The invention relates to a device for conveying formed parts made in a progressive forging machine from a level of the work stations to a lower level for removal from the machine.
Progressive cold forming machines typically have several workstations spaced along a horizontal plane and a valley below the plane into which scrap trimmed and punched from a workpiece falls for collection to a gravity chute. The finish formed workpiece or part also is customarily dropped into the valley area from a discharge position of a part transfer mechanism. Formed parts can be damaged in the machine when a part freefalls from the transfer discharge and strikes a preceding part or the rigid gravity discharge chute itself. The potential for damage to a formed part involves many factors including its configuration, mass, and hardness.
One attempt to avoid the risk of damage from parts dropping on one another has been to convey them individually along a horizontal path just below the workstation plane. This arrangement has the disadvantage of obstructing the tool area by eliminating a convenient platform height that an operator could otherwise stand on. Moreover, this approach can require a hole to be provided in the sidewall of the machine frame or bed, thereby weakening the sidewall.
The invention provides a generally vertically oriented conveyor in the interior of a forming machine. The conveyor receives individual finish formed parts at a transfer discharge point and lowers the part at a controlled rate of descent thereby preventing collision damage between parts in a discharge path from the machine.
The disclosed conveyor includes a pair of endless chains that vertically transport carriers that in the illustrated case are of a pan-like configuration. At one stretch or side, the chains move the carriers from the transfer area to a lower elevation within the machine where the parts are discharged at a low freefall velocity thereby eliminating or reducing a risk of damage from impacts with other finish form parts of the rigid gravity discharge chute.
The invention, by enabling the parts to be mechanically lowered within the machine, avoids obstruction of an area adjacent the plane of the workstations used by an operator to service the machine. Moreover, the inventive conveyor does not require a modification of the machine frame which could compromise its rigidity and/or strength.
A conveyor 16 includes two endless roller chain loops 17, 18. One chain 17 is in a vertical plane adjacent the transfer fingers 12 and a bolster 19 while the other chain 18 is displaced from the bolster. The chains 17, 18 are trained over respective upper and lower sprockets or wheels 21, 22. An outboard upper sprocket 21 is fixed on a drive shaft 23 rotatably supported in bearings mounted in a conveyor frame 24. The lower sprockets 22 are fixed on a common shaft 25 rotatably supported in a lower part of the frame 24. The outboard upper sprocket 21 drives the co-axial inboard upper sprocket 21 through the chain 18, shaft 25 and chain 17. Guide plates 28, 29 engage rollers of the chain 17, 18 and constrain the respective stretches 31, 32 of the chains 17, 18 to generally vertical, straight lines. The guide plates 28 for the down stretch 31 of the chains 17, 18 is slightly out of plumb to provide adequate clearance for the motion of carriers 36 pivotally fixed to the chains 17, 18.
The carriers 36 are shallow pan-like structures that, for example, can have a V-shaped cross-section. The carriers or buckets 36 are shorter than the spacing between the chains 17, 18 so that, as will be understood, the carriers can swing between the chains. At each end, a carrier 36 is pivotally connected to a chain through a rigid bracket 37 of T-shaped profile. The bracket 37 is pivotally fixed to a pin of a chain 17, 18 at 38. A distal part of the bracket 37 is straddled by a pair of rollers 39. As discussed below, the rollers 39 serve like cam followers to maintain a desired orientation of the carriers 36. In the various illustrated views, the sprockets 21, 22 turn clockwise; the carriers 36 on the downward chain stretch 31 are concave upward and the carriers on the upward stretch 32 hang downwardly.
As a carrier 36 rises on the left chain stretch 32, it is led by its associated rollers 39 (
As the pivot center 38 on a chain 17, 18 starts to descend (
The sprocket drive shaft 23 and, therefore, the conveyor 16, is preferably operated by a servomotor (schematically illustrated at 51 in
The motor 51 rotates the shaft 23 so that a carrier 36 is located directly under the transfer fingers 12 when the transfer fingers are opened. A part or workpiece held by the transfer fingers 12 drops a relatively short distance, for example, in comparison to the depth of the adjacent frame sidewall which is a measure of the distance a part would otherwise be required to fall for removal from the machine. The kinematics of the carrier 36 adjacent the upper sprockets 21 do not require the carrier to rise above the plane of the workstations 11 when it transitions between a workpiece discharging orientation to the carrying orientation. At the bottom of the tracks, the rollers 39 and, therefore, the carrier 36 are released so that the carrier can swing to its downward hanging position and softly deposit a workpiece 52 on a chute 53 (
It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the fair scope of the teaching contained in this disclosure. The invention is therefore not limited to particular details of this disclosure except to the extent that the following claims are necessarily so limited.
Number | Name | Date | Kind |
---|---|---|---|
7325666 | Stengele | Feb 2008 | B2 |
Number | Date | Country |
---|---|---|
H07-21234 | Apr 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20160214806 A1 | Jul 2016 | US |