The present disclosure relates generally to downhole tools and more specifically to techniques for controlling downhole devices.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Producing hydrocarbons from a wellbore drilled into a geological formation is a remarkably complex endeavor. During certain operations, such as well production operations, downhole devices such as tractors, sensors, and safety valves are disposed downhole. At least in some instances, the downhole devices may be at least partially controlled by a control system disposed on the surface (e.g., a surface control system). In general, the surface control system may communicate with the downhole devices via a wired connection. However, at least in some instances, information transmitted via the wired connection may be distorted due to downhole properties such that a message received by the downhole device may not correspond to the message transmitted by the surface control system. Furthermore, it may be difficult to establish communication between one or more downhole properties via a physical connection due to physical constraints downhole (e.g., relatively small cross sectional areas).
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
In certain embodiments, the present disclosure relates to a system having a surface power supply configured to supply power to a downhole device. The system also includes the downhole device, wherein the downhole device is configured to operate using the supplied power, detect an electrical parameter of the supplied power, and change an operating state of the downhole device based at least in part on the electrical parameter.
In certain embodiments, the present disclosure relates to a downhole device including one or more processors and one or more memory comprising instructions stored on a non-transitory computer-readable medium and executable by the one or more processors to measure an electrical property of electrical power provided to the downhole device; convert the measured electrical property to a quantized electrical property; determine an operational adjustment based on the quantized electrical property via reference data stored on a storage component associated with the downhole device; and modify operation of the downhole device based on the operational adjustment.
In certain embodiments, the present disclosure relates to a non-transitory computer-readable medium comprising computer-executable instructions that, when executed, are configured to cause a processor to receive a measured electrical property of electric power provided to a downhole device via a power supply; convert the measured electrical property into a quantized electrical property; generate an operational adjustment output based on the quantized electrical property via reference data stored on a storage component associated with the downhole device; provide the operational adjustment output to a scripted state machine; and modify operation of downhole device, using the scripted state machine, based on the operational adjustment output and a current operating state of the downhole device.
In certain embodiments, the present disclosure relates to a system. The system includes one or more processors. The system also includes one or more memory comprising non-transitory computer-readable medium comprising computer-executable instructions that, when executed, are configured to cause the one or more processors to measure an electrical property of electric power provided to a downhole device; determine one or more calibration coefficients associated with a downhole condition based on the measured electrical property; determine a quantized electrical property based on the measured electrical property and the one or more calibration coefficients; determine an operational adjustment based on the quantized electrical property; and modify operation of the downhole device based on the operational adjustment.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments.
As generally discussed above, downhole devices (e.g., components having a processor capable of determining control actions) may communicate with a control system disposed on the surface (e.g., a surface control system). At least in some instances, downhole devices may communicate with the surface control system via telemetry (e.g., mud pulse telemetry). However, certain techniques for telemetry may utilize additional components to transmit and receive commands via a geological formation. At least in some instance, the communication between the control system and the downhole devices may be impeded due to control signals being distorted due to properties downhole. It is presently recognized that it may be advantageous to communicate between a surface and one or more downhole devices using changes in electronic properties of electric power provided to the one or more downhole devices. For example, such communication may reduce the number of components utilized for communicating between the surface and the downhole devices (e.g., not using a transmitter, a receiver, or a wire for communicating electromagnetic waves).
Accordingly, the present disclosure is directed to techniques for improving communication between a surface control system and a downhole device using a measured electrical property. In general, the downhole device may include a processor that is capable of performing analysis of signals transmitted by the surface control system. The processor of the downhole device may communicate with a surface control system using electrical property measurements of the power provided to the downhole devices from the surface control system. For example, the surface control system may output a control signal that modifies (e.g., increases or decreases) a voltage supplied to a downhole device. The downhole device may include an electrical property sensor capable of measuring the electrical property related to the electronic power (e.g., the current and/or the voltage) The processor of the downhole device may receive the voltage measurement, determine a control action that corresponds to the voltage, and adjust operation of the downhole device accordingly. Furthermore, it is presently recognized that the voltage supplied to the downhole device may be modified unexpectedly (e.g., not as a result of the surface control system increasing or decreasing the voltage) due to electronic components turning on, off, or operation that are electrically coupled to the voltage. For example, a resistance of a logging cable in between the surface control system and the downhole device may vary due to a component, such as a motor, turning on or off. At least in some instances, the surface control system may adjust its power supply output voltage based on a measurement of current and/or input (e.g., user input indicating prior knowledge) indicating the cable resistance. As such, the processor of the downhole device may identify an expected voltage or quantized voltage that corresponds to an expected voltage (i.e., that is not modified unexpectedly) supplied to the downhole device. In this way, the downhole device may more accurately determine control actions to implement despite unexpected variations in the supplied voltage that may occur as a result of factors downhole (i.e., other electrical components, downhole conditions). Moreover, by controlling the downhole device based on variations in a supplied voltage, multiple devices may be controlled by a single transmission.
With the foregoing in mind,
In general, the downhole device 12 is an electronic device that is electrically coupled to receive a voltage supplied from the surface. In some embodiments, the downhole device 12 may be communicatively coupled to a surface control system 28. For example, data signals 26 may be transmitted from the surface control system 28 to the downhole device 12, and the data signals may be related to the spectroscopy results may be returned to the surface control system 28 from the downhole device 12, additionally, the data signals 26 may include control signals. The surface control system 28 may be any electronic data processing system that can be used to carry out the systems and methods of this disclosure. For example, the surface control system 28 may include a processor 30, which may execute instructions stored in memory 32 and/or storage 34. As such, the memory 32 and/or the storage 34 of the surface control system 28 may be any suitable article of manufacture that can store the instructions. The memory 32 and/or the storage 34 may be read-only memory (ROM), random-access memory (RAM), flash memory, an optical storage medium, or a hard disk drive, to name a few examples. A display 36, which may be any suitable electronic display, may display images generated by the processor 30. The surface control system 28 may be a local component of the vehicle 20 (e.g., within the downhole device 12), a remote device that analyzes data from other vehicles 20, a device located proximate to the drilling operation, or any combination thereof. In some embodiments, the surface control system 28 may be a mobile computing device (e.g., tablet, smart phone, or laptop) or a server remote from the vehicle 20. As shown in the illustrated embodiment, the surface control system also includes a power supply 58 that is generally used to provide power to the components of the downhole device 12 via the logging cable 18, as discussed in more detail herein.
The downhole device 12 includes an electronic device having a processor and memory that is capable of performing control actions. In some embodiments, the downhole device may include sensors for formation and/or production measurements, a tractor for conveyance, or include mechanical mechanisms to operate completion control elements, such as sliding sleeves, safety valves, and the like. For example, the downhole device 12 may include a sensor, such as a downhole tool; however, it should be appreciated that any suitable conveyance may be used. For example, the downhole device may be a tractor or any suitable downhole tool that may perform a variety of operations downhole. For example, the downhole device may traverse the borehole 16 or may obtain measurements of the geological formation 14 using a sensor (e.g., a neutron sensor, an x-ray or gamma-ray spectroscopy sensor, an image sensor such as a camera). In some embodiments, the downhole device 12 may be a safety valve, a downhole tractor, drilling tools (i.e., non-wireline), acquisition/sampling tools or other devices having components that may be mechanically actuated based on control signals (e.g., generated by the downhole device 12).
In general, the downhole device 12 may include generally similar features as the surface control system 28. For example, the downhole device may include a processor, which may execute instructions stored in memory and/or storage. As such, the memory and/or the storage of the downhole device 12 may be any suitable article of manufacture that can store the instructions. The memory and/or the storage may be read-only memory (ROM), random-access memory (RAM), flash memory, an optical storage medium, or a hard disk drive, to name a few examples. The processor, memory, and/or storage may be a local component of the downhole device (e.g., within a housing of the downhole device 12).
As noted above, in some embodiments, the downhole device 12 may be a downhole tractor device capable of facilitating movement of one or more downhole devices or other components within the borehole 16. In some embodiments, the downhole tractor device may operate autonomously and/or semi-autonomously (e.g., based on commands or instructions received from the surface control system 28. For example, the downhole device 12 may be a tandem tractor that includes self-identification capabilities (e.g., identification of operational states or anomalies such as restriction identification), and provides the identified operational state(s) to the surface control system 28. Providing the identified operational state to the surface control system 28 may inform an operator of the tandem tractor and/or enable the surface control system 28 to provide proactive actions to control operation of the downhole device. To illustrate this,
Operation of downhole devices 12, such as the downhole tractor device 40 described above, may be controlled by a processor of the downhole device 12, as described in more detail with respect to
As described herein, the downhole device 12 may be capable of determining control actions based on electrical property data transmitted from the surface. To illustrate this,
As shown in
At block 84, the processor 50 may convert the electrical property data to quantized electrical property data. In general, to convert the electrical property to quantized electrical property data, the processor 50 may determine whether a measured voltage corresponds to an expected voltage supplied from a power supply on the surface. For example, as discussed above, the voltage supplied to the downhole devices 12 may be unexpectedly modified due to certain occurrences downhole, such as the operation of other electrical components within the borehole 16 powered by the supplied voltage. As such, the processor 50 may determine an expected voltage based on the measured voltage to reduce potential errors in the determination of a control signal based on the supply voltage.
As one non-limiting example, the processor 50 may receive measured voltage data over a time period, and the measured voltage data may include an amount of noise. The processor 50 may identify a trend within the measured voltage data, such as by determining the average voltage during the time period. For example, the processor 50 may determine whether the letter voltage data is increasing decreasing or staying relatively constant during the time. In any case, the processor 50 may use the average voltage data as the quantized electrical property data.
At block 86, the processor 50 may determine an operational adjustment that corresponds to the quantized electrical property data. In general, the memory 52 of the downhole device may store data indicative of a relationship between a quantized electrical property data and a command for an operational adjustments. For example, the memory 52 may store reference data or a reference table (e.g., the command reference data 60 as described above with respect to
At block 88, the processor 50 may adjust operation of the downhole device 12 based on the quantized electrical property. For example, the processor 50 may output a control signal that causes an actuator to actuate, thereby modifying a position of a mechanical component of the downhole device 12.
Accordingly, by utilizing electrical property data to determine operational adjustments for the downhole device, the disclosed techniques reduce (e.g., in some cases, help to minimize) the number of components that are disposed downhole (e.g., the downhole device may not include components such as a dedicated communications wire and/or a network communications device, such as a modem) thereby reducing the footprint of the downhole devices. Moreover, by converting the electrical property data to quantized electrical property data and using the quantized electrical property data to determine operational adjustments, the downhole device may reduce (e.g., minimize) errors in determined operational adjustments that may result from fluctuations in the electrical property data that result from downhole conditions.
To illustrate stored data indicative of a relationship between a quantized electrical property data and a command for an operational adjustments,
With respect to the global navigation record 96, the processor 50 may determine an assigned band based on the current global mode. For example, the processor 50 may receive an input indicative of the global mode and determine band assignments based on the global mode. For example, if the global mode is forward, the processor 50 may select bands that operate within the current global mode rather than transitioning between different global modes.
Accordingly, in an embodiment where the processor 50 utilizes the table 90 of
To further illustrate the differences in the electrical property data and the quantized electrical property data,
As one non-limiting example of a technique for determining a quantized electrical property,
At block 142, the processor 50 may pre-process a measured electrical property (e.g., the measured electrical property 82 described with respect to
In some embodiments, the processor 50 may utilized multi-scale filters, such as a first filter that filters frequencies greater than 10 kHz, greater than 12 kHz, greater than 14 kHz, or greater than 20 kHz to remove motor EMI and rectify quasi-DC high voltage superimposed with sinusoidal EMI. In an embodiment using a median filter and a high-speed filter, before engaging the median filter, and after high-speed filter, the rectified signal may be decimated from 10 kHz to low frequency to reduce processor load and keep timing scale indicative of slower mechanical processes. Then system applies median filtering at 5 Hz, 10 Hz, 15 Hz, or 20 Hz, or suitable frequency to get rid of statistically insignificant outliers and local variation, followed by down-sampling through averaging of the cleaned signal. Resultant time-series of such filtered electrical property is a reliable representation of the trend of changes of the ‘property’ buried in the noise and at rates less demanding to the computing power.
In any case, the pre-processed data may include a denoised output (e.g., ‘quasi DC’). In some embodiments, pre-processing the measured electrical property may include providing the measured electrical property to a decimator which may apply a filter similar to a frequency associated with telemetry (e.g., 5 Hz, 10 Hz, or 15 Hz). The output of the decimator at block 148 may be sliced in accordance with an input period (e.g., 1 s, 2 s, 3 s, 4 s, 5 s, or more than 5 s) (e.g., provided as user input). In some embodiments, pre-preprocessing the measured electrical property may include receiving an adjustable window size that may be used to control the period.
At block 144, the processor 50 may utilize the pre-processed the measured electrical property to generate one or more calibration coefficients. In general, the calibration coefficients (e.g., A1, A2) represent the occurrence or absence of certain downhole conditions. Examples of certain calibration phases that may be used in the calculation of the calibration coefficients are shown in
At block 146, the processor 50 may generate a quantized electrical property in a generally similar manner as described with respect to block 84 of
In some embodiments, the change detector may include smart or self-learning capabilities. For example, the change detector may include a smart nature and perform gradient analysis of the slew rate and up/down trend of a quantized signal (e.g., the quantized electrical property), which may protect the filter's (e.g., the filter including a non-linear novel filter with memory) output build-up against sustained ramping up or down signal. That is, if the filter (e.g., utilized by the processor 50) observes or identifies a continuously changing band number, the processor 50 may ignore the band switch for a time duration corresponding to when the dynamic changes stabilize within a new band.
In some embodiments, the filter may operate cooperatively with the change detector (e.g., a built-in change detector). At least in some instances, the filter and the change detector provide further processing of the quantized signal, rather than processing the electrical property. For example, the intelligent quantizer may output a band to the filter, which outputs a stabilized band to the change detector. In such an example, the filter may handle out-of-band walking that result from, abnormal electrical property spike that was not handled by a previous denoising filter, downhole tool load variations such as those localized within relatively short time durations (e.g. during tractoring), up/down voltage level corrections made by the surface power supply (e.g., based on user input or otherwise to provide a forgiveness to user-guided control mode, and the like.
In some embodiments, the electrical property output of the selection device in combination with at least one of the calibration coefficients may be provided to a quantizer to determine a band associated with the electrical property. That is, the quantized may map the electrical property to a band. In some embodiments, mapping may be implemented via a loadable software template supported by the downhole device 12. For example, the memory 52 of the device 12 may store instructions, that when executed by the processor 50, cause the processor 50 to map a received electrical property to a band. Further, an adaptive post filter may be applied to correct an unexpected band assignment. The corrected band may be output to the command selection circuit, which determines a command associated with the band, such as by using a table described with respect to
At least in some instances, features in the electrical property data may be utilized to determine a condition of the downhole device, which may further be utilized to determine an operational adjustment based on the condition. To further illustrate this,
Referring to
At block 186, the processor 30 may determine the operational state, the event, or both based on the identified feature. In general, the operational state indicates a current operation of the downhole device 12, such as an “off state”, a “moving forward state”, a “calibration state”, a “navigating restriction state”, and the like. For example, the operational state may be a velocity or an acceleration of the downhole device 12.
At block 188, the processor 30 may generate an operational adjustment output based on the determined operational state, the event, or both. In general, the operational adjustment output may include an indication of a modification to operation of the downhole device 12 that may be made to remedy the event. For example, if the event is the downhole device 12 encountering a restriction, the operational adjustment output may include a control signal that causes an actuator to modify a position of extending arms of a tractor, as described above with respect to
To further illustrate the features described above,
In some embodiments, a scripted state machine may be used to control certain operations of the downhole device 12. To illustrate this,
As described, the processor 50 of the downhole device 12 may be capable of determining events, such as based on a change in a measured electrical property.
Referring to
At block 246, the processor 50 may generate a restriction navigation output based on the identified restriction. In general, the operational adjustment output may include an indication of a modification to operation of the downhole device 12 that may be made to navigate the restriction. For example, the restriction navigation output may comprise instructions of a magnitude to adjust the extending arms of a downhole tractor device to pass through the restriction. In some embodiments, the processor 30 may receive a surface restriction indication 248. In general, the processor 30 may receive the surface restriction indication 248 based on measurements performed via the electrical sensors 64 of the surface control system 28. For example, the electrical sensors 64 may detect a change in current along the electrical connection supplying electrical power from the downhole power supply 58 that is measurable by the surface control system, as generally described with respect to the method 180 of
The techniques presented and claimed herein are referenced and applied to material objects and concrete examples of a practical nature that demonstrably improve the present technical field and, as such, are not abstract, intangible or purely theoretical. Further, if any claims appended to the end of this specification contain one or more elements designated as “means for (perform)ing (a function) . . . ” or “step for (perform)ing (a function) . . . ”, it is intended that such elements are to be interpreted under 35 U.S.C. 112(f). However, for any claims containing elements designated in any other manner, it is intended that such elements are not to be interpreted under 35 U.S.C. 112(f).
Number | Name | Date | Kind |
---|---|---|---|
5572182 | De Pinho Filho et al. | Nov 1996 | A |
5670931 | Besser et al. | Sep 1997 | A |
6712160 | Schultz | Mar 2004 | B1 |
20030024710 | Post | Feb 2003 | A1 |
20050281680 | Schulz | Dec 2005 | A1 |
20170023695 | Zhang | Jan 2017 | A1 |
20200408087 | Hagen | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
9716751 | May 1997 | WO |
Entry |
---|
International Search Report and Written Opinion issued in International Patent application PCT/US2023/016378 dated Jul. 14, 2023, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20230304390 A1 | Sep 2023 | US |