This application claims the priority of Canadian Patent Application No. 2,679,790 filed on Sep. 22, 2009 entitled “Double Walled Tanks with Internal Containment Chambers”, and Canadian Patent Application No. 2,682,651 filed on Oct. 14, 2009 entitled “Double Walled Tanks with Internal Containment Chambers”, the contents of which are incorporated herein by reference.
The present invention is directed to double walled storage tanks with internal containment chambers.
The storage of materials, including petroleum products and waste materials, in the upstream petroleum industry is dependent on primary containment devices, such as underground and aboveground storage tanks. Such tanks typically include secondary containment measures, which are required in some jurisdictions.
In Alberta, a single-walled aboveground storage tank must have secondary containment consisting of a dike with an impervious liner. However, the regulations permit the use of double-walled aboveground storage tanks (“DW ASTs”) as an alternative to single-walled aboveground tanks and a secondary containment system. However, it has been found that DW ASTs are typically configured with manways and piping through the walls of the tanks. A majority of spills or releases from tanks are the result of operational issues such as overfilling, leaks and drips from valves and fittings, and spillage associated with fluid transfer. These releases are not being contained by the double-wall interstitial space.
The use of an internal containment chamber within single walled tanks is known. Applicant's CA Patent No. 2,196,842 and U.S. Pat. No. 5,960,826 disclose the use of such containment chambers to contain spills and overflows from various valves used in these tanks.
In one aspect, the invention comprises an above-ground storage tank comprising:
The configuration of the containment chamber and the at least one pipe and valve assembly is arranged such that the double-walled protection of the tank is not compromised by any pipe or hatch or other opening, except in the freeboard zone.
In the drawings, like elements are assigned like reference numerals. The drawings are not necessarily to scale, with the emphasis instead placed upon the principles of the present invention. Additionally, each of the embodiments depicted are but one of a number of possible arrangements utilizing the fundamental concepts of the present invention. The drawings are briefly described as follows:
The invention relates to double-walled aboveground storage tanks. When describing the present invention, all terms not defined herein have their common art-recognized meanings. To the extent that the following description is of a specific embodiment or a particular use of the invention, it is intended to be illustrative only, and not limiting of the claimed invention. The following description is intended to cover all alternatives, modifications and equivalents that are included in the spirit and scope of the invention, as defined in the appended claims.
In one embodiment, the invention comprises an above-ground storage tank defining an interior volume and having an internal containment chamber. The tank itself is double-walled, as is the containment chamber. All pipe and valve assemblies which penetrate into the tank are configured so as to not compromise either the interstitial space of the tank or the containment chamber. In one embodiment, the interstitial space of the tank is not compromised because the primary tank is not penetrated, or is only penetrated in the freeboard zone of the tank. As used herein, the term “freeboard” means that area of the tank above the highest fluid level of the tank, or an area which is normally not in contact with fluid in the tank.
Therefore, in one embodiment, the invention comprises an above-ground storage tank comprising:
In one embodiment, the at least one pipe and valve assembly passes into the chamber without passing through the primary tank at all, or passes through the primary tank in a freeboard zone and into the containment chamber from the tank interstitial space, or passes through the primary and secondary tank in a freeboard zone and into the chamber through the exterior door assembly.
As shown in
An internal containment chamber (22) is created by a chamber primary wall (24) and a chamber secondary wall (26), which together define a chamber interstitial space (28). The primary chamber wall (24) is that wall which faces the tank interior volume, while the secondary chamber wall (26) is that wall facing inside the chamber (22). The chamber walls (24, 26) are attached to the tank walls (12, 14) in a fluid-tight manner, such as by a suitable welding process. The attachments between the tank and containment chamber primary and secondary walls may be varied, as will be described below. What is essential is that the tank interstitial space and chamber interstitial space not be compromised.
Access to the containment chamber (22) is provided by a door assembly (30) which passes through the secondary tank wall (14). The door assembly may comprise a box (32) having a door (34). The door assembly can either be formed from the tank secondary wall material, or, be a completely separate manufactured component that is welded to the exterior of the tank secondary wall, over a door opening cut through both secondary and primary walls. The door opening must then be framed between the primary and secondary tank walls to re-seal the interstitial space. This doorway opening provides access into the containment chamber.
A tank access hatch (36) may be provided through the tank roof (20). A pipe access hatch (38) may be also be provided which provides access the interstitial space, tank volume or chamber space which houses pipe and valve assemblies, as described below.
The tank comprises at least one pipe and valve assembly. In one embodiment, the tank comprises two pipe and valve assemblies: a suckout pipe (40) and an overflow pipe (50). The suckout pipe (40) originates near the tank floor, rises to the freeboard zone (F), where it passes through the primary tank wall (12) and into the tank interstitial space (16). It then passes through the containment chamber walls and into the containment chamber, where it terminates with a suckout valve (42).
An overflow pipe (50) originates in the freeboard zone, near the fluid line marking maximum capacity of the tank, and passes into the tank interstitial space (16). The overflow pipe (50) then continues into the containment chamber, and terminates in a high level shutdown valve (52). This valve (52) may include sensors which regulate inflows into the tank, or may be connected to transmitters (not shown) which transmit a wireless or radio alarm signal, as is well known in the art. As fluid in the tank exceeds the maximum capacity, a small amount of fluid will flow into the overflow pipe, and into the high level shutdown valve. Sensors in the valve may detect fluid, and cause inflows into the tank to stop. In another embodiment, there may be fluid connections from either or both the tank interstitial space or the chamber interstitial space to the high level shutdown valve. Accordingly, fluid in either interstitial space, which means that the primary tank or primary chamber wall has been breached, will cause an alarm signal or shutdown of inflows, or both.
As may be seen in
A heater (55) may be provided within the containment chamber to keep the valves (42, 52) from freezing in the winter.
In an alternative embodiment, as shown in
In an alternative embodiment, shown in
In a further alternative embodiment, as shown in
As shown in
Alternatively, the primary chamber wall (24) may attach to the primary tank wall (12), while secondary chamber wall (26) attachs to the secondary tank wall (14). In one embodiment, shown in
In an alternative embodiment, two single walled chambers may be used in place of a dual-walled chamber. This implementation may provide more convenient installation or retrofitting possibilities in some cases. As shown in
In a further alternative, the primary chamber wall (101) extends up through the tank roof, with an access hatch as shown in
A suck out pipe (40) and valve (42) may also provided as described above. In one embodiment, a siphon break (130) is connected to the suck out pipe (30) and terminates with a siphon valve (132) in the containment chamber.
As shown in
In one embodiment, the tank comprises fluid detection sensors (not shown) in the tank interstitial space, the chamber interstitial space, or both. If the tank interstitial space, and the chamber interstitial space are connected or continguous, it may possible to implement only one fluid detection sensor within either the tank or the chamber interstitial space. Suitable fluid detection sensors are well known in the art. In one embodiment, an interstitial connect (120) may be provided which provides a fluid connection between either or both of the tank interstitial space and the chamber interstitial space and the high level shut down valve (52). The interstitial connect (120) may be transparent or translucent to enable visual confirmation of fluid in the connect (120). The bottom end of the connect may terminate in a “Y” connector (122) to connect both the tank and chamber interstitial spaces.
As will be apparent to those skilled in the art, various modifications, adaptations and variations of the foregoing specific disclosure can be made without departing from the scope of the invention claimed herein.
Number | Date | Country | Kind |
---|---|---|---|
2679790 | Sep 2009 | CA | national |
2682651 | Oct 2009 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
2252173 | Lowell | Aug 1941 | A |
2563118 | Jackson | Aug 1951 | A |
3608768 | McGrath | Sep 1971 | A |
4019583 | Simon | Apr 1977 | A |
4131785 | Shutt | Dec 1978 | A |
4519415 | Carn | May 1985 | A |
4803343 | Sotani et al. | Feb 1989 | A |
5038456 | McGarvey | Aug 1991 | A |
5071166 | Marino | Dec 1991 | A |
5139390 | Rajewski | Aug 1992 | A |
5154312 | Robbins | Oct 1992 | A |
5197627 | Disabato et al. | Mar 1993 | A |
5259895 | Sharp | Nov 1993 | A |
5381923 | O'Dea | Jan 1995 | A |
5960826 | Hebblethwaite et al. | Oct 1999 | A |
5971009 | Schuetz et al. | Oct 1999 | A |
6318581 | Garton | Nov 2001 | B1 |
6516754 | Chadwick | Feb 2003 | B2 |
7165572 | Hebblethwaite | Jan 2007 | B2 |
7314058 | Saito | Jan 2008 | B2 |
8328040 | Ries | Dec 2012 | B2 |
Number | Date | Country |
---|---|---|
2169126 | Aug 1997 | CA |
2196842 | Dec 2000 | CA |
2609642 | May 2009 | CA |
2675482 | Feb 2011 | CA |
2011035429 | Mar 2011 | WO |
2011069260 | Jun 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20110168704 A1 | Jul 2011 | US |