeaker per se.
The minimum distance is also determined by the fact that a distance of ½a of the voice coil shall extend into the flux field in the non-polarized state.
In another embodiment the voice coils are arranged with a maximum distance between the voice coils.
Again this arrangement is limited by outside factors in particular the fact that a distance of ½a of the voice coil shall extend into the flux field in the non-polarized state. This embodiment is not so sensitive to the geometric relationship between the pole pieces and the separating magnet.
In general it is desirable to have as much coil material in the gap as possible. For this reason the loudspeaker in a further embodiment is provided with voice coil(s) where the windings are made with an electrically conductive wire having a four-sided crosssection. It is not desirable to have more than one layer of windings but at the same time, it is desirable to have as much conductive material as possible in the voice coil. If multiple layers of windings are present they will when energized create an uncontrollable magnetic field. However, by using wires which have a rectangular or square cross-section (four sided cross-section) the conductive material density is increased as compared to wires having a circular cross-section.
In a further embodiment the yoke is provided with flux focusing means, and optionally also the pole pieces opposite the flux focusing means on the yoke are provided with flux focusing means.
The flux focusing means will typically be ring-shaped protrusions of the pole piece respectively the yoke, extending towards the yoke respectively pole piece in the direction of the flux field, such that the flux from the saturated pole pieces and yoke will be focused providing better linearity in the flux field. The flux focusing means may also be a taper or decreasing thickness in the material from which the pole piece respectively yoke is manufactured from, towards the gap.
Again the use of SMC is greatly advantageous as compared to iron, in that the coils due to the lack of eddy-currents can “see” each other, and in that manner counter or cancel the generated eddy-currents, where iron pole pieces would not benefit due to eddy-currents which would counteract each other. In a focused flux field this effect for iron would just be increased and cause a detrimental effect on the performance of the loudspeaker.
The use of SMC in this manner provides a stronger B-field (the force imparted from the magnets to the coils wires).
The invention will now be described with reference to the accompanying drawing.
In
In
In the
In
In
In
At least a part 14′, 16′ of each pole piece facing the gap is made from a soft magnetic composite (SMC) material. As SMC is more expensive than regular iron, the use of SMC is used with a view to associated cost and obtained performance. The entire pole piece and yoke may be manufactured from SMC.
The SMC material provides extremely low generation of eddy currents in the gap and as such particularly when using two distinct voice coils 32, 34 in the gap, the substantial reduction of eddy currents in the voice coils facilitate that the two coils do not interfere with each other such that they may be arranged very close to each other on the voice coil assembly 30. In this manner a powerful (due to the two coils) but very compact driver unit may be constructed.
In table 1 (see above) are listed conductivity characteristics for typical materials. As is evident from the table, SMC reduces eddy currents depending on the composition of the SMC material between 100-10,000 times with respect to the other materials listed and particularly with respect to ordinary iron the reduction is approximately 10,000 times. This is a substantial reduction for these types of systems.
In
In the embodiment illustrated on the right hand side in
In the variation illustrated on the left hand side, the voice coils 32′, 34′ likewise extend ½a into the flux field created by the pole piece 14, 16 and the yoke 12. Due to the fact that at least part of the pole pieces 14, 16 are made from an SMC material, the voice coils can be arranged in close proximity as illustrated on the left hand side variation of the embodiment illustrated in
In
By arranging the voice coils as illustrated with
In the
Basically the use of SMC materials with respect to iron-based material is that SMC reduces self-inductance.
In
The inductance increases from approx. 1000 Hz and upwards—(midtone speakers towards tweeters). The upper curve 40 illustrates the aggregated inductance of the two coils separately, whereas the curve 42 illustrates the inductance of each coil separately—i.e. the coils are identical, but wound in opposite directions.
The curve illustrates a drive unit built as described above with reference to
A corresponding pattern is illustrated in
Overall the SMC cancels out with a dual coil arrangement as discussed above to about the same level of iron based materials, and therefore reaps the benefits of iron and the superior characteristics of SMC at the same time.
By using SMC the eddy-currents are greatly reduced as compared to iron—a factor 100 to 10000, due to the low conductivity of SMC as compared to iron—see table 1 above. The combination of very little eddy currents and the compact construction as suggested in the present invention, assures that the two coils' self-induction substantially is compensated/cancelled, and at the same time the coils will be exposed to (able to see) equal amounts of iron, and thereby generate a symmetry in the construction to the benefit of the resulting characteristics of the system.
Iron systems shield the two coils from each other due to the relatively high presence of eddy currents and particularly at higher frequencies the eddy current loss is significant, whereas with SMC based systems, and thereby inherent very low eddy currents the coils can see each other at all frequencies, assuring improved performance over the entire frequency range.
In
In
In
The voice coils 32′, 34′ are arranged in the gaps 10, 10′ and held by a voice coil assembly plate 62, which either directly or indirectly is in contact with the loudspeaker membrane/cone (not illustrated).
Number | Date | Country | Kind |
---|---|---|---|
PA 2018 70214 | Apr 2018 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DK2019/050115 | 4/11/2019 | WO | 00 |