Embodiments disclosed herein relate generally to a communication system for use with installations in oil and gas wells or the like. More specifically, but not by way of limitation, embodiments disclosed herein relate to a downhole data transmission system for transmitting and receiving data and control signals between a location down a borehole and the surface, or between downhole locations themselves.
One of the more difficult problems associated with any borehole is to communicate measured data between one or more locations down a borehole and the surface, or between downhole locations themselves. For example, in the oil and gas industry it is desirable to communicate data generated downhole to the surface during operations such as drilling, perforating, fracturing, and drill stem or well testing; and during production operations such as reservoir evaluation testing, pressure and temperature monitoring. Communication is also desired to transmit intelligence from the surface to downhole tools or instruments to effect, control or modify operations or parameters.
Accurate and reliable downhole communication is particularly important when complex data comprising a set of measurements or instructions is to be communicated, i.e., when more than a single measurement or a simple trigger signal has to be communicated. For the transmission of complex data it is often desirable to communicate encoded analog or digital signals.
In oilfield exploration and production operations, it is a common industry practice to perform downhole testing that provides information relevant to the borehole (e.g., downhole temperature, pressure, fluid flow, viscosity, etc.). This testing may be performed by deploying tools and/or a bottom hole assembly downhole, in which information and data from the tools and assembly may be recovered later after the tools have been retrieved back at the surface. However, with this testing method, if the information and data recorded by the tools and bottom hole assembly are corrupted and/or insufficient, such as by having a failure within the testing equipment, this insufficiency within the data may not be apparent until after the tools have been retrieved back at the surface. Further, while the downhole tools are being operated, an oil-rig operator may not have access to the information being recorded downhole until the retrieval of the downhole tools at the surface. As such, the operator may not be able to compensate and adjust the downhole conditions within the borehole until after the tools and/or assembly has been retrieved.
Other testing methods have also been developed to provide two-way communication between the borehole tools and/or bottom hole assembly and the surface. One method involves placing a cable into the borehole that runs from the surface near the drilling rig down to the data recording tools. However, such a use of a cable may obstruct the flow of fluids within tubulars downhole. Further, the cable would have to be safely and properly managed, as the cable could easily be damaged while either inside or outside of the tubulars. Furthermore, the cable may also obstruct the disconnection of the downhole tubulars from the surface in the case of an emergency disconnection between the two.
Other methods have then been developed to provide wireless two-way communication between the borehole and the surface, such as by using acoustic and/or electromagnetic signals to enable communication. For example, referring to
As mentioned, when using the downhole tools 103 to transmit data, the data may be transmitted wirelessly using acoustic and/or electromagnetic signals. The electromagnetic or acoustic wireless signals may be used for shorter ranged applications, such as transferring data within and between downhole tools 103 that are adjacent to each other, commonly referred to as the “short hop section.” Alternatively, or in addition thereto, the electromagnetic or acoustic signals may be used for longer ranged applications, such as transferring data between the downhole tools 103 and the surface, commonly referred to as the “long hop section.”
When the distance between the downhole tools 103 and the surface is too far to transmit the wireless signal via the short hop section, then the long hop section may be used to receive the data signals from the short hop section and re-transmit the signals at a higher level and/or higher power. These signals re-transmitted by the long hop section may then be received by the surface, thereby having the signals from the downhole tools 103 transmitted to the surface.
To re-transmit the signals from the short hop section, the long hop section may include one or more devices, commonly referred to as repeaters, disposed downhole that receive and re-transmit the wireless signals. For example, as shown in
Furthermore, in another method, a wireless two-way communication system may include more than one short hop section, such as by having multiple tools disposed downhole in different sections within a borehole. In such a system, each of the different short hop sections may transmit information and data signals therefrom to adjacent short hop sections and/or adjacent long hop sections. For example, referring to
However, in such wireless communication systems, the failure of one or more of the components within the long hop section (e.g., repeaters within a long hop section) may result in a complete loss of communication within the system. For example, the system may no longer be able to re-transmit signals within the long hop section of the communication system. This may necessitate the redeployment of additional communication components downhole, thereby resulting in additional costs (particularly within a rig environment) and increasing the time until production from the well is received.
In one aspect, one or more embodiments of the present invention relate to a system for transmitting data within a borehole. The system includes a first transmitter disposed at a first location within the borehole and configured to generate a first signal, and a first receiver and a second receiver disposed at a second location within the borehole. Each of the first receiver and the second receiver are configured to receive the first signal, and the first receiver and the second receiver are configured to communicate with each other.
In another aspect, one or more embodiments of the present invention relate to a system for transmitting data within a borehole. The system includes a first transmitter disposed at a first location within the borehole and configured to generate a first signal, and a first repeater and a second repeater disposed at a second location within the borehole. Each of the first repeater and the second repeater are configured to receive the signal and re-transmit the first signal, and the first repeater and the second repeater are configured to communicate with each other.
In yet another aspect, one or more embodiments of the present invention relate to a method for transmitting data within a borehole. The method includes disposing a transmitter at a first location within the borehole, and disposing a first receiver and a second receiver at a second location within the borehole, in which the first receiver and the second receiver are configured to communicate with each other. The method the further includes transmitting a signal with the transmitter to one of the first receiver and the second receiver.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
Implementations of the present invention may be better understood when consideration is given to the following detailed description thereof. Such description makes reference to the annexed pictorial illustrations, schematics, graphs, drawings, and appendices. In the drawings:
Specific embodiments of the present disclosure will now be described in detail with reference to the accompanying Figures. Like elements in the various figures may be denoted by like reference numerals for consistency. Further, in the following detailed description of embodiments of the present disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the embodiments disclosed herein may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
In one aspect, embodiments disclosed herein generally relate to a system to be used within a borehole and enable transfer and communication of data within a borehole to a drilling rig surface. The system includes having a transmitter disposed at a first location within a borehole, and having more than one receiver, such as two receivers, disposed at a second location within the borehole. The receivers may then be configured to communicate with each other, and may further be configured to receive a signal generated by the transmitter.
Moreover, one or more transmitters may also be disposed at the second location within the borehole. One or more of the receivers disposed at the second location may be combined with one or more of the transmitters, such as to form a repeater, in which the repeater is capable of receiving the first signal from the transmitter disposed at the first location. The repeaters may then be able to further re-transmit the signal received from the transmitter, such as by continuing to transmit the signal either uphole to the surface, or downhole to enable communication with a downhole tool. Furthermore, by having the receivers, or repeaters as they may be, at the second location in communication with each other, these receivers may be capable of alternating usage, in which one receiver, or certain electronic components/functions of one receiver, may be powered off while the other receiver is powered on. As such, the receivers may be wired and/or wirelessly connected to each other to enable the communication therebetween.
Referring now to
The short hop section 211 may include the use of a transmitter, in which the transmitter may be able to transmit a signal related to the data retrieved and recovered from the downhole tools included within the short hop section 211. The transmitter within the short hop section 211 may be able to generate and transmit a wireless signal, such as an acoustic signal and/or an electromagnetic signal. For example, to communicate and transfer a signal to the long hop section 221, the transmitter within the short hop section 211 may generate an acoustic signal, in which the acoustic signal will be received by the long hop section 221 and be transferred uphole to the surface 231.
Further, if more than one downhole tool and/or bottom hole assembly is included within short hop section 211, the transmitter within the short hop section 211 may generate a wireless signal to communicate within the tools of the short hop section 211. For example, the transmitter within the short hop section 211 may generate an electromagnetic signal that is received by one or more downhole tools and/or bottom hole assembly included within the short hop section 211. Furthermore, the short hop section 211 may also include the use of a receiver, in which the receiver may be able to receive a signal, such as a signal from the surface 231 via the long hop section 221, or from another location downhole.
As shown, the long hop section 221 may include one or more nodes 223, in which each of the nodes 223 includes one or more receivers, transmitters, and/or repeaters. For example, as shown in
By including at least two repeaters 225 within at least one, or each, of the nodes 223, the reliability of the system 201 may be increased. For example, in a system 201 where only one repeater 225 is included within each of the nodes 223 and each node 223 communicates with the repeater, transmitter, or receiver most closely above or below that node 223, if any one of the repeaters 225 within the system 201 fails, such as by having a power loss or a communication failure at one of the repeaters 225, the entire system 201 has a higher likelihood of failure in terms of communication between the surface 231 and a location downhole. However, by including more than one repeater at one or more of the nodes, such as shown within
Further, in addition to having two repeaters within at least one, or each, of the nodes, the communication system may be able to include more repeaters at each node, if necessary or desired. For example, referring now to
The reliability of the system may be calculated using a set of one or more equations. For example, using the equations, as follows, the reliability of a system may be calculated, in which Rsys represents the reliability of a system, Rnode represents the reliability at each node, Runit represents the reliability of each communication systems unit (such as a receiver, transmitter, and/or a repeater), Nnodes represents the number of nodes, and Nunits represents the number of communication units at each node:
Rsys=RnodeN
Rnode=1−(1−Runit)N
As such, for a typical prior art communication system, in which the system includes ten nodes in a long hop section to enable communication from a short hop section to the surface, represented by Nnodes equal to ten, the long hop section having only one repeater at each node, represented by Nunits equal to one, and a reliability of each communication unit, such as the reliability of a repeater, equal to about 90 percent, represented by Runit equal to 0.90, the reliability at each node Rnode and the reliability of the system Rsys may be calculated. In such a communications system, the reliability at each node Rnode would be 0.90, or 90 percent, but the reliability of the entire system Rsys would drop to about 0.35, or about 35 percent. As such, having a system reliability Rsys of only about 35 percent may not be an acceptable industry standard, in which oil rig operators could expect a system failure almost two-thirds of the time.
However, for a system having more than one repeater at each node, such as the system shown in
Particularly, in such a system, the reliability at each node Rnode would increase to 0.99, or 99 percent, and the reliability of the entire system Rsys would increase to about 0.904, or about 90.4 percent. As such, having a system reliability Rsys of about 90.4 percent may be an acceptable industry standard, in which oil rig operators could expect the communication system to work properly more than nine times out of ten, thereby increasing the oil rig operators reliance on such a system.
Furthermore, for a system having three repeaters at each node, such as the system shown in
Further, in one or more embodiments, when arranging and developing a communication system for use within a borehole, preferably the spacing of each node within the long hop section of the communication system has “vertical redundancy”, that is, each node is able to communicate with a node not only adjacent, such as the nodes most closely above or below each node, but also each node is able to communicate with a node having a spacing at least two nodes above or below each node.
For example, in such an embodiment, with reference to
Referring now to
When using one or more of the repeaters 425 within a node, the repeaters 425 may act as “twins,” being in communication with each other, such as through the use of a wire and/or wirelessly, and including the same or similar electronic component and functionalities. For example, if the repeaters 425 are in wireless communication with each other, the repeaters 425 may be configured to each transmit and receive signals to each other, such as through the use of acoustic and/or electromagnetic signals. Otherwise, if not wirelessly communicating between the repeaters 425, the repeaters 425 may have a wire attached thereto between the repeaters 425 to enable communication therebetween.
Further, the repeaters 425 may each include a transmitter 441 and a receiver 443. For example, as shown in
Referring still to
By having the repeaters 425 at each node 423 in communication with each other, the repeaters 425 may be able to transmit to and receive signals from each other related to each of the repeaters 425 functionality and power. For example, when one of the repeaters 425 loses functionality of one of its components, the other of the repeaters 425 may then provide functionality of that particular lost component, or the other of the repeaters 425 may replace the complete functionality for the failing repeater 425. Further, when one of the repeaters 425 loses power, the other of the repeaters 425 may provide power to, or effectively replace, any one of the repeaters 425 within the node 423, as necessary.
Furthermore, by having the use of more than one repeater 425 at each node 423, the repeaters 425 may be configured such that when one repeater 425 is powered on, the other repeater 425 is powered off. Moreover, by having the use of more than one repeater 425 at each node 423, the repeaters 425 may be configured to power off certain electronic components or functionalities of one repeater 425 while certain electronic components or functionalities of the other repeater 425 is powered on. As such, the repeaters 425 may then alternate between each other during use to conserve power within the batteries 447 of the repeaters 425. Such conservation of battery power may be referred to as “sleep” or “hibernation” mode. Depending on the microcontroller and programmed logic, examples of the portion of the repeater 425 (i.e., electronic components and/or functionalities) that may be powered off or on may include, certain peripheral components, the RAM, and possibly the MCU clock. Upon “waking up” from sleep mode or hibernation mode, one repeater 425 may transfer its knowledge or information gained to the other repeater 425 at the node 423 during the time duration that the other repeater 425 was asleep/inactive.
Referring now to
Referring to
Referring now to
As such, with the securing mechanism 551, at least a portion of the repeaters 525 may be disposed within the securing mechanism 551. For example, as shown in
Those having ordinary skill in the art will appreciate that in accordance with one or more embodiments disclosed herein, one or more of the nodes of the communication system may include different numbers of repeaters, as desired. For example, with reference to
Embodiments disclosed herein may provide for one or more of the following advantages. First, embodiments disclosed herein may provide a communication system that allows for data communication within a borehole. For example, by disposing a long hop section in accordance with embodiments disclosed herein into a borehole, a communication system may provide data communication within the long hop section of the communication system, in addition to providing communication between the short hop section and the surface of a communication system. Further, embodiments disclosed herein may provide a communication system that increases communication reliability and efficiency of production for a borehole. For example, a communication system in accordance with embodiments disclosed herein may provide for increased reliability of usage by having multiple repeaters disposed at one or more nodes within a long hop section, which thereby may prevent the need for additional redeployment of communication components downhole.
Furthermore, it should be understood by those having ordinary skill that the present disclosure shall not be limited to specific examples depicted in the Figures and described in the specification. As such, various mechanisms may be used to expand the arms to the borehole wall without departing from the scope of the present disclosure. While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the invention should be limited only by the attached claims.
This application claims the priority benefit of U.S. Provisional Patent Application No. 61/290,256, filed by Applicant on 28 Dec. 2009, the entire contents of which is hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/062124 | 12/27/2010 | WO | 00 | 7/23/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/082122 | 7/7/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4609873 | Cox et al. | Sep 1986 | A |
4779236 | Sondergeld | Oct 1988 | A |
5510582 | Birchak et al. | Apr 1996 | A |
5691712 | Meek et al. | Nov 1997 | A |
6816082 | Laborde | Nov 2004 | B1 |
6909666 | Dubinsky et al. | Jun 2005 | B2 |
7234519 | Fripp et al. | Jun 2007 | B2 |
8125848 | Geerits et al. | Feb 2012 | B2 |
20020195247 | Ciglenec et al. | Dec 2002 | A1 |
20030058739 | Hsu et al. | Mar 2003 | A1 |
20030142586 | Shah et al. | Jul 2003 | A1 |
20050157699 | Sakai | Jul 2005 | A1 |
20050232178 | Cubley et al. | Oct 2005 | A1 |
20060013065 | Varsamis et al. | Jan 2006 | A1 |
20060113803 | Hall et al. | Jun 2006 | A1 |
20060214814 | Pringnitz et al. | Sep 2006 | A1 |
20060260801 | Hall et al. | Nov 2006 | A1 |
20080225930 | Proctor et al. | Sep 2008 | A1 |
20080253228 | Camwell et al. | Oct 2008 | A1 |
20090272536 | Burns et al. | Nov 2009 | A1 |
20110050452 | Kusuma et al. | Mar 2011 | A1 |
20130027216 | Jantz et al. | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20120286967 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61290256 | Dec 2009 | US |