The present invention relates to frequency control products used in a variety of applications where accurate and stable frequency reference and/or timing signals are required. More specifically, the present invention relates to doubly rotated quartz crystal resonators and crystal oscillator devices with reduced sensitivity to mechanical acceleration.
High frequency stability electronic oscillators are often built with quartz crystal resonators. The latter comprise a mounted piezo-electric resonating element and means of connecting the resonator to an electronic circuit to sustain stable vibration of the resonator.
The quartz crystal resonating element is typically made from a quartz plate (“quartz wafer”) that is produced by cutting up a piece of quartz material (“quartz bar”) at certain angles relative to the material's crystallographic axes. Various properties of the resonating element are dependent on the cut angles applied during the manufacture of the quartz plate. While there is an infinite number of ways the quartz plate can be cut in relation to the crystallographic axes x, y, and z, certain cuts have been identified that result in particularly useful properties of the resonator.
An example of a singly rotated cut is the commonly used AT cut, obtained when the quartz plate is made by applying a rotation around the x axis of approximately 35° (the θ angle) from the z axis. The AT cut exhibits properties that are useful for designing and manufacturing temperature compensated crystal oscillators. The stress compensated cut SC cut is an example of a doubly rotated cut, obtained when the quartz plate is made by applying double rotation: of approximately 22° (the φ angle) relative to the x axis around the z axis, thus defining a new xI axis for the SC cut plate, and approximately 34° (the θ angle) relative to the z axis around the x axis. The SC cut quartz crystal resonator is said to be compensated for mechanical stresses applied along its in-plane axes. The IT cut is another example of a doubly rotated cut (φ≈19°, θ≈34°) that exhibits properties that are similar to those of the SC cut.
Individual quartz crystal resonating elements are manufactured by cutting (“dicing”) up quartz plates into individual “crystal blanks”; the resonating elements can be made of various shapes, with round and rectangular (“strip”) resonating elements being the commonly used ones.
A variety of resonating element mounting and packaging techniques are known. For example, as shown in
In prior art, individual resonating elements are manufactured by cutting up quartz plates in such a way that the aforementioned line of geometrical symmetry is parallel (i.e., at a zero degrees angle) to the xI axis of the plate, which, as explained above, is positioned at an angle φ in relation to the crystallographic axis x and is perpendicular to the crystallographic axis z.
A well-recognized problem associated with quartz crystal resonators and oscillator devices utilizing quartz crystal resonators is their sensitivity to mechanical acceleration. It manifests itself as a change in the resonant frequency of the resonator, or a change in the frequency of the output signal of the crystal oscillator, caused by externally applied mechanical acceleration. Sensitivity of doubly rotated quartz crystal resonators to mechanical acceleration is often problematic in oven-controlled crystal oscillators (OCXO) and temperature-compensated crystal oscillators (TCXO) used in applications where significant mechanical acceleration is present.
Certain ways of reducing sensitivity to acceleration are known in prior art, such as those, for example, that are disclosed in U.S. Pat. Nos. 7,247,978 and 7,915,965.
It is an object of the present invention to provide new ways of reducing sensitivity to mechanical acceleration in cantilever-mounted doubly rotated crystal resonators.
In one aspect, the invention may be said to comprise a method of manufacturing doubly rotated quartz crystal resonators comprising cantilever-mounted doubly rotated resonating elements, which method includes the step of applying an in-plane non-zero angle rotation around yI axis and away from xI axis when cutting up quartz plates into individual resonating elements.
In another aspect, the invention may be said to comprise a doubly rotated quartz crystal resonator comprising a cantilever-mounted doubly rotated resonating element wherein the line of geometrical symmetry running from the supported end of the cantilever-mounted resonating element to its free end is positioned at an angle relative to the crystallographic axis z that is different from 90°. In other words, in the cantilever-mounted doubly rotated resonating element of the invention the line of geometrical symmetry running from the supported end of the cantilever-mounted resonating element to its free end is not perpendicular to the crystallographic z axis of the quartz crystal material from which the resonating element is made. The said non-perpendicularity is due to the aforementioned non-zero angle in-plane rotation applied during manufacture of the resonating element.
In another aspect, the invention may be said to comprise a method of manufacturing doubly rotated SC cut quartz crystal resonators comprising cantilever-mounted resonating elements, which method includes the step of applying an in-plane rotation (around yI axis, from xI axis) within the azimuth angle range of 36° to 56° when cutting up quartz plates into individual resonating elements.
In another aspect, the invention may be said to comprise a doubly rotated SC cut quartz crystal resonator comprising a cantilever-mounted SC cut resonating element wherein the line of geometrical symmetry running from the supported end of the cantilever-mounted resonating element to its free end is positioned at an angle relative to the crystallographic axis z that is different from 90°. In other words, in the cantilever-mounted doubly rotated SC cut resonating element of the invention the line of geometrical symmetry running from the supported end of the cantilever-mounted resonating element to its free end is not perpendicular to the crystallographic z axis of the quartz crystal material from which the resonating element is made. The said non-perpendicularity is due to the aforementioned in-plane rotation around yI axis from xI axis within the azimuth angle range of 36° to 56° applied during manufacture of the resonating element.
In another aspect, the invention may be said to comprise a quartz crystal oscillator comprising a doubly rotated cantilever-mounted resonator according to the statements above.
In another aspect, the invention may be said to comprise an electronic device comprising a quartz crystal oscillator as per the statement above.
The term “comprising” as used in this specification means “consisting at least in part of”. When interpreting each statement in this specification that includes the term “comprising”, features other than that or those prefaced by the term may also be present. Related terms such as “comprise” and “comprises” are to be interpreted in the same manner.
The invention is further described with reference to the accompanying figures in which,
As stated, in accordance with the invention doubly rotated quartz crystal resonator elements are produced with a wafer dicing in-plane rotation.
As stated, several resonating elements are usually produced from a single quartz wafer, as illustrated in
Sensitivity to mechanical acceleration of a doubly rotated resonating element produced as per the present invention varies with, and depends on, the value of the in-plane rotation (azimuth) angle Ψ, and by selecting specific values of the azimuth angle the sensitivity to mechanical acceleration can be minimized or at least reduced. As explained further herein, the choice of a specific in-plane rotation angle Ψ value depends on factors such as the structure of cantilever mounting of the resonating element and the extent of acceleration sensitivity reduction to be achieved.
As with resonating elements of prior art (
Sensitivity to mechanical acceleration exhibited by doubly rotated, two-point cantilever-mounted SC cut resonating elements of the invention varies with in-plane rotation angle as shown in
As shown in
Sensitivity to mechanical acceleration exhibited by doubly rotated, single-point cantilever-mounted SC cut resonating elements of the invention varies with in-plane rotation angle as shown in
As shown in
As has already been stated, in doubly rotated resonating elements of the present invention the line of geometrical symmetry is not perpendicular to the crystallographic z axis (angle α≠90°) and that the exact value of the angle α between the line of geometrical symmetry of resonating elements produced as per the invention and the crystallographic z axis is determined by the aforementioned expression. It follows from that expression that for doubly rotated resonating elements with θ=34°±20′ (such as, for example, the SC cut and IT cut resonating elements) and the in-plane rotation angle of 36°≤Ψ≤56°, the angle α will be within the range from 46° to 61°.
It should be noted that the sign of the azimuth angle (for example, positive +46° or negative −46°) depends in practice on the convention adopted within the manufacturing process implemented at a specific manufacturer: i.e., some manufacturers will consider a clockwise in-plane rotation to be “positive”, others may call an anticlockwise in-plane rotation “positive”. As follows from
A number of single-point cantilever-mounted SC-cut (θ=33°45′, φ=21°56′) strip resonators of size 5.0 mm×3.2 mm and nominal resonant frequency of 19.2 MHz were produced with in-plane rotation (azimuth) angle Ψ of 36°, 46°, and 56°, and their sensitivity to acceleration was measured in three mutually perpendicular directions X, Y, and Z, with the total sensitivity determined based on the measurement results. The results are plotted in
Thus, by applying a specific in-plane rotation during the wafer dicing in manufacture of doubly rotated quartz crystal resonating elements, sensitivity to mechanical acceleration of cantilever-mounted strip resonators can be substantially reduced.
The choice of a specific value of the in-plane rotation angle for doubly rotated quartz crystal resonator manufacture depends on the resonator design goals. For example, if an SC cut single-point cantilever-mounted resonator design is aimed at achieving the minimal total sensitivity to acceleration, then, as shown in
Cantilever-mounted doubly rotated quartz crystal resonators of the present invention can be used in a variety of frequency control products, including, but not limited to, crystal oscillators (XO), temperature-compensated crystal oscillators (TCXO), and oven-controlled crystal oscillators (OCXO). These devices, in turn, will benefit the performance of various electronic devices and systems, including, but not limited to, radio communication devices, where reduced sensitivity of the reference frequency to mechanical acceleration is important.
Number | Date | Country | Kind |
---|---|---|---|
757314 | Sep 2019 | NZ | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/058588 | 9/16/2020 | WO |