The present invention relates to a downhole cleaning tool and more particularly but not exclusively relates to a downhole cleaning tool to be incorporated in a work string in order to promote movement and in particular recirculation of drill cuttings in a borehole.
Conventionally, wellbore/borehole cleaning during hydrocarbon exploration drilling is a well known drilling process issue but is also quite complex in terms of causal analysis and techniques to control the same.
Hydrocarbon exploration drilling typically involves using a work string having a throughbore deployed from a rig at the surface. The work string comprises a drill bit at its very lowest end and which is rotated from surface by a string of drill pipe. Additional lengths of drill pipe are included into the work string at surface to allow the lower end of the work string to drill deeper into the subterranean earth. Fluid known as drilling mud is typically pumped down the throughbore of the work string in order to both lubricate and cool the drill bit but particularly also to flush or lift the rock cuttings known as drill cuttings away from the drill bit and back to the surface of the borehole in order that the work string and in particular the drill bit does not jam or get stuck in the borehole.
It can be considered that there are three main areas to be considered in terms of understanding and control of borehole cleaning of the drill cuttings:—
i) the properties of the drilling mud;
ii) hydro-mechanical interactions within the annular space between the inner surface of the borehole wall and the outer surface of the work/drill string; and
iii) design of the work/drill string including placement of various tools within the work/drill string and wiper trip practices.
The present invention relates to the second area indicated above to be considered—hydro-mechanical interactions.
When considering borehole cleaning complexity matters, a skilled person will understand that there are five main possible origins of drill cuttings:—
1) actual rate of penetration (ROP) of the axial drill bit cutting action;
2) side cutting and the dynamic behaviour of the drill bit;
3) borehole wall erosion or damage due to uncontrolled static and dynamic interactions with the drill string, leading to hole over-gauging and/or over-gouging and an associated increase of drill cuttings being produced;
4) borehole wall damage or instability due to hydraulic frictional forces applying to the inner borehole wall as fluid flows up the annulus between the inner surface of the borehole wall and the outer surface of the drill string; and
5) improper back reaming practices which can lead to pack off occurring to the inner surface of the borehole wall.
Given the number of factors and like the majority of drilling process phenomenons, hole cleaning performance conditions are typically best understood by those skilled in the art when a holistic approach is taken. The skilled person is also referred to “Determining Root Causes of Drilling Problems by Combining Cases and General Knowledge” technical paper published in 2009 by the authors SV Shokouhi, A Aamodt, P Skalle, F Sørmo, published at the 8th International Conference on Case-Based Reasoning, ICCBR 2009 Seattle, Wash., USA, Jul. 20-23, 2009 Proceedings, and which discusses such a holistic approach.
An important area of downhole borehole cleaning issues to be considered by those skilled in the art is to be able to minimise the settling of drill cuttings out of the drilling mud into the lower half of a horizontal or highly deviated borehole (i.e. a borehole having an angle of inclination to the horizontal of around 30 degrees or less); this is highly undesirable because the settled drill cuttings will start creating a bed which interferes with the work string and also reduces the cross-sectional area of the annulus between the outer surface of the work string and the inner surface of the borehole and this settlement of the drill cuttings into a bed due to gravity into the lower side of the borehole is highly undesirable.
It is therefore an object of the present invention to provide a downhole cleaning tool which can promote/encourage/move drill cuttings that have settled on the low side of a borehole and moreover promote/encourage/move said drill cuttings into the high side of the borehole within which the drilling mud is flowing fastest, and such promotion/encouragement/movement of the drill cuttings is referred to herein throughout as “re-circulation” of drill cuttings.
It is also a desirable object of the present invention to reduce or deal with localised drill cuttings accumulation which can otherwise cause high pack off risks. In that regard, the skilled person understands the importance of this aspect particularly because small cutting bed height can transform into sizeable or large cutting bed height under drill string motion and/or drilling mud flowing irregularities and skilled persons in the art understand that “dunes formation” can occur due to build up of said drill cuttings beds.
The skilled person also understands that hole cleaning is considered one of the key performance issues for hydro-carbon drilling processes, especially when considering that improper cleaning practices and improper component design selection can jeopardise drilling objectives especially in terms of non-productive time (NPT) and hole quality, and in this scope borehole cleaning should be considered as one of the major potential performance limiters.
It is therefore a desirable object of the present invention to reduce the height of drill cuttings bed, even a small height drill cuttings bed. It is a further aim of the present invention to achieve a high quality flowing lines pattern in the full borehole annulus, with less flowing disturbances, especially for optimised equivalent circulating density (ECD) control.
Numerous downhole cleaning tool components are available conventionally but many provide insufficient performance to cope with borehole cleaning complexity.
Some examples of conventional systems for promoting movement of drill cuttings downhole include the Hydroclean™ drill pipe of SMF International/Vallourac.
Another conventional/prior art tool is disclosed in U.S. Pat. No. 5,937,957 to George Swietlik for a “Cutting Bed Impeller”.
Another conventional drill pipe provided with spiral blades is shown in U.S. Pat. No. 5,697,460. In addition, U.S. Pat. Nos. 2,894,725 and 3,102,600 show a junk basket for use in wellbores. It may also be useful for the skilled person to understand the effect of turbulent flow such as disclosed in “Analysis of the Turbulant Fluid Flow in an Axi-symmetric Sudden Expansion” published by Vikram Roy et al in the International Journal of Engineering Science and Technology Vol 2 (6), 2010, 1569-1574.
Much of the insufficient performance of conventional drilling components is due to improper flow rate of the drilling mud or insufficient rotational speed of the drill string and typical prior art tools suffer from the following dysfunctions and/or performance limitations:—
It is therefore an object of the present invention to at least partially solve any one, combination of some or all of the above disadvantages of the prior art.
According to a first aspect of the present invention there is provided a downhole borehole cleaning apparatus for recirculating drill cuttings contained in a downhole borehole, the downhole borehole cleaning apparatus comprising:—
Preferably, the pair of axially spaced apart bearing surfaces are longitudinally spaced apart at a significant distance typically (when measured from their respective faces closest to one another) in the region of equal to or greater than the diameter of the bearing surfaces and more preferably are in the region of one to three times the outer diameter of the bearing surface and more preferably are between 1.75 and 2.25 times the outer diameter of the bearing surface and most preferably are between 1.8 and 2 times the outer diameter of the bearing surface. Preferably the pair of bearing surfaces comprise substantially the same maximum outer diameter, and typically, said maximum outer diameter of the bearings is greater than the maximum outer diameter of the rest of the body. Typically, the pair of bearings comprise an upper (or downstream) bearing and a lower (or upstream) bearing.
Preferably, the downhole borehole cleaning apparatus comprises a tool joint located at each longitudinal end thereof wherein each tool joint comprises connection means to permit said tool joint of the downhole borehole cleaning apparatus to be coupled to corresponding connection means on a tool joint of the next component of the tool string to which the downhole borehole cleaning apparatus is to be coupled. Preferably, the outer diameter of said bearings is preferably equal to or greater than the outer diameter of the tool joints of the downhole borehole cleaning apparatus.
Preferably, the low pressure generation means comprises one or more formations provided on the outer surface of the body.
Typically, the said one or more formations are adapted to generate said region of lower pressure in the downhole fluid due to relative movement occurring between
a) the downhole fluid contacting said formations; and
b) said formations.
Preferably said formations comprise a key direction angle surface portion of the outer surface of the body being arranged at an inclined angle to a longitudinal axis of the body. More preferably, the said key direction angle surface portion is arranged such that the enclosed angle between the bearing surface and the key direction angle surface portion comprises an angle of between:
Even more preferably the said enclosed angle between the bearing surface and the key direction angle surface portion comprises an angle of between:—
Even more preferably the said enclosed angle between the bearing surface and the key direction angle surface portion comprises an angle of between:—
Most preferably the said enclosed angle between the bearing surface and the key direction angle surface portion comprises an angle of around 45 and preferably forms a recessed cavity chamber. Typically, the recessed cavity chamber comprises an axisymmetric cavity and typically the axisymmetric recessed cavity chamber of the low pressure generating means causes the cuttings to be re-circulated without the cleaning apparatus requiring rotation within the borehole.
Preferably, the downhole borehole cleaning apparatus further comprises a drill cuttings recirculation zone surface, which is preferably formed on the outer surface of the body and more preferably is also located on the outer surface of the body in between said pair of bearing surfaces. Most preferably, the low pressure generations means is located upstream of the drill cuttings recirculation zone surface. Typically, the drill cuttings recirculation zone surface is located adjacent the low pressure generations means.
Typically, the drill cuttings recirculation zone surface comprises a tapering outer surface along its longitudinal length and more preferably, the drill cuttings recirculation zone surface tapers outwardly from:—
Preferably the drill cuttings recirculation zone surface further comprises one or more grooves or scoops formed therein and which are adapted to permit drill cuttings to be caught within said groove(s) and further adapted to permit the drill cuttings to flow along the groove(s) in an upstream to downstream direction (i.e. in an upwards direction towards the surface of the downhole borehole). Typically, said groove(s) comprise a smaller outer diameter than the adjacent rest of the drill cuttings recirculation zone surface at that circumferential location on the longitudinal axis of the body.
Preferably, the outer diameter of the bearing surfaces are not full gauge and more preferably are less than full gauge, such that an annulus is provided between the outer surface of the bearing surfaces and the inner surface of the borehole within which the downhole fluid (and cuttings) can flow.
Preferably, each of outer surface bearing surfaces comprises a substantially constant and un-interrupted diameter around its whole outer circumference for at least a portion of and more preferably the whole of its longitudinal length such that all of the downhole fluid (and drill cuttings) must flow past and around the outer substantially smooth surface of the bearings. Preferably, there are no blades and therefore no fluid flow channels through the bearing surfaces and therefore all of the downhole fluid located in the annulus of the borehole is typically forced to flow around the whole of the outer diameter of the pair of bearing surfaces and will therefore be subjected to the higher flow velocity that will result.
According to a second aspect of the present invention there is provided a method of cleaning a downhole borehole comprising the steps of:—
In the description that follows, like parts are marked throughout the specification and drawings with the same reference numerals, respectively. The drawings are not necessarily to scale. Certain features of the invention may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. The present invention is susceptible to embodiments of different forms. Specific embodiments of the present invention are shown in the drawings, and herein will be described in detail, with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the invention to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed below may be employed separately or in any suitable combination to produce the desired results.
The following definitions will be followed in the specification. As used herein, the term “wellbore” refers to a wellbore or borehole being provided or drilled in a manner known to those skilled in the art. The wellbore may be ‘open hole’ or ‘cased’, being lined with a tubular string but is typically open holed at the location requiring to be cleaned. Reference to up or down will be made for purposes of description with the terms:—
The various aspects of the present invention can be practiced alone or in combination with one or more of the other aspects, as will be appreciated by those skilled in the relevant arts. The various aspects of the invention can optionally be provided in combination with one or more of the optional features of the other aspects of the invention. Also, optional features described in relation to one embodiment can typically be combined alone or together with other features in different embodiments of the invention. Additionally, any feature disclosed in the specification can be combined alone or collectively with other features in the specification to form an invention.
Various embodiments and aspects of the invention will now be described in detail with reference to the accompanying figures. Still other aspects, features, and advantages of the present invention are readily apparent from the entire description thereof, including the figures, which illustrates a number of exemplary embodiments and aspects and implementations. The invention is also capable of other and different embodiments and aspects, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention.
Any discussion of documents, acts, materials, devices, articles and the like is included in the specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention.
Accordingly, the drawings and descriptions are to be regarded as illustrative in nature and not as restrictive. Furthermore, the terminology and phraseology used herein is solely used for descriptive purposes and should not be construed as limiting in scope. Language such as “including”, “comprising”, “having”, “containing” or “involving” and variations thereof, is intended to be broad and encompass the subject matter listed thereafter, equivalents and additional subject matter not recited, and is not intended to exclude other additives, components, integers or steps. In this disclosure, whenever a composition, an element or a group of elements is preceded with the transitional phrase “comprising”, it is understood that we also contemplate the same composition, element or group of elements with transitional phrases “consisting essentially of”, “consisting”, “selected from the group of consisting of”, “including” or “is” preceding the recitation of the composition, element or group of elements and vice versa. In this disclosure, the words “typically” or “optionally” are to be understood as being intended to indicate optional or non-essential features of the invention which are present in certain examples but which can be omitted in others without departing from the scope of the invention.
All numerical values in this disclosure are understood as being modified by “about”. All singular forms of elements or any other components described herein including (without limitations) components of the apparatus/downhole cleaning tool are understood to include plural forms thereof and vice versa.
Embodiments of the present invention will now be described, with reference to the accompanying drawings, in which:—
The most relevant or important part of the invention of the cleaning sub 10 is the upset portion 20, where the upset portion comprises three main parts, these being:—
i. the downstream zone 22D;
ii. the middle zone 22M; and
iii. the upstream zone 22U.
The cleaning sub 10 comprises its pin connection 12 at its in-use vertically lower most end such that the pin connection 12 (the right hand end as shown in
The cleaning sub 10 will therefore be advanced into the borehole in the direction of arrow ROP (rate of penetration) as shown in
The upset 20 comprises a pair of longitudinally spaced apart bearings 30, where one of the bearings 30U is the upstream bearing 30U and is provided in the upstream zone 22U, and the other bearing 30D is the downstream bearing 30D and is provided in the downstream zone 22D. The upstream bearing 30U and the downstream bearing 30D are, as measured from their longitudinal mid-points (shown by the arrow D1), spaced apart along the longitudinal axis 11A of the cleaning sub 10 by distance alpha (a). Moreover, the distance YY between the respective inner faces of the bearings 30U, 30D closest to one another is preferably around 1.9 times the outer diameter dl of the bearings 30U, 30D, but could be between equal and up to 3 times thereto. The middle zone 22M is located immediately between the downstream most end of the upstream bearing 30U and the upstream most end of the downstream bearing 30D.
The outer most diameter D1 of the bearings 30U, 30D is preferably provided with a relatively hard facing such as hard banding and is adapted to be relatively hard wearing in order to protect the bearings 30U, 30D and therefore prevent wear occurring to the bearings 30U, 30D in order to increase the life of the bearings 30D, 30U and therefore the cleaning sub 10. However, the hard facing of the bearings 30U, 30D will also not cut into the mud cake of the inner surface 16 of the borehole 16 and therefore won't damage the mud cake. Furthermore, the outer diameter D1 of the pair of bearings 30U, 30D is preferably arranged to be the greatest diameter or at least equal to the greatest diameter of any other component included in the drill string, such that the outer surface of the bearings 30U, 30L is the most likely outer surface of the whole of the work string, with the exception of the drill bit (not shown), to make contact with the inner surface 161S of the borehole 16. Accordingly, the outer diameter D1 of the bearings 30U, 30D are not full gauge and are less than full gauge, such that an annulus 15 is provided between the outer surface of the bearings 30U, 30D and the inner surface of the borehole 16 within which the downhole fluid (and cuttings) can flow.
Moreover, each of outer surfaces of the pair of bearings 30U, 30D comprises a substantially constant and un-interrupted diameter D1 around its whole outer circumference for at least a portion of and more preferably (as shown in the drawings) the whole of its longitudinal length such that all of the downhole fluid (and drill cuttings) must flow past and around the outer substantially smooth surface of the bearings 30D, 30U. In other words, there are no blades and therefore no fluid flow channels through the bearings 30U, 30D and therefore all of the downhole fluid located in the annulus of the borehole is forced to flow around the whole of the outer diameter of the pair of bearing surfaces 30U, 30D and will therefore be subjected to the higher flow velocity that will result.
As shown in
The upstream zone 22U comprises (from upstream most end to downstream most end) an outwardly tapering outer surface 32 and which tapers outwardly from a narrowest end at its upstream most end to its greatest diameter at its downstream most end adjacent to the upstream bearing 30U, where the outer diameter of the outwardly tapering outer surface 32 at its junction with the upstream bearing 30U matches the maximum outer diameter D1 of the upstream bearing 30U. Furthermore, a number of part helically arranged upstream cleaning grooves 40U are formed within the outwardly tapering outer surface, where the upstream cleaning grooves 40U will help to promote movement of any drill cuttings flowing in the direction Q. The upstream zone 22U then comprises, toward its downstream end, the upstream bearing 30U. The upstream zone 22U then leads, in the direction Q, into the middle zone 22M. The skilled person will understand that the upstream bearing zone 22U will act as a flushing shield for the drill cuttings and which allows the drill cuttings to be separated from the cuttings 18 but prevents them (i.e. acts as a shield) from landing again in the bed 18 after only a short length of travel (which would of course be undesirable were it to happen).
The middle zone 22M comprises at its upstream most end (the right hand end in
In use of the cleaning sub 10, drilling mud flowing in the annulus 15 in the direction Q at a particular velocity will, due to Bernoulli's principle (which the skilled person will understand only applies in zones of continuous variation of flowing passage area and does not apply in turbulent fluid flow zones), increase in velocity as it flows past the outwardly tapering outer surface 32 and past the outer surface of the upstream bearing 30U (i.e. through narrowed flowing passage area f1 past the outer surface of the upstream bearing 30U) and this increase in velocity of the drilling mud will, due to Bernoulli's principle, result in a decrease in the pressure of that drilling mud as it transitions through the upstream zone 22U. The low pressure drilling mud will then enter the recessed cavity/low pressure creation chamber 50 and in particular the low pressure creation pocket 50P but due to the sudden expansion of volume and thus fluid flow from upstream zone 22A to middle zone 22M i.e. through the much wider flowing passage area f2 at the narrowest part of the middle zone 22M and the narrowest part of the whole cleaning sub 10, the drilling mud experiences turbulent flow in the recessed cavity/low pressure chamber 50 and thus the skilled person will understand that Bernoulli's principle will not apply to the drilling mud in the recessed cavity/low pressure chamber 50. Thus the low pressure creation chamber 50 will attract drill cuttings 18 coming from both upstream and within the drill cuttings bed 18 on the low side of the borehole 16 and so will cause the latter to be stirred and thus recirculated within the recessed cavity/low pressure creation chamber 50 and in particular in the low pressure creation pocket 50P. The skilled person will therefore understand that Bernoulli's principle will apply to the drilling mud flowing through upstream zone 22U and downstream zone 22D and after separation of the fluid stream (out of turbulent flow) downstream of the low pressure creation pocket 50P and the skilled person will further understand that the low pressure creation pocket 50P represents a fluid flow discontinuity zone where Bernoulli's principle does not apply.
It is important for the skilled person to realise that the recessed cavity/low pressure creation chamber 50 will cause recirculation of the drill cuttings whether or not the cleaning sub 10 is being rotated (in rotational direction omega) or not. In other words, recirculation of drill cuttings 18 can occur without rotation of the cleaning sub 10, as long as there is relatively longitudinal movement occurring between the drilling mud (such as in the direction of arrow Q) and the outer surface of the upstream zone 22U and in particular the recessed cavity/low pressure creation chamber 50.
It should also be noted that the recessed cavity/low pressure creation chamber 50 could be modified to not actually require a negative back angle in the second portion 53B and instead the second portion 53B could continue to be a positive angle of around 45 degrees because that would likely still provide some recirculation of drill cuttings in the drill cuttings bed 18 but it is likely that it would not be as effective as the negative back angle of second portion 53B as shown in
The upstream zone 22U plus the part of the low pressure creation chamber 50 which is not specifically part of the upstream zone 22U can together be considered a cutting attraction zone 60. The cutting attraction zone 60 then, moving toward the downstream end of the cleaning sub 10 leads into a reflection and recirculation zone 62 which comprises the rest of the middle zone 22M and the downstream zone 22D.
The middle zone 22M downstream of the recessed cavity/low pressure creation chamber 50 comprises an outwardly gradually tapering outer surface 64 such that the outer diameter of the outwardly gradually tapering outer surface 64 tapers outwardly from a smallest outer diameter at point Y (where diameter Y plus distance f equals D1) to its largest diameter which equals D1 at the point at which the outer surface 64 meets the downstream bearing 30D. It is important to note that a number of scooping and pumping grooves 66 have been formed in a helical manner around the outer surface 64 of the middle zone 22M along the longitudinal axis 11A thereof and in use, and as can be seen in
It should be noted that the letter reference numerals A, B, C, D, E, F, G, H, X and Y as shown in
The skilled person should note and understand that the pressure of the drilling mud in area B as shown in
Immediately at the downstream end of the middle zone 22M, the middle zone 22M meets the upstream end of the downstream bearing 30D and downstream of the downstream bearing 30D is located an inwardly tapering outer surface 70 which tapers inwardly from the maximum diameter D1 of the bearing 30D inwardly to the outer diameter of the box connection 14 tool joint diameter. The inwardly tapering outer surface 70 is at a relatively shallow taper of typically 30 degrees or less and therefore tapers at a similar angle (albeit in an opposite direction) to the angle of the outwardly tapering outer surface 32. An arrangement of part helically arranged and longitudinally extending downstream cleaning grooves 40D are provided in the inwardly tapering outer surface 70 and are particularly suited for recirculating drill cuttings 18 when the cleaning tool 10 (and the associated work string) is being pulled out of the hole and therefore the downstream cleaning grooves 40D will act to back ream drill cuttings 18 located in any drill cuttings beds 18B that are further downstream in the borehole than the cleaning tool 10.
In the specific example disclosed herein, the outer diameter dl of the upstream and downstream bearings is 9.5 inches and the outer diameter of the tool joints (i.e. the pin 112 and box 114) are 7 inches (where the rest of the drill pipe string is typically 5.5 inch OD drill pipe) and given that the drill bit (not shown) will have drilled the borehole to have an inner diameter of approx. 12.25 inches, that results in f1 to be in the region of a 2.75 inch annular gap (f1 being the distance between the outer surface of the bearings 30D, 30U and the inner surface of the upper half of the borehole 16). Furthermore, due to the geometry of the low pressure generating means 50, the maximum cross sectional area of the flowing passage f2 (i.e. that created by the distance at the narrowest part of the middle zone 22M and the inner surface of the borehole 16) in between the two bearings 30U, 30D and in particular that experienced by the drilling fluid and cuttings in the borehole after they have passed the upstream bearing 30U is a very sudden increase in the flowing passage cross-sectional area (i.e. f2−f2=very sudden increase) in the region of 25% to 120% increase in the passage flowing passage cross-sectional area from f1 to f2.
The skilled person will understand that the above most preferred diameters in inches will scale up or down as appropriate to suit other diameter boreholes/other sizes of cleaning subs 10.
Where each of zones 1 to 5 comprise separately arranged but conjoining respective grooves 66Z1; 66Z2; 66Z3; 66Z4; 66Z5 which have their own tapering angles in order to provide specialist assistance to the cuttings to motivate movement of the cuttings depending upon which Zone the cuttings are in.
In addition, as well as the upstream upset 120U and the downstream upset 120D being provided in the drill pipe 110, each of the pin 112 and box 114 connectors each comprise a respective upstream 130U and downstream 130D bearing.
Accordingly,
i. drill cutting cleaning efficiency due to continued use of mechanical and hydro-mechanical energies (even at zero RPM) compared to conventional downhole cleaning tools which only use RPM rotational energy and therefore the drill pipe can be used with downhole motor drilling (unlike conventional downhole cleaning tools);
ii. significant static loading control (ie reducing the friction between the bearings including 130D and 130U, and the two bearings contained within each upset 120D, 120U) and the borehole;
iii. significant dynamic loading control (ie reducing lateral vibrations);
iv. low pressure chamber 50 and low pressure creation pocket 50P will continuously feed drill cuttings to the cleaning grooves 66 while offering an optimised arrangement against the occurrence of cuttings avalanching occurring in the borehole when the borehole comprises a trajectory angle of between 30° and 60° to the vertical.
By providing the two upsets 120U, 120D as shown
The modified drill pipe 108 and the cleaning sub 10 are respectively each unitary components having a body 10 formed from one piece of metal (and are preferably solid forgings thereof) such that the body 10 is an integral body 10 which provides the significant additional advantage over conventional cleaning tools in that they comprise no moving parts (relative to the rest of modified drill pipe 108 and the cleaning sub 10) and therefore there is likely to be significantly greater longevity of tools 108; 10 compared to conventional cleaning tools with moving parts. In addition, the low pressure zone created by the sudden and drastic increase in axisymetrical flowing passage or area of the low pressure generating means 50 and in particular the axisymmetric recessed cavity chamber 50p or axisymmetric low pressure creation pocket 50p of the low pressure generating means 50 provides continuous cuttings attraction (prior to controlled recirculation) and thus causes the cuttings to be re-circulated without the cleaning sub tool 10/drill pipe 108 requiring rotation within the borehole. Accordingly, the cleaning sub tool 10/drill pipe 108 can recirculate the cuttings within the borehole 16 both whilst rotating and also whilst stationary which is a very significant advantage compared to most other prior art cleaning/recirculating tools (not shown).
Modifications and improvements may be incorporated to the embodiments hereinbefore described without departing from the scope of the invention. For example, the enclosed angle KDA between the bearing surface 30U and the key direction angle surface portion 53KDA can be changed (from the said preferred enclosed angle of 45 degrees of e.g.
Number | Date | Country | Kind |
---|---|---|---|
1714789.3 | Sep 2017 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2018/052639 | 9/14/2018 | WO | 00 |