This application is a U.S. national stage entry of PCT International Application No. PCT/CN2021/112796, filed on Aug. 16, 2021, which claims the priority of Chinese patent application No. 202011495723.5, entitled “Blowout preventer adopting composite setting mode” and filed on Dec. 17, 2020, the content of which is incorporated herein by reference in its entirety.
The present invention relates to drilling tools used in oil and gas fields, and specifically to a downhole blowout preventer. The present invention further relates to a blowout preventing operation method using such a downhole blowout preventer.
In drilling operations for oil and gas production, when the pressure in the wellbore is less than the formation pressure, the fluid (i.e., oil, gas and water) in the downhole formation will enter the wellbore to cause overflow or well surge, resulting in drilling blowout and fire accidents in serious cases.
At present, the conventional method for handling the overflow or well surge is to provide a wellhead blowout preventer, by which the well is shut in to prevent the blowout, followed by a step of well killing. However, after the well is shut in, a large amount of high-pressure gas will migrate into the wellbore, causing the pressure in the casing to increase. This made it more difficult to perform the well-killing step, and the duration thereof is also prolonged.
U.S. Pat. No. 3,941,190 proposes a downhole blowout preventer, which includes an expandable packer for achieving sealing inside the drilling column. CN 201843563U discloses a mechanical downhole internal-and-external integral blowout preventer, which includes an arrow-type check valve and an external annulus packer, for achieving sealing between the internal and external annuluses of the downhole drill pipe.
However, the aforementioned downhole blowout preventers can only achieve simple sealing, which cannot adapt to variable downhole conditions, and also present poor stability.
Aiming at the above technical problems existing in the prior arts, one object of the present invention is to propose a downhole blowout preventer, which is capable of adopting two different seating modes for two different procedures, i.e., tripping and drilling respectively, so as to achieve reliable seating. Another object of the present invention is to provide a downhole blowout preventing operation method.
According to a first aspect of the present invention, a downhole blowout preventer is provided, comprising a blowout preventer tubing string, said blowout preventer tubing string comprising a circulation unit, a packer unit and a pressure-building unit connected in sequence from top to bottom. Said pressure-building unit is configured to be activated in response to a command, so as to build up pressure in a space inside said blowout preventer tubing string. Said packer unit is configured to be activated when a pressure in said space reaches a first predetermined value, so as to seal an annulus between said blowout preventer tubing string and an external casing or borehole. Said circulation unit is configured to be activated when the pressure in said space reaches a second predetermined value, thereby creating a circulation path between an interior and an exterior of said blowout preventer tubing string, said first predetermined value being less than said second predetermined value.
According to an embodiment of the present invention, said pressure-building unit comprises a ball-dropping and pressure-building device, and a mechanical pressing device arranged downstream of said ball-dropping and pressure-building device.
According to an embodiment of the present invention, said command is an operation of throwing a ball into said blowout preventer tubing string when a downhole overflow occurs during tripping, or an operation of pressing down said mechanical pressing device when a downhole overflow occurs during drilling.
According to an embodiment of the present invention, said mechanical pressing device comprises a pressing sleeve, a retaining sleeve arranged outside of said pressing sleeve, and a pivotable gate plate mechanism. Said pressing sleeve being configured to: maintain contact with said gate plate mechanism in an initial state, so as to press said gate plate mechanism against an inner wall of said retaining sleeve; and release contact with said gate plate mechanism in a pressing state, so that said gate plate mechanism is able to pivot under a resilient restoring force to close a flow channel in said blowout preventer tubing string for pressure building-up.
According to an embodiment of the present invention, said gate plate mechanism comprises a gate plate holder fixedly attached to an inner wall of said retaining sleeve, a gate plate pivotably attached to said gate plate holder through a pivot, and a torsion spring for providing said resilient restoring force.
According to an embodiment of the present invention, said mechanical pressing device further comprises a pressing section located at a lower end of said pressing sleeve, said pressing section being connected to said retaining sleeve through a second shear pin, and located at a radially inner side of said gate plate to contact with said gate plate mechanism in said initial state, said second shear pin having a shear stress less than said first predetermined value. After said second shear pin is sheared off in said pressing state, said pressing section moves downward by gravity, so that the contact between said pressing section and said gate plate mechanism is released, thereby allowing said gate plate mechanism to pivot.
According to an embodiment of the present invention, said pressing section is connected to an intermediate sleeve fixed to the inner wall of said retaining sleeve with said second shear pin, said intermediate sleeve being provided above said gate plate.
According to an embodiment of the present invention, said gate plate holder is provided with an inward step extending radially at a bottom end thereof, for receiving said pressing section.
According to an embodiment of the present invention, said packer unit comprises a central tube having a central passage, and an expandable rubber arranged on said central tube. A fluid reservoir is formed between said central tube and the rubber, and a pressure-transmitting hole is formed in said central tube for connecting said fluid reservoir with said central passage.
According to an embodiment of the present invention, a one-way valve is provided in said pressure-transmitting hole, and configured to allow fluid flow only in a direction from said central passage to said fluid reservoir.
According to an embodiment of the present invention, said central tube further comprises a pressure relief hole, which is configured to be located below said fluid reservoir in the initial state, but in communication with said fluid reservoir after moving upward with said central tube when said blowout preventer tubing string is lifted up.
According to an embodiment of the present invention, said circulation unit comprises a body having a circulation hole, and a differential sliding sleeve connected in said body through a first shear pin, said first shear pin having a shear stress equal to said second predetermined value. Said differential sliding sleeve is configured to block said circulation hole in the initial state, and move downward to open said circulation hole when the pressure in said blowout preventer tubing string exceeds said second predetermined value to shear off said first shear pin.
According to an embodiment of the present invention, said body is provided with an inner step on an inner side thereof, and said differential sliding sleeve is provided with an outer step on an outer wall thereof, said inner step being engageable with said outer step to restrict a downward movement of said differential sliding sleeve.
According to an embodiment of the present invention, said ball-dropping and pressure-building device comprises a ball, which is pre-built in the blowout preventer tubing string and supported on an automatic dropping mechanism. Said automatic dropping mechanism is actuated automatically in response to an indication signal, thereby allowing said ball to fall and engage with a ball seat of said ball-dropping and pressure-building device.
According to an embodiment of the present invention, said indication signal is a pressure wave signal.
According to a second aspect of the present invention, a blowout preventing operation method is provided, comprising steps of: lowering a downhole blowout preventer with a tubing column into a wellbore, wherein said downhole blowout preventer comprises a blowout preventer tubing string, said blowout preventer tubing string comprising a circulation unit, a packer unit, a ball-dropping and pressure-building device, and a mechanical pressing device, which are connected in sequence from top to bottom; performing pressure building-up through actuating the ball-dropping and pressure-building device by throwing a ball into said blowout preventer tubing string in the event that a downhole overflow occurs during tripping, or pressing said mechanical pressing device in the event that a downhole overflow occurs during drilling; actuating said packer unit when a pressure inside said blowout preventer tubing string reaches a first predetermined value, to seal an annulus between said blowout preventer tubing string and an external casing or borehole; actuating said circulation unit when the pressure inside said blowout preventer tubing string reaches a second predetermined value, to create a circulation path between an interior and an exterior of said blowout preventer tubing string; and performing a well killing operation.
According to an embodiment of the present invention, said method further comprises lifting up, after the well killing operation, said blowout preventer tubing string to form a communication between said pressure relief hole and the fluid reservoir, for completion of releasing.
According to an embodiment of the present invention, pressing said mechanical pressing device comprises applying a pressure to shear off said second shear pin, so that the pressing section of said mechanical pressing device moves downward away from said gate plate, whereby said gate plate rotates inward to completely cut off the flow channel in the blowout preventer tubing string.
According to an embodiment of the present invention, said mechanical pressing device is lifted up after said second shear pin is sheared off, in order to reset said pressing sleeve.
in the following preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings:
In the drawings, the same reference numerals are used to indicate the same components. The drawings are not necessarily drawn to actual scale.
The present invention will be further described below with reference to the accompanying drawings. In the context, directional terms “down”, “downstream”, “downward” or the like refer to a direction away from the well head, while directional terms “upper”, “upstream”, “upward” or the like refer to a direction toward the well head; the terms “longitudinal”, “axial” or the like refer to a direction along the length of the downhole blowout preventer, while the terms “transverse”, “radial” or the like refer to a direction perpendicular to the length of the downhole blowout preventer; and the terms “inner”, “inward” or the like refer to a radial direction from the wellbore or the casing toward the center of the downhole blowout preventer, while the terms “outer”, “outward” or the like refer to a radial direction from the center of the downhole blowout preventer toward the wellbore or the casing.
As shown in
In a preferred embodiment, an area of an upper end face of the differential sliding sleeve 12 is different from that of a low end face of the differential sliding sleeve 12, wherein the area of the upper end face is greater than that of the lower end face. With the end faces of different areas, it is possible to create a pressure difference between the upper and lower end faces of the differential sliding sleeve 12. After the first shear pin 14 is sheared off, this pressure difference will exert a downward force on the differential sliding sleeve 12 and thus urge the differential sliding sleeve 12 to move downstream, thereby opening the circulation hole 13. In this manner, communication between the interior and the exterior of the blowout preventer tubing string 110 is established.
As shown in
Moreover, in a preferred embodiment, the rubber 22 is provided with teeth (not shown) on its outer surface, for better engagement with the external casing after expansion of the rubber 22, thus creating a reliable seating.
According to the present invention, a one-way valve 27 is provided in the pressure-transmitting hole 23. The one-way valve 27 is configured to allow fluid to flow only in a direction from the central passage 29 of the central tube 21 to the fluid reservoir 25 formed between the central tube 21 and the rubber 22 (i.e., radially from inside to outside), but not in a direction from the fluid reservoir 25 to the central passage 29 (i.e., radially from outside to inside).
In this way, when pressure is building up within the blowout preventer tubing string 110, fluid in a flow channel within the blowout preventer tubing string 110 can enter the fluid reservoir from the central passage 29 of the central tube 21 via the pressure-transmitting hole 23, thereby forcing the expandable rubber 22 to expand radially outward. Finally, a firm snap engagement can be formed between the teeth of the rubber 22 and the casing, thus achieving the seating.
According to the present invention, because of existence of the one-way valve 27, fluid entering into the fluid reservoir 25 cannot flow back through the pressure-transmitting hole 23 even after the pressure is relieved, thus ensuring the packer unit 2 remains seated.
In a preferred embodiment, a pressure relief hole 24 is further provided in the central tube 21. When the downhole blowout preventer 100 is in its initial state, the pressure relief hole 24 is located below the fluid reservoir 25 and is therefore not in communication with the fluid reservoir 25. When the seating is to be released after completion of the well killing operation, the blowout preventer tubing string 110 can be lifted up. Since the rubber 22 is in a seated state, both the rubber 22 and the packer housing 26 (if any) remain stationary, but the central tube 21 will move upward with the blowout preventer tubing string 110, causing the pressure relief hole 24 to move upward relative to the fluid reservoir 25. When the pressure relief hole 24 comes to a position corresponding to the fluid reservoir 25, the fluid in the fluid reservoir 25 will be discharged through the pressure relief hole 24, thus achieving the releasing.
As shown in
In an embodiment not shown, the ball 32 may be arranged at an upstream position in the downhole blowout preventer 100 in advance, and thrown down by an automatic dropping mechanism. Specifically, in the initial state, the ball 32 is located at a suitable location above the ball seat 31 in the blowout preventer tubing string 110 including the automatic dropping mechanism. When needed, a throwing signal is sent from the ground and then received by the automatic dropping mechanism, which will be automatically actuated to throw down the ball 32 to engage with the ball seat 31. In this way, the time from ball dropping to seating can be shortened, thus improving the speed of the ball dropping and seating mode. Preferably, the throwing signal is a pressure wave signal, and the automatic dropping mechanism is configured to be actuated in response to the pressure wave signal.
A pressing sleeve 41 is arranged inside the retaining sleeve 42, and a gate plate mechanism is arranged between the pressing sleeve 41 and the retaining sleeve 42. The gate plate mechanism 45 includes a gate plate holder 52 fixedly attached to the retaining sleeve 42, and a gate plate 43 provided at an upper end of the gate plate holder 52. The gate plate 43 is pivotally attached to the gate plate holder 52 through a pivot 44, and thus has two positions, i.e., a first position wherein the gate plate 43 is pressed against an inner wall of the retaining sleeve 42 (as shown in
When the downhole blowout preventer 100 is in the initial state, the pressing sleeve 41 is located at the inner side of the gate plate 43, thereby blocking the inward rotation of the gate plate 43. At this time, the gate plate 43 is in the first position. After the blowout preventer tube string 110 is pressed down, the pressing sleeve 41 moves downward to leave its initial position corresponding to the gate plate 43. Thus, the gate plate 43 rotates inward about the pivot 44 under the action of the torsion spring, thereby completely cutting off the central passage of the blowout preventer tubing string 110. At this time, the gate plate 43 is in the second position. In this case, the pressure can be built up in a space in the blowout preventer tubing string 110 above the gate plate 43.
As shown in
Therefore, the pressing section 46 will move downward by gravity. At this time, due to the downward movement of the pressing section 46 away from the gate plate 43, the gate plate 43 can rotate inward about the pivot 44 under the action of the torsion spring 45, thereby completely cutting off the flow channel in the blowout preventer tubing string 110.
According to the present invention, an inward step 54 extending radially is formed at a bottom end of the gate plate holder 52. In this manner, when the pressing section 46 moves downward by gravity, the lower end of the pressing section 46 will come into engagement with the step 54, thereby preventing further downward movement of the pressing section 46.
In the specific embodiment shown in
It should be noted that some joints for connecting the above components with each other and with other subs of the tubing column are not shown in
In the following a method of handling downhole overflow with the downhole blowout preventer 100 according to the present invention will be described briefly. It should be noted that the term “overflow” used here also includes “well surge”, “blowout”, and all other situations where a blowout preventer is required.
The downhole blowout preventer 100 according to the present invention is lowered into the wellbore along with a drilling tubing column (not shown). When a downhole overflow occurs during the tripping procedure, the ball-dropping and pressure-building device 3 of the pressure-building unit 5 is activated through dropping a ball into the wellbore, thereby initiating the pressure building-up procedure. When the pressure above the ball-dropping and pressure-building device 3 is increased to a first predetermined value, the fluid entering the fluid reservoir 25 via the pressure-transmitting hole 23 of the central tube 21 can sufficiently drive the rubber 22 to expand radially outward, thereby achieving seating. In this way, the packer unit 2 seals the annulus between the blowout preventer tubing string 110 and the casing (or the borehole). When the pressure is continuously increased to a second predetermined value, the first shear pin 13 in the circulation unit 1 is sheared off, so that the differential sliding sleeve 11 of the circulation unit 1 moves downward to open the circulation hole 13, thereby achieving the communication between the interior of the blowout preventer tubing string 110 and the exterior annulus. In this case, the well killing operation can be performed.
When downhole overflow occurs during drilling, the pressing sleeve 41 of the mechanical pressing device 4 is pressed down in a mechanical manner. When the pressure is increased to a certain threshold, the second shear pin 47 is sheared off, so that the pressing section 46 moves downward, enabling the gate plate 43 to rotate inward about the pivot 44 under the action of the torsion spring 45, thus completely cutting off the central passage of the blowout preventer tubing string 110. At this point, the pressure building-up procedure can begin. When the pressure above the mechanical pressing device 4 is increased to the first predetermined value, the fluid entering the fluid reservoir 25 via the pressure-transmitting hole 23 of the central tube 21 can sufficiently drive the rubber 22 to expand radially outward, thereby achieving seating. In this way, the packer unit 2 seals the annulus between the exterior of the blowout preventer tubing string 110 and the casing. When the pressure is continuously increased to the second predetermined value, the first shear pin 13 in the circulation unit 1 is sheared off, so that the differential sliding sleeve 11 of the circulation unit 1 moves downward to open the circulation hole 13, thereby achieving the communication between the interior of the blowout preventer tubing string 110 and the exterior annulus. In this case, the well killing operation can be performed.
After the well killing operation is performed, the blowout preventer tube string 110 is lifted up so that the central tube 21 moves upward accordingly, until the pressure relief hole 24 moves to the position corresponding to the fluid reservoir 25. At this point, the fluid in the fluid reservoir 25 can be discharged through the pressure relief hole 24, thereby completing the releasing.
It should be noted that after the second shear pin 47 is sheared off, the pressing section 46 will move downward by gravity. However, at this phase the pressing sleeve 41 will also move downward due to the downward pressure, and thus may move to a position radially inner of the gate plate 43, which will block the inward rotation of the gate plate 43. In such a case, the pressing sleeve 41 can be reset by lifting up the mechanical pressing device 4, so that the gate plate 43 can rotate inwardly freely.
Therefore, the downhole blowout preventer according to the present invention can handle overflow events through two different seating modes for two different procedures, i.e., tripping and drilling, respectively. In the procedure of drilling, as the drilling tool is in contact with the bottom of the well, the pressure building-up condition is established by the overall downward and upward movements of the drilling tool, thus achieving the seating of the downhole blowout preventer with the pressure building-up in the tubing. This mode is featured by fast action, reliable operation, and quick response to the well surge and overflow. In the procedure of tripping, as the drilling tool is far away from the bottom of the well, the pressure building-up condition is established by throwing a ball at this time, wherein the seating is generated through pressure building-up after the ball reaches the ball seat of the downhole blowout preventer. The operation of this mode is highly reliable. In addition, by using a pre-built ball and an automatic dropping mechanism, it is also possible to improve the speed of the ball-dropping mode.
The downhole blowout preventer according to the present invention can be used in combination with a conventional wellhead blowout preventer, thus providing double security for effectively handling overflow events.
Although the present invention has been described with reference to the preferred embodiments, one skilled in the art can make various modifications and/or improvements on these embodiments after understanding the basic creative conception of the present invention. Therefore, the appending claims are intended to be construed as covering the preferred embodiments and all modifications and/or improvements falling within the scope of the present invention. All the modifications and/or improvements made according to the embodiments of the present invention shall fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202011495723.5 | Dec 2020 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/112796 | 8/16/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/127155 | 6/23/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3533468 | Lewis et al. | Oct 1970 | A |
3746097 | Mott | Jul 1973 | A |
3853177 | Mott | Dec 1974 | A |
3908769 | Schuyf | Sep 1975 | A |
3941190 | Conover | Mar 1976 | A |
4367794 | Bednar et al. | Jan 1983 | A |
4588035 | Van Gils et al. | May 1986 | A |
4712613 | Nieuwstad | Dec 1987 | A |
4905958 | Askelund | Mar 1990 | A |
5404953 | Sangesland | Apr 1995 | A |
Number | Date | Country |
---|---|---|
101812981 | Aug 2010 | CN |
201599007 | Oct 2010 | CN |
201843563 | May 2011 | CN |
201846563 | May 2011 | CN |
201902192 | Jul 2011 | CN |
102400662 | Apr 2012 | CN |
202645490 | Jan 2013 | CN |
103306634 | Sep 2013 | CN |
203626793 | Jun 2014 | CN |
204571908 | Aug 2015 | CN |
207499840 | Jun 2018 | CN |
111379536 | Jul 2020 | CN |
Number | Date | Country | |
---|---|---|---|
20240003215 A1 | Jan 2024 | US |