The present invention relates to the field of heating, ventilation, and air conditioning (“HVAC”) systems and insulated of ductwork. Particularly, the present invention relates to the manufacture, installation, and use of double-walled round or oval ductwork systems using phenolic insulation situated between an inner duct and outer shell.
Double-walled metal ducts have been used extensively for over fifty years in the HVAC industry, but have utilized low-density insulation media such as fiberglass that can be readily compressed or formed around an inner duct. Phenolic board insulation, such as Kingspan® KoolDuct®, has desirable properties as an insulator, but the higher density of the phenolic material, versus traditional fiberglass insulations, prevents it from being compressed and rolled around the exterior surface of an inner duct. The properties of the phenolic board insulations make it particularly desirable for ductwork outside a building's envelope. The phenolic board insulations are a closed-cell material, so it resists retaining moisture like glass or mineral fibers. The phenolic board insulations have excellent fire/smoke ratings, which is an important consideration for building construction and particularly ductwork. Phenolic insulation “R-values” (insulating material's resistance to conductive heat flow is measured or rated in terms of its thermal resistance or R-value—the higher the R-value, the greater the insulating effectiveness) are more than 50% greater than R-values for fiberglass and elastomeric insulations of the same thickness. Phenolic board insulation materials have previously been used in some ductwork insulations, but these prior products are rectangular in shape. The prior products require slabs of the phenolic board to be assembled into a rectangular profile, then overlaid with a metal lagging material. But this design and process is not desirable for a number of reasons. First is the excessive use of materials from forming a rectangular shape around a rectangular shaped duct work. The second issue are the seams created from overlapping corners of in forming the rectangular shape. Another issue caused by these prior designs is the size and inability to optimally route the ductwork that is capable of carrying the desired amount of airflow for a given installation. Another known issue with these prior design is that they are not suited or potentially illegal for rooftop installations, as rooftop ductwork should preferably use a rounded profile when possible. Rounded ductwork has about 40% of the design wind force that rectangular ductwork must meet to satisfy building and safety regulations and ordinances. The present invention is needed to minimize excessive waste of insulation materials, allow for faster and more efficient installation of ductwork that better insulates than prior products, and because of ever increasing wind design regulations that are mandated in building codes and ordinances across the United States.
There is no rooftop ductwork product using phenolic insulation currently made in a round or oval profile. Current products using phenolic insulation require fabrication of rectangular ducts which are installed by a sheet metal contractor, after installation of the rectangular ductwork the insulation is installed around the exterior of the previously installed ductwork and lagged by an insulation contractor. This process is not desirable as it necessitates a three-step process, creates excessive use of materials and labor, and restricts the placement and location of ductwork so as to allow sufficient space for the later installation of the insulation.
Engineers, architects, and building owners have been looking for alternatives to mineral fiber insulations in ductwork outside the building envelope for several years. Common problems with prior systems and products are moisture wicking/retention in the fibrous insulation used and the resultant problems of water damage within the building and potential mold/bacteria problems.
Prior attempts used to overcome the problems outlined above, included the use of elastomeric insulation, which is considered “closed cell” so moisture retention does not present an issue. However, elastomeric insulation is expensive, heavy, and not easily formed into a round or oval profile for use in ductwork. Additionally, when used in sufficient thicknesses to obtain an R-8 or R-12 rating the elastomeric insulation can exceed allowable flame spread ratings and/or smoke developed indices. The next system and method attempted included the process of injecting an insulating foam between an inner sheet metal duct situated inside an outer sheet metal shell forming a double-walled duct. This process was found to be both expensive and messy.
There is a strong need for a system and method of assembly, such as the present invention described herein, which provides an insulated round or oval shaped double-walled duct that can be assembled in a one-step process while being cost effective, closed cell, have an R-value of 8 or more, and a 25/50 flame spread/smoke developed rating.
The present invention involves routing V-grooves or trapezoidal segments into a phenolic board so that it can be rolled into a polygon approximating a round or flat oval form, after which it can be inserted between an inner sheet metal duct and an outer sheet metal shell forming a “double-walled” sheet metal duct in much the same way as traditional fiberglass media. This particular routing process is necessary, rather than simply creating straight cuts, because the phenolic insulation board is found to be too dense to compress the segment edges together when formed into a round or oval shape. Phenolic insulation board is commonly covered on both a front and rear surface with a foil coating. In routing the phenolic insulation board, the foil coating on the front side is cut into while the foil coating on the rear surface remains at the apex of the V-grooves or trapezoidal segments. The resulting profile is a series of trapezoids joined by a continuous foil surface. The angle of the V-groove is such that when the insulation board is “rolled” to round or flat oval, the V-grooves are closed so that no thermal breaks occur in the resulting cylinder. In other words, the foil coating surface of the phenolic board into which the cuts or V-grooves are made abuts an exterior surface of the inner sheet metal duct and the continuous, uncut foil coating abuts an inner surface of the outer metal sheet metal shell. By varying the number, spacing, or angle of the cuts, V-grooves, round or oval cylinders of different diameters can be formed for insertion between different sizes of inner sheet metal duct and outer sheet metal shells. It should be appreciated that the spacing, angle, and quantity of each V-groove or trapezoidal segment must be precisely determined for the size and thickness of the phenolic board and the size of the inner sheet metal duct and outer sheet metal shell between which the prepared phenolic board is to be inserted so that the prepared phenolic board can be rolled into a cylindrical shape without causing compression of the segment edges while minimizing any gaps between the segments when rolled around the inner sheet metal duct.
This invention includes a method for producing a double-walled HVAC ductwork system with traditional double-walled duct characteristics, but utilizing a phenolic insulation board as an interstitial insulation media in lieu of traditional mineral glass products. The presently described double-walled ductwork systems can be installed on the jobsite in a single operation and by the HVAC contractor. This differs from attempting to use phenolic insulation board to cover an HVAC ductwork, then lag the exterior—a process that involves both the HVAC installer and an insulation installer. Also, double-walled ductwork products are traditionally made with an outer sheet metal shell functioning as both the pressure containment shell and the primary protective layer (inner sheet metal ducts are often perforated metal for sound absorption). Existing rectangular phenolic insulation ductwork systems utilize a phenolic insulation board itself as pressure containment. The phenolic insulation board is usually covered with a foil surface or scrim on a front and rear surface of the phenolic insulation board, so a secondary process must be used to repair any breaks or tears on the foil surface abutting the exterior surface of the inner sheet metal duct so as to isolate interaction between the phenolic insulation and the airstream. A tertiary process is needed to form a more durable layer on an outer sheet metal shell exterior, usually a metal lagging.
The fabrication steps of this invention are as follows: (1) an inner sheet metal duct and outer sheet metal shell are manufactured and prepared. (2) A section of phenolic insulation board is “grooved” using a router or cutting blade by cutting into one of the foil coatings formed on a first surface of the phenolic insulation board. It should be appreciated that the V-grooves can be varied and do not need to be parallel to each other, but can be angled or vary their direction and spacing to allow various shapes to be formed when the grooved phenolic board is wrapped or rolled. By way of example, one or more V-grooves are formed on the phenolic insulation board are triangular with an apex at the second foil coating or scrim layer on a second surface of the phenolic insulation board. The angle and frequency of the V-grooves or cuts are calculated to produce a substantially round or oval polygon shape, when the first surface of the phenolic insulation is wrapped around the inner sheet metal duct, so that the cut, first surface abuts the exterior surface of the inner sheet metal duct. When “rolled” the V-grooves should fill the annular space between the inner sheet metal duct and the outer sheet metal shell while minimizing voids between segments and the inner sheet metal duct and outer sheet metal shell. (3) The grooved phenolic insulation board is then wrapped around the inner sheet metal duct, then the resulting assembly of the wrapped inner sheet metal duct is then inserted into the outer metal shell. This process forms a complete double-walled phenolic insulation ductwork, which can then be installed in a single step by a single installer.
This process and system produces a single finished apparatus that can be assembled with traditional external HVAC joining methods. As a “double-walled” ductwork, the phenolic insulation board is isolated from both the airstream within the inner sheet metal duct and the elements outside the assembly. With regards to the Table depicted in
Alternatively, an outer sheet metal shell can be wrapped and then sealed, clamped or otherwise joined around the phenolic insulation board and inner sheet metal duct assembly instead of the “stuffing” method described above.
Alternatively, the phenolic insulation board can be initially formed or machined as a cylinder for inserting into the annular space between the inner sheet metal duct and outer sheet metal shell. This would eliminate the need for grooving, as described above. It should be appreciated that different transverse ductwork connections can be used in place of those described in the preferred embodiments herein, such as those depicted in
It should be appreciated that other rigid insulation products, such as polyisocyanurate, could also be used by the above-described grooving and insertion methods. Alternatively, the system and methods described herein could also be completed using high density foams as the insulating material in the double-walled duct. It should be appreciated that the fabrication method described herein could be applied to other types of ductwork, such as grease ducts, boiler ducts, fire-rated chimneys or the like.
Number | Date | Country | |
---|---|---|---|
62845075 | May 2019 | US |