The present invention relates generally to methods and apparatuses for fabricating a doubly-curved mesh.
Doubly-curved thin shells are challenging to fabricate because of the curved geometry of the shell. Doubly-curved thin shells are fabricated using bulk processes or in assemblies of curved components. For high volume production, as in bulk manufacturing, material is applied to, or pressed against, a curved form. For low volume production, as in the construction of civil structures, pre-curved structural components are assembled and covered to make a solid, thin-shell structure. However, the automated fabrication of thin shells for low volume production is challenging, if not possible, because of the customized pre-curved structural components that are required for each thin shell.
In general, in one aspect, fabrication of a doubly-curved mesh described herein is based on a customized design. In an embodiment, a designed surface is numerically mapped and geometric data is extracted from a design. Material-strips are manually and/or automatically assembled according to the design. In another embodiment, material-strips positions are modified to form a doubly-curved mesh. The doubly-curved mesh can be utilized, for example, as a mesh structure or the doubly-curved mesh can be covered, for example, to form a solid thin shell. In some examples, the doubly-curved, mesh thin surfaces are stacked to increase rigidity and/or overlapped to increase the range of the mesh.
In another aspect, there is a method for fabricating a doubly-curved mesh. The method includes providing a plurality of material-strips. Each material-strip includes a plurality of segments. The method further includes determining a length for at least one segment of at least one material-strip based on a distance between points on a geodesic line associated with the material-strip. The method further includes determining a width for at least one material-strip based on a computed twist and/or a computed bending angle. The method further includes connecting the plurality of material-strips to form a plurality of quadrilaterals. Each quadrilateral is defined by four edges. The method further includes modifying at least one edge of at least one quadrilateral based on the determined length for the at least one segment to form the doubly-curved mesh.
In yet another aspect, there is a method for fabricating a doubly-curved mesh. The method includes creating one or more geodesic lines across triangular tessellation surfaces and creating a geodesic net based on the one or more geodesic lines. The method further includes connecting a plurality of material-strips to form a plurality of quadrilaterals. Each quadrilateral is defined by four edges. The method further includes modifying at least one edge of at least one quadrilateral based on the geodesic net.
In other examples, any of the aspects above can include one or more of the following features. The modifying at least one edge distributes strain energy evenly throughout the doubly-curved mesh. The width for the material-strip can be variable. Alternatively, the width for the material-strip can be constant.
In some examples, a plurality of doubly-curved meshes is connected. The connection of the plurality of doubly-curved meshes includes overlapping, extending, and/or interweaving. Each quadrilateral flexes independently from other quadrilaterals in the plurality of quadrilaterals.
In examples, modifying at least one edge changes interior angles of one or more quadrilaterals in the plurality of quadrilaterals. In some examples, one or more geodesic lines which are associated with the material strips are created across triangular tessellation surfaces.
In some examples, a width for at least one material-strip based is determined on a computed bending strain energy of the geodesic line associated with the material-strip.
In examples, the doubly-curved mesh is covered with a material to form a doubly-curved shell. The material is concrete, plastic, and/or resin. In some examples, the material strips of the doubly-curved mesh are formed of or include wood, paper, metal, plastic, and/or resin.
In some examples, the doubly-cured mesh is a form used for a structure.
In some examples, a concrete shell is fabricated by any of the methods as described herein. A vehicle body-panel is fabricated by any of the methods as described herein. A mold is fabricated by any of the methods as described herein. The mold has three dimensions, two dimensions, or one dimension.
In other examples, a mesh shell is fabricated by any of the methods as described herein. The mesh shell includes a reinforcing mat conformed to a shape of the doubly-curved mesh. An antenna is fabricated by any of the methods as described herein. A medical implant is fabricated by any of the methods as described herein.
Any of the approaches, aspects, and/or examples above can provide one or more of the following advantages. An advantage is that the doubly-curved mesh provides scaled prototypes of the doubly-curved surfaces which allow for direct, fast fabrication. Another advantage is that the direct, fast fabrication of the doubly-curved mesh allows for the repeated testing of curved products and/or structures.
An additional advantage is that the doubly-curved mesh can be customized and fabricated for vehicle body-panels or other objects for low-volume manufacturing processes. For example, the doubly-curved mesh can be fabricated for auto body-panels, aircraft and/or spacecraft panels for fuselages and wings, and/or marine hulls for sail and powerboats.
Another advantage is that the doubly-curved mesh can be utilized for mold making and can form one and two-side molds for pre-scribed variable curvature. An additional advantage is that the doubly-curved mesh can be utilized as curved reinforcing mats to fit into curvilinear molds for composite fabrication.
The foregoing and other aspects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The material-strips 112 are attached to one another to form the mesh 110 according to geometric data extracted from a customized design to form a geodesic dome. Specifically, the material-strips 112 are positioned and attached to form a plurality of quadrilaterals 118. Each quadrilateral 118 has customized lengths of each of its four segments (as described below) which form a portion of the geodesic dome and are determined from the geometric data from the geodesic dome. As a result, the plurality of material-strips 112 are positioned and connected so that each quadrilateral 118 has customized dimensions (as described below) as extracted from the geometric data.
The embodiment of the doubly-curved mesh 110 shown in
Specifically, each quadrilateral 118, 220 of the doubly-curved mesh 110 can be thought of as being formed from a plurality of segments 223. (See
The edges 224 of the quadrilateral 220 are thus uniquely defined. That is each edge 224 is modified from forming a right angle as illustrated in quadrilateral 210 based on the determined length for each segment 223. The modification of the edges 224 of the quadrilateral 220 forms the doubly-curved mesh 110. For example, the top and right edges 224a and 224c, respectively, are shortened by sliding the material-strips 212a and 212c over one another and connecting the strips together at the intersection 214d. The lengths of the top and right edges 224a and 224d, respectively, are modified based on a determined length for the edges 224a and 224d which is determined based on the length of the segments 223a and 223d and the widths of the material-strips 217a and 217d.
Referring back to
Each material-strip 212a, 212b, 212c, and 212d has a width 217a, 217b, 217c, and 217d (generally 217), respectively. The width 217 of each material-strip is determined based on a computed twist and/or a computed bending angle of the material-strip. Although
The doubly-curved mesh 110 can be fabricated, for example, by providing a plurality of material-strips 112 of
As another example, the doubly-curved mesh 110 is fabricated by creating one or more geodesic lines across triangular tessellation surfaces. A geodesic net is created based on the one or more geodesic lines. The plurality of material-strips 112 are connected to form the plurality of quadrilaterals 118. Each quadrilateral 118 is defined by four edges 224. At least one edge 224 of the quadrilateral 118 is modified based on the geodesic net.
In some examples, the computed twist is the twisting of the material-strip 112 that is caused by the connecting of the material-strips 112 and the modification of the edges 224. The computed bending angle can be the angle of each segment 223 of the material-strip 112 after the edge 224 is modified based on the determined length of the segment 223. The computed twist and/or the computed bending angle can be automatically calculated based on the designed strain energies that apply to the material-strip 112.
In other examples, the modification of the lengths of the edges 224 of the material-strips 112 distribute the strain energy evenly throughout the doubly-curved mesh 110. For example, if the stain energy is concentrated in the top right hand side of the doubly-curved mesh 110, the length of one or more edges 224 is modified to distribute the strain energy through the doubly-curved mesh 110. Each quadrilateral 118 in the plurality of quadrilaterals can advantageously flex independently from the other quadrilaterals. The independent flexing can enable the distribution of strain energy through the doubly-curved mesh 110.
In some examples, the doubly-curved mesh 110 is manually fabricated using pre-drilled holes in the material-strips 112. For example, the manual fabrication includes aligning and connecting the holes. The aligning and connecting the holes includes arranging the individual material-strips 112 into a Cartesian grid on a flat surface. The axes are fastened together and each material-strip 112 is fastened to an axis. Beginning at a set starting location (e.g., origin of the axes), quadrilaterals 118 are sequentially formed by sliding material-strips 112 over each other to align the holes and the connections.
In other examples, the doubly-curved mesh 110 is automatically fabricated using a computer-controlled machine to repeatedly align the holes and make the connections. For example, individual material-strips 112 are assembled with a computer-controlled assembly machine configured as a loom. The material-strips 112 can be, for example, automatically fed from the opposing directions and positioned to make the connections. An overhead robotic Cartesian arm can be utilized, for example, to assemble material-strips 112.
In some examples, the material-strips 112 are connected and/or modified by using predetermined lengths (e.g., two centimeters, ⅛ of an inch), dynamically determined lengths (e.g., based on the geodesic line associated with the material-strip 112, based on the geodesic net, etc.) and/or a predetermined angle (e.g., 0.25 degrees, 1 degree) between the segments 223 and/or edges 224. The assembly of the material-strips 112 forms a mesh with intrinsic surface properties (e.g., slope, pitch, etc.).
In other examples, the predetermined and/or dynamical determined lengths and/or the predetermined and/or dynamical determined angles of the segments 223 and/or the edges 224 are set to a precise distance utilizing automated computer controlled machine (e.g., robotics). The doubly-curved meshes 110 can be designed by computer aided design software implementations. An advantage is that the mesh 110 can be fabricated directly from a computer design which reduces variability, improves output quality, and provides consumers with more selections at a lower cost.
In some examples, the doubly-curved mesh 110 is used as assembled with no covering. The doubly-curved mesh 110 can be covered forming a solid thin shell. The doubly-curved mesh 110 can be covered with concrete, resin, plastic, styrofoam, and/or any other type of covering. A reinforcing mat can be utilizing in the mesh shell for reinforcement. The reinforcing mat can be shaped to the doubly-curved mesh 110.
In other examples, the doubly-curved mesh 110 is used as a design prototype and/or as a final part. An advantage is that multiple design prototypes can be repeatedly tested because of the direct and fast fabrication of the meshes 110. Another advantage is that the direct and fast fabrication allows for various curvatures of designed products or structures to be tested before final construction of the product or structure.
In some examples, the doubly-curved mesh 110 is a vehicle body, a mold, and/or any other type of product. The vehicle body can be, for example, an aircraft fuselage, an auto body-panel (e.g., custom build car, antique car), and/or a boat hull. Other types of products include, for example, an antenna dish, curved structures with reflectors and/or receivers (e.g., symmetric or asymmetric dishes to receive radar, radio, and TV signals, solar collectors), a skull implant, plastic or collagen curved meshes, and/or a sculptured design accessory. The mold can be one-dimensional, two-dimensional, or three-dimensional. An advantage is that the mesh 110 is easily assembled in the field and can be used by remote communities, by the military, and/or in space (e.g., solar sail, mirror). The mesh 110 can be utilized for body reconstruction and/or tissue remodeling.
In other examples, the doubly-curved mesh 110 is a curvilinear reinforcement that fits inside composite molds and/or a curvilinear composite mold. The doubly-curved mesh 110 can be utilized, for example, as a curvilinear formwork for placing cast concrete for foundations and/or walls. The mesh 110 can be assembled, for example, edge to edge, onto a frame, and/or made into a single large piece. In other examples, the mesh is made of metal, resin, plastic, and/or an advanced material such as carbon-fiber and/or Kevlar.
In some examples, the mesh 110 is utilized for civil structures with variable curvatures. The civil structures include small and intermediate sized architectural structures with smooth and undulating organic shapes. The civil structures include roofs, walls, swimming pools, and/or any other type of variable curvature structure.
In some examples, the material-strips 112 are manually assembled into small and/or medium sized curvilinear structures (e.g., buildings). The material-strips 112 can be covered, for example, with concrete and/or other types of structural material. An advantage is that the speed of building variable-curved structures would increase and the cost of building variable-curved structures would decrease which would increase the construction of variable-curved structures.
For example, the material-strips 232 of
For example in an exemplary fabrication, twenty material-strips 112 are provided (310). Each material-strip 112 includes segments 223. A length of segment 223 is determined (320) based on a distance between points on a geodesic line associated with the material-strip 112. The geodesic line is calculated by a computer aided design (“CAD”) program to simulate the doubly-curved mesh 110 that is being fabricated. The determination (320) of the length of the segment 223 (e.g., one inch, five centimeters, etc.) is based on the geodesic line that corresponds to the material-strip 112 in the CAD design for the doubly-curved mesh 110. The width 217 of the material-strip 112 is determined (330) based on a computed twist and/or a computed bending angle of the material-strip 112. The width 217 can be adjusted to reduce and/or stabilize the computed twist and/or computed bending angle to maximize the useful life of the doubly-curved mesh 110. The material-strips 112 are loosely connected (340) together at connections 214. The length of the edge 224 is modified (350) based on the determined length of the corresponding segment 223. The modification of the edge 224 causes the material-strips 112 to change shape and/or form to become the doubly-curved mesh 110. After the modification of the edge 224, the material-strips 112 can be permanently connected together at the connections 214.
In another example, a CAD design is created to represent a doubly-curved automobile body-panel. Geodesic lines are created (410) across the triangular tessellation surfaces that make up the automobile auto panels in the CAD design. The geodesic lines are utilized to create (420) a geodesic net that represents the doubly-curved automobile body-panel. The material-strips are connected (430) together by a robotic arm to form a eighty quadrilaterals 268. The robotic arm modifies (440) the length the edges of part or all of the eighty quadrilaterals 268 to form the doubly-curved automobile body-panel that represents the CAD design of the automobile body-panel.
Modeling of different aspects of the doubly-curved mesh 110 is described below utilizing
In some examples, the shape of a path, which is the path of the geodesic line that corresponds to the material-strip 112, in each segment 223 is associated with the cross-sectional geometry of the material-strips 112, the material-strip 112 material stiffness E, and/or the length between the connections l. In other examples, the number of connected material-strips 112 is increased so that the deflections are minimized. The deflections can be minimized, for example, through the utilization of one or more dimensionless parameters (e.g., wide material-strip).
In other examples, the material-strips 112 are variable or constant (e.g., narrow, wide). An advantage is that wide material-strips 112 reduce or eliminate the elements from bending sideways. For example, a natural cross-section is a rectangle with a dimensionless aspect ratio A=w/t.
In some examples, sideways bending is negligible relative to normal bending
for equivalent applied bending moments, M2 and M3. For example, when w=15t, A=15,
In other examples, the material-strip 112 is under-constrained such that the twist angle Ψ1 and the bending angle Ψ2 in each segment (e.g., 223) trade off with one-another to find the path of minimum strain energy. The deflections can be managed with sufficient numbers of material-strips 112 and/or crossing connections 214.
The normal density Δn=1/Ψ2 (normal bending angle Ψ2 of a segment) can quantify, for example, the constrainment of a material-strip 112 to its intended path relative to normal curvature kn. The tangential density Δt=w/l (width w and length l of a segment) can quantify, for example, the spacing of material-strips 112 on the mesh 110. In some examples, when the twist and normal bending deflections are excessive, length l is decreased and/or width w is increased, proportionally.
In some examples, the dimensionless parameter values, Aspect ratio: A>15, Normal density: Δn>10, and Tangential density: Δt>0.5 are utilized.
In other examples, a material-strip 112 thickness t is sized to prevent yielding. To prevent yielding form twisting, a thickness criteria can be, for example,
To prevent yielding from bending, the thickness criteria can be, for example,
Stress limits can be set, for example, as a percentage of the maximum yielding stresses from twisting and/or bending. A material-strip's width can be computed, for example, with the value of the thickness, w=Ar·t.
In some examples, the fabrication of the doubly-curved mesh 110 imparts Gaussian curvature which is stored as internal strain energy of the material-strips 112. The internal strain energy Wt (also referred to as work input) for each material-strip 112 is illustrated in Equation 1 and the twist of the material-strip 112 is illustrated in Equation 2.
In other examples, the strain energy for a material-strip 112 is calculated is the sum of the torsional strain energy and the bending strain energy of the material-strip 112. The torsional strain energy is associated with the computed twist of the material-strip 112, and the bending strain energy is associated with the computed bending angle of the material-strip 112. The torsional strain energy and/or the bending strain energy can be utilizing to determine a width of a material-strip 112, to determine the length of a segment of a material-strip 112, and/or to modify an edge of a quadrilateral 110.
For example, curvature is induced to each quadrilateral 268 (as shown in
As illustrated in exemplary Equations 3 and 4, the Gaussian curvature K of a quadrilateral with finite area can be computed. Angular excess Φ is the sum of the interior angles, less 2π.
For example, when the material-strips 611 are straight, the elements have zero geodesic curvature kg, and the Gaussian curvature reduces to the quotient of angular excess and area. When the flat quadrilateral 610 is modified to form a doubly-curved quadrilateral, the work of assembly changes its interior angles and induces curvature. The distances on the material-strips 611 can be, for example, precisely set to achieve a surface's specified curvature.
The curvature can be maintained, for example, by the connections between the holes in the material-strip 924. The connections can be made, for example, from a wide variety of methods. The connections can be made, for example, using a screw, a bolt, a snap, and/or any other type of physical connection device. The connections can be made, for example, by welding, brazing, chemical adhering, and/or any other type of connection mechanism. An advantage is that the connection can be changed according to the speed and ease needed for making the connection, the strength of the needed connection, the material-strip material, and/or the shape of the connection heads. Another advantage is that since the work of assembly increases with the number of material-strips 924, the connections can be optimized to the size of the assembly.
A geodesic net on a surface can be created for fabricating a doubly-curved mesh 110 of
The Darboux vector is represented by Equation 8 which illustrates the lines of direction for the strip that is rotated over the edges of the tessellations. For Equation 5, the apportionment of torsion i and curvature kn. When a geodesic line approaches an edge perpendicular (as illustrated in
In other examples, a geodesic line can be extended across a facet edge utilizing Equation 6. Equation 6 rotates the geodesic line on the facet about the common edge's normal. In Equation 6, vector ne approximates the surface normal vector of the smooth surface using two adjacent facets and can be weighted by the facet's areas. The normal vector ne on the edge bisects the normal vectors nf1 and nf2 of each adjoining facet. The process is repeated across the tessellated surface to form geodesic lines to form the geodesic net.
The vectors on a CAD tessellated surface are illustrated in
In some examples, the doubly-curved mesh 110 is fabricated utilizing geometric data. The geodesic net provides geometric data for material-strips 112 that become geodesic lines in the doubly-curved mesh 110.
In other examples, a geodesic net is created on a surface for fabricating a doubly-curved mesh 110 with a predetermined bend and/or shape. In some aspects, the meshes 110 can be formed and/or bent into a predetermined shape by utilizing external elements, by affixing pre-tensioned elements, by affixing pre-twisted elements, and/or by utilizing by sizing the material-strip elements to apportion their stored strain energy. In some examples, the external elements are tension cables, struts, and/or other types of external fixtures that can be utilized to form and/or bend the mish thin surface.
An advantage of the fabrication techniques and meshes described herein is that the mesh is an efficient doubly-curved structure that has relatively little volume, yet effectively distribute loads over their entire form. Another advantage is that the rapid fabrication allows for the mesh to be utilized for a variety of uses that utilize multiple iterations of testing before construction. An additional advantage is that the mesh is functional and is utilized in the construction of light-weight vehicle bodies, material-conserving storage tanks, and large-span civil structures (e.g., bridges, stadiums).
Another advantage is that the mesh is a streamlined shape that reduces drag when utilized in vehicle bodies for ships, airplanes, and automobiles. An additional advantage is that a doubly-curved mesh is aesthetically pleasing to humans. Another advantage is that a doubly-curved mesh can be manufactured in-plane or in-surface mechanisms.
The above-described apparatuses and methods can be implemented in digital electronic circuitry, in computer hardware, firmware, software, robotic hardware, any type of electromechanical apparatus, and/or any type of hydraulic apparatus. The implementation can, for example, be a programmable processor, a computer, and/or multiple computers associated with an apparatus for fabricating the doubly-curved mesh.
Method steps can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by and an apparatus can be implemented as special purpose logic circuitry. The circuitry can, for example, be a FPGA (field programmable gate array) and/or an ASIC (application specific integrated circuit). Modules, subroutines, and software agents can refer to portions of the computer program, the processor, the special circuitry, software, and/or hardware that implements that functionality.
Comprise, include, and/or plural forms of each are open ended and include the listed parts and can include additional parts that are not listed. And/or is open ended and includes one or more of the listed parts and combinations of the listed parts.
While this invention has been particularly shown and described with references to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/61744 | 4/28/2008 | WO | 00 | 6/2/2010 |
Number | Date | Country | |
---|---|---|---|
60914970 | Apr 2007 | US |