Not Applicable
Not Applicable
1. Technical Field
The present invention relates generally to the art of concrete construction. More particularly, the present invention relates to an apparatus for facilitating the placement of slip dowel rods within adjacent concrete slabs.
2. Related Art
In the concrete construction arts, “cold joints” between two or more poured concrete slabs are frequently used for the paving of sidewalks, driveways, roads, and flooring in buildings. Such cold joints frequently become uneven or buckled due to normal thermal expansion and contraction of the concrete and/or compaction of the aggregate caused by inadequate preparation prior to pouring of concrete. As a means of preventing bucking or angular displacement of such cold joints, it is common practice to insert smooth steel dowel rods generally known as “slip dowels” within the edge portions of adjoining concrete slabs in such a matter that the concrete slabs may slide freely along one or more of the slip dowels, permitting linear expansion and contraction of the slabs while also maintaining the slabs in a common plane and thus preventing undesirable bucking or unevenness of the cold joint.
In order to function effectively, slip dowels must be accurately positioned parallel within the adjoining concrete slabs. The non-parallel positioning of the dowels will prevent the desired slippage of the dowels and will defeat the purpose of the “slip dowel” application. Additionally, the individual dowels must be placed within one or both of the slabs in such a manner as to permit continual slippage or movement of the dowels within the cured concrete slab(s).
A number of methods of installing smooth slip dowels are popular. According to one method, a first concrete pour is made within a pre-existing form. After the first pour has cured, and edge of the form, usually a wooden stud, is stripped away. A series of holes are then drilled parallel into the first pour along the exposed edge from which the form has been removed. The depth and diameter of the individual holes varies depending on the application and the relative size of the concrete slabs to be supported. As a general rule, however, such holes are at least twelve inches deep and typically have a diameter of approximately five-eighths (⅝) of an inch.
After the parallel series of holes have been drilled into the first pour, smooth dowel rods are advanced into each hole such that one end of each dowel rod is positioned within the first pour and the remainder of each dowel rod is positioned within the first pour and the remainder of each dowel rod extends into an adjacent area where a second slab of concrete is to be poured. Thereafter, concrete is poured into such adjacent area and is permitted to set with the parallel aligned dowels extending thereto. After the second pour has cured, the slip dowels will be held firmly within the second slab, but will be permitted to slide longitudinally within the drilled holes of the first slab thereby accommodating longitudinal expansion and contraction of the two slabs while at the same time preventing buckling or angular movement therebetween.
Although the above-described “drilling method” of placing slip dowels is popular, it will be appreciated that such method is extremely labor intensive. In fact, it takes approximately ten minutes to drill a five eighths inch (⅝″) diameter by twelve inch long hole into the first pour and the drilling equipment, bits, accessories, and associated set up time tends to be very expensive. Moreover, the laborers who drill the holes and place the slip dowels must be adequately trained to ensure that the dowels are arranged perpendicular to the joint but parallel to one another so as to permit the desired slippage.
Another popular method of placing slip dowels involves the use of wax-treated cardboard sleeves positioned over one end of each individual dowel. According to such method, a series of holes are drilled through one edge of the concrete form and smooth dowels are advanced through each such hole. Thereafter, the treated cardboard sleeves are placed over one end of each dowel, with a first pour subsequently being made within the form which covers the ends of the dowels including the cardboard sleeves thereon. After the first pour has set, the previously drilled form is stripped away, leaving the individual dowels extending into a neighboring open space where the second pour is to be made. Subsequently, the second pour is made and cured. Thereafter, the slip dowels will be firmly held by the concrete of the second pour, but will be permitted to longitudinally slide against the inner surfaces of the wax treated cardboard sleeves within the first pour. Thus, the waxed cardboard sleeves facilitate longitudinal slippage of the dowels, while at the same time holding the two concrete slabs in a common plane, and preventing undesirable buckling or angular movement thereof.
This method was also associated with numerous deficiencies, namely, that after the first pour was made, the free ends of the dowels were likely to project as much as eighteen inches through the form and into the open space allowed for the second pour. Because the drilled section of the form must be advanced over those exposed sections of dowel to accomplish stripping or removal of the form, it is not infrequent for the exposed portions of the dowels to become bent and, thus, non-parallel. Additionally, the drilled section of the form became damaged or broken during the removal process, thereby precluding its reuse.
Each of the above described known methods of placing slip dowels between concrete slabs often results in the dowels being finally positioned at various angles rather than in the desired parallel array. Therefore, the necessary slippage of the dowels is impeded or prevented.
In response to such deficiencies in the art, a number of dowel placement sleeves have been developed. One such development is U.S. Pat. No. 5,005,331 to Shaw, et al., which is wholly incorporated by reference herein, teaches a slip dowel positioning device that is extractable from the first concrete slab. The device is comprised of a hollow cylindrical portion with a flange or gusset extending perpendicularly therefrom. The flange permitted the device to be attached to the form, and upon curing, the form was removed, thereby also removing the positioning device. Thereafter, a smooth dowel was inserted in the cavity formed in the space previously occupied by the positioning device, and a subsequent slab of concrete was poured. One of the deficiencies associated with the '331 device was that it was required to be removed from a cured slab of concrete, necessitating extra force during removal. Further, the configuration which enabled the positioning device to be removable resulted in a cavity which was less than ideal, in that slight discrepancies in the angular displacement of the smooth dowel are introduced. Therefore, slip dowel placement which was truly parallel to the concrete surface is not possible.
Thus, alternatively, the '331 patent and additionally U.S. Pat. No. 5,216,862 to Shaw, et al., which is also incorporated by reference wherein, contemplated a positioning device which remained in the concrete slab. The positioning device was attached to the form via staples or small nail heads, and forcibly stripped upon curing of the first slab of concrete. However, the requirement of forcibly removing the form from the positioning device remained.
Accordingly there is a need in the art for an inexpensive and readily reproducible dowel positioning device which can remain in the concrete slab after curing. Further, there is a need for a dowel positioning device which can be attached and removed from a form with minimal force and a minimum number of extraneous components. These needs and more are accomplished with the present novel and inventive device, the details of which are discussed more fully hereunder.
In light of the foregoing problems and limitations, the present invention was conceived. In accordance with one embodiment of the present invention, provided is a concrete dowel placement device for attachment to a form. More particularly, the device comprises a stud having a generally tubular body, a proximal stud end and a distal stud end, and a cover having a generally tubular body having an outer cover surface, an open proximal cover end, a closed distal cover end, and a hollow cover interior compartment extending axially therein configured to slidably receive the stud. In one embodiment, the stud is of uniform construction and has a form insertion section disposed towards the proximal stud end and encompassed by the form, and a cover insertion section disposed towards the distal stud end and encompassed by the cover. The form insertion section extends beyond the proximal cover end when the cover is placed on the stud. Furthermore, the form insertion section is tapered to a point defining the proximal stud end for ease in driving the stud into the form. Alternatively, the form insertion section is threaded and tapered to a point defined by the proximal stud end for screwing the stud into the form. In order to enable the stud to be screwed into the form, the distal stud end defines a molded surface configured to cooperate with a screwdriver head.
In accordance with another embodiment of the present invention, the distal stud end and the proximal stud end each have an opening and a hollow stud interior compartment extending axially therebetween. The stud is configured to slidably receive a nail having a length greater than that of the hollow stud interior compartment, the nail having a head in an abutting relationship with the distal stud end and a point driven into the form. In another embodiment, the stud is configured to receive a threaded screw having a length greater than that of the hollow stud interior compartment, with the screw having a head in an abutting relationship with the distal stud end and a point screwed into the form. Further, the stud may include threading disposed in the hollow stud interior compartment to cooperatively retain the threaded screw.
According to yet another aspect of the present invention, the cover includes an integrated flange on the proximal cover end. Preferably, the cover is formed of plastic, and the stud is ¼ inch in diameter. Along these lines, the hollow stud interior compartment is also ¼ in diameter.
In accordance with still another aspect of the present invention, disclosed is a method for forming a cold joint between adjoining sequentially formed slabs of concrete. The method is comprised of a) securing one or more studs to one or more forms; b) attaching a cover on to a respective one of the studs; c) forming a first enclosed area with the forms; d) pouring a first slab of concrete into the first enclosed area; e) curing the first slab of concrete; f) slidably removing the forms from the slab of concrete thereby concurrently withdrawing the studs from the covers, wherein the covers remains within the first slab of concrete; g) inserting a dowel into each of the covers remaining in the first slab of concrete; h) attaching a cover on to respective ones of the studs on the form; i) forming a second enclosed area adjacent to the first slab of concrete with the forms, wherein at least a part of the second enclosed area is defined by an edge of the first concrete slab and at least one of the dowels extend into the second enclosed area; j) pouring a second slab of concrete into the second enclosed area; and k) curing the second slab of concrete. The dowel is generally cylindrical, and may be constructed of stainless steel, while the covers are constructed of plastic.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
a is a perspective view of a first embodiment of a stud and a speed cover in accordance with an aspect of the present invention;
b is a side view of a first embodiment of a speed cover attached to a stud which is inserted into a form;
a is an exploded perspective view of a second embodiment of a stud having an open distal and proximal ends with a nail to be inserted therethrough and a speed cover;
b is a side view of a second embodiment of a speed cover attached to a stud secured by a conventional nail which is inserted into a form;
a is an exploded perspective view of a third embodiment of a stud having an open distal and proximal ends with a screw to be inserted therethrough and a speed cover;
b is a side view of a third embodiment of a speed cover attached to a stud secured by a conventional screw which is inserted into a form;
The detailed description set forth below in connection with the appended drawings is intended as a description of the presently preferred embodiment of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the functions and the sequence of steps for developing and operating the invention in connection with the illustrated embodiment. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention. It is further understood that the use of relational terms such as first and second, and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship or order between such entities.
With reference now to the figures, specifically
After driving the stud 20 into the form 30, a speed cover 10 is placed on the stud 20, covering the exposed part of a shaft portion 28, i.e., the portion not encompassed by the form 30. The speed cover 10 is defined by a tubular body 12, a closed distal end 14, and an open proximal end 16, and includes an interior compartment 18 which extends axially from an interior distal end surface 19 through a tubular body 12 to the open proximal end 16. The diameter of the interior compartment 18 is sufficient to enable a sliding relationship between the speed cover 10 and stud 20. While the preferred configuration is for the distal end 22 of the stud 20 to be in an abutting relationship with the interior distal end surface 19, and the open proximal end 16 to be in an abutting relationship with the form 30, strict adherence to this configuration is not necessary. For example, the stud 20 may be inserted further into the form 30, leaving a slight gap between the distal end 22 of the stud 20 and the interior distal end surface 19 of the speed cover 10 when it is positioned on the stud 20. Preferably, though not necessarily, the proximal end 16 additionally defines a flange 11 extending arcuately about the speed cover 10. Further, the speed cover 10 may be integrally formed of a plastic material fabricated by conventional molding techniques.
In a second embodiment shown in
Referring now to
While reference has been made to the “stud” 20 as in
With reference now to
As set forth above, preferably each of the forms 30, or at least one of the forms 30, have the stud 20 centrally attached thereto by any of the described embodiments, including a unitary stud 20 which includes a tapered section for insertion into the forms 30, a separate screw/hollow stud combination or the nail/hollow stud combination. The number of the studs 20 attached varies according to the needs of each application, and the proper distribution and spacing will be readily determined by a person having ordinary skill in the art. Further, each of the studs 20 have attached thereto the cover 10 as set forth above. As the height of the forms 30 defines the height of the ultimate concrete structure formed thereby since concrete is poured to be flush with the upper surface of the same, preferably the studs 20 are inserted in the longitudinal center of forms 30 to maximize the compressive strength of the concrete. Typically, the forms 30 are dimensional lumber such as a two-by-four, which is nominally two inches by fourt inches (2″ by 4″), but can be as small as one and a half inches by three and a half inches (1½″ by 3½″).
Still referring to
Now referring to
Referring to
With reference now to
As illustrated in
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
Number | Date | Country | |
---|---|---|---|
Parent | 11300138 | Dec 2005 | US |
Child | 12970588 | US |