The present invention relates to devices and processes used in well drilling. More specifically, the invention relates to a downhole device for data acquisition during a hydraulic fracturing operation and a method thereof. Another aspect of the invention relates to a drop device for data acquisition during a hydraulic fracturing operation and a method thereof.
In drilling operations for the production of oil and gas deposits, operators strive to maximize both the rate of flow and the overall quantity of hydrocarbon that can be recovered from the subsurface formation or reservoir to the surface. Therefore, various stimulation techniques have been developed and one of the most commercially successful techniques today is hydraulic fracturing, also referred to as “fracking” or “fracing”.
The hydraulic fracturing process involves targeting a portion of the strata surrounding the wellbore and injecting a specialized fluid into the wellbore at pressures sufficient to initiate and extend a fracture into the formation. The fluid which is injected through the wellbore typically exits through holes which are formed in the cemented well casing using a special tool known as a perforating gun. As a result, a fracture zone, i.e. a zone having multiple fractures, or cracks in the formation, is created through which hydrocarbon fluids such as crude oil or, more commonly, gas can flow into the wellbore and be produced at the surface. These fractures are extended by continued pumping and are either propped open with sand or other propping agents, or the fracture faces are etched by a reactive fluid such as an acid, or both. These techniques allow hydrocarbons contained in the formation to more readily flow from the fractures into the well bore. The artificially created fractures may be complimented by naturally existing fractures, or by fractures caused by previous or simultaneous stimulation operations in the same or nearby formations. The quality of the fracturing operation obviously has a great effect on the overall success or failure of the well production.
In particular, horizontal oil and gas wells allow the extraction of valuable hydrocarbons at a minimum environmental “footprint”, because more wellheads can be grouped together on one surface location requiring fewer rigs and less surface area disturbance, subsequently making it easier and cheaper to produce the wells.
One of the tools commonly used by some operators of hydraulic fracturing equipment includes specially sized “frac-balls” or “drop balls”, which are injected into a well to block the passage of a previously installed frac plug and therefore close off portions of a well to allow pressure to build up and cause fracturing in a target section of the well above the location of the well blocked by the frac-ball. The frac-plug (or bridge plug) is a downhole tool that is located and set to isolate the lower part of the wellbore. Frac-plugs are usually retrievable so that the lower wellbore section can be temporarily isolated from a treatment conducted on the upper section of the frac-plug (i.e. during fracing operations). Frac-balls may be made of various materials, including G-10 (or other related phenolics), Torlon, PEEK, and other high-temperature thermosets or thermoplastics.
Typically, the material selected is based upon the operators' experience and the chemistry and temperatures within the well. Frac-ball sizes are selected specifically to fit within the well-bore or sliding sleeves of the downhole tools which vary in diameter as the well sections progress from upper to lower sections.
For example, one popular method for creating multiple fractures in a wellbore is the use of frac ports & sliding sleeves. Openhole packers isolate different sections of the horizontal well. A sliding sleeve is placed between each packer pair and is opened by injecting a properly sized frac-ball inside the borehole. Typically, a completion string is placed inside the well. The string includes frac ports and open hole packers spaced to specifications. The spacing between packers may be up to several hundred feet. The packers are actuated by mechanical, hydraulic or chemical mechanisms. In order to activate each sleeve, a properly sized frac-ball is pumped along with a fracturing fluid inside the well. Each ball is smaller than the opening of all of the previous sleeves, but larger than the sleeve it is intended to open. Seating of the frac-ball exerts pressure at the end of the sliding sleeve assembly, causing it to slide and open the frac ports. Once the port is opened, the fluid is diverted into the openhole space outside of the completion assembly, causing the formation to fracture.
At the completion of each fracturing stage, the next larger frac-ball is injected into the well, which opens the next sleeve, and so on, until all of the sleeves are opened and multiple fractures are created in the well. The main advantage of this completion technique is the speed of operation, because it allows activating multiple fractures with a single completion string.
In some alternative completions, the sleeves are sometimes cemented into the hole with acid soluble cement, such that the sleeves are opened by pumping down acid and the fracing operation can thereafter be performed. Also, occasionally, in some other wells, the sleeves can be run with out packers if the formation is of the type that it can be counted on to provide isolation between the sleeves.
In any event, in all completions, the quality of the fracturing operation obviously has a great effect on the overall success or failure of the well production. Therefore, knowing current formation and/or wellbore properties can be an important tool to optimize productivity of the hydrocarbon output and improve the quality and safety of fracing operations. In particular, knowing what was/is happening downhole at each of the perforations during the perforation and fracing process, may be invaluable information in order to improve the quality and safety of the fracing process.
Accordingly, it is an object of the present invention to provide a downhole device and method for data acquisition before, during and after fracing operations. It is a further object of the present invention to recover the downhole device and acquired data from the wellbore.
Preferred embodiments of the invention seek to overcome one or more of the above disadvantages of the prior art.
According to a first aspect of the present invention, there is provided a downhole device for data acquisition during fracing operations, comprising:
This provides the advantage that physical properties of the formation and wellbore environment can be measured and recorded before, during and after the fracing operation to provide important downhole information for evaluation. For example, the initial pressure increase after a perforation operation has been completed may provide important information about the structural integrity of the wellbore/casing and opened fractures.
Furthermore, frac pressure and temperature may be monitored during the fracing operation and/or pressure and temperature between different zones may be monitored during all subsequent fracing operations in the wellbore.
Preferably, the bypass device comprises a bypass sub device and the wellbore selective obturation member is typically a plug or packer suitable for use during a fracing operation.
Typically, the second fluid path communication allows fluid communication from an uphole region to a data acquisition device without compromising the frac plug operation for circulating fluid along the first fluid path between an uphole and downhole region in the wellbore until a drop member that is typically selectively introduced into the fluid flow at surface by an operator shuts the first flow path in order to initialize perforation. Preferably, the drop member is a drop ball, dart or the like. Alternatively, the first fluid flow path may be shut by means of a suitably located valve operable from the surface.
The compatible bypass sub device provides the advantage that it can be retro-fitted to any standard frac plug, minimizing cost and maximize ease of use.
The data acquisition device may be operatively coupled to said bypass sub device via a data acquisition device carrier housing mountable to said bypass sub device and may be adapted to accommodate said at least one data acquisition device. This provides the advantage that a plurality of data acquisition devices can simply be placed inside a data acquisition device carrier and be replaced according to current specific requirements.
Furthermore, since the data acquisition device carrier is operatively coupled to the bypass sub such as to provide a direct fluid communication with an uphole wellbore region, no alterations are necessary to the data acquisition devices in order to expose the data acquisition devices to the fluid communication and allow unperturbed measurements of the predetermined uphole wellbore environment. Advantageously, the bottom hole assembly may further comprise a centralising member operatively coupled to said data acquisition device or data acquisition device carrier housing and adapted to centralize and/or rotationally stabilize said data acquisition device within the wellbore. More advantageously, the centralizer member may comprise an anti-rotation element adapted to engage with a compatible uphole end of a second bottom hole assembly located immediately below the first bottom hole assembly in the wellbore so as to prevent rotational movement of said bottom hole assembly with respect to said second bottom hole assembly.
In addition, the centralizer member provides the advantage of centralizing the data acquisition device carrier housing and/or data acquisition device within the wellbore during recovery back to surface and whilst guiding the preceding data acquisition device carrier housing and/or data acquisition device over the top of the next lower bottom hole assembly within the wellbore. The anti-rotation element provides the additional advantage of anchoring the data acquisition device carrier housing and/or data acquisition device such as to prevent spinning during a milling process when recovering the data acquisition devices.
A seat member located within or at an end of the first fluid path may be adapted to engage with a drop member so as to at least unidirectionally selectively prevent fluid flow through said first fluid path. Advantageously, the second fluid communication path may be adapted to bypass said first fluid path.
This provides the advantage that both, the frac plug and the data acquisition device(s) can perform their function without compromising the function of the other. In particular, because the second fluid communication path to the at least one data acquisition device bypasses the first fluid path through the bore hole assembly, the first fluid path can be closed or opened as required during a fracing operation without blocking the fluid communication path to the at least one data acquisition device.
The at least one data acquisition device may comprise an integrated data storage device adapted to record a predetermined maximum amount of data. Advantageously, the data acquisition device may comprise a data interface adapted to permit download at least part of said predetermined amount of data to a remote data storage means. More advantageously, the data acquisition device may be adapted to transmit data to a remote location uphole of said bottom hole assembly within the wellbore.
This provides the advantage that the measured data can be recovered for evaluation either after recovering the at least one data acquisition device to the surface or while the bottom hole assembly is still downhole after or during fracing operations.
The at least one data acquisition device may be any one or all of a pressure data acquisition device and/or a temperature data acquisition device and/or a geophone and/or a micro seismic sensor.
The data acquisition device carrier may be adapted to telescopingly and slidingly irretractably engage with a data acquisition device catcher mechanism when moving along a longitudinal axis inside a pick-up device of the data acquisition device catcher mechanism. Advantageously, the data acquisition device carrier housing may comprise a recess and/or shoulder or other formation provided on or in the outer surface of the data acquisition device carrier housing or may alternatively and preferably comprise a groove located circumferentially around an outer surface of said data acquisition device carrier housing and adapted to cooperate with a spring loaded catcher ring mechanism located inside a pick-up device of the data acquisition device catcher mechanism.
This provides the advantage that the data acquisition device carrier housing and data acquisition device can be recovered using a milling or drilling device or the like (hereinafter simply referred to as “milling device”) comprising a data acquisition device catcher device operable to drill over the bottom hole assembly removing any parts that exceed the inner diameter of the pick-up device but keeping the data acquisition device carrier housing and data acquisition device intact. Furthermore, the catcher ring mechanism ensures that the data acquisition device carrier housing does not fall out of the data acquisition device catcher mechanism during recovery of more than one data acquisition device carrier housing.
The bypass sub device may be located downhole of the frac plug when in situ. Preferably, the data acquisition device and/or data acquisition device carrier housing may be located downhole of said bypass sub device. Alternatively, the bypass sub device may be located uphole of the frac plug and the data acquisition device and/or data acquisition device carrier housing may be operatively located inside a mandrel of the frac plug.
The second fluid communication path may comprise an incompressible fluid sealingly encased within said second fluid communication path and said data acquisition device carrier housing by a membrane located at the uphole end of said second fluid path. The membrane is typically pressure sensitive such that it can transmit the pressure from one side to the other. This provides the advantage that the data acquisition device is safely enclosed in a protected environment, but is still in fluid communication with the uphole wellbore region. The membrane may be sufficiently flexible and diathermic to prevent distortion of the physical properties that are measured with the at least one data acquisition device.
According to a second aspect of the present invention, there is provided a method for acquiring data during fracing operations in a subterranean formation having a wellbore penetrating the formation, the method comprising the steps of:
Preferably, step (a) of the method comprises running in a downhole device according to the first aspect of the present invention.
Typically, step (b) comprises placing said downhole device and wellbore selective obturation member at a predetermined location inside the wellbore.
Preferably, there is an additional step in between steps c) and d) of:—
This provides the advantage that important data can be determined before, after and during fracing operations and provided to an operator for evaluation to optimize production and/or improve quality and safety of fracing operations, therefore improving output and minimizing cost. Furthermore, recovering the data acquisition device carrier housing and/or data acquisition device instead of destroying or damaging it, provides the advantage that expensive data acquisition devices can be reused thus minimizing costs.
Advantageously, the at least one data acquisition device may be adapted to record a predetermined amount of data of said at least one physical parameter. More advantageously, the data acquisition device may be adapted to transmit said predetermined amount of data to a remote data storage means. Even more advantageously, the at least one monitored physical property may be recovered via a remotely located communication sub device operatively connectable to said at least one data acquisition device.
According to a third aspect of the present invention, there is provided a method for recovering at least one downhole device having a data acquisition device from a downhole location inside a wellbore typically after completing fracing operations, the method comprising the steps of:
Preferably, the method of the third aspect of the present invention comprises recovering at least one downhole device according to the first aspect of the present invention.
Preferably, the method according to the third aspect may also include an additional step between steps (b) and (c) of engaging any subsequent second of said at least one downhole device so as to telescopingly and slidingly irretrievably move a data acquisition device carrier housing and/or data acquisition device of said second of said at least one downhole device into and along a longitudinal axis of said data acquisition device retrieval barrel, milling away any parts of said second of said at least one downhole device exceeding an inner diameter of said data acquisition device retrieval barrel.
This provides the advantage that at least one data acquisition device and/or data acquisition device carrier and be reusably recovered from its downhole location. Preferably, a plurality of data acquisition device carrier housings and/or data acquisition devices are recovered on a single downhole “trip”. Furthermore, the recovering method of the third aspect of the present invention provides the advantage for embodiments thereof that the data acquisition device retrieval barrel protects the at least one data acquisition device carrier housing and/or data acquisition device while pulling them out of the wellbore.
The milling device and data acquisition device retrieval barrel may be adapted to be operated on coiled tubing or drill pipe or any other suitable work string.
The data acquisition device retrieval barrel may comprise at least one catcher means adapted to engage with said data acquisition device and/or data acquisition device carrier housing of said bottom hole assembly so as to prevent downhole movement of said data acquisition device and/or data acquisition device carrier housing with respect to said data acquisition device retrieval barrel in situ. Advantageously, the catcher mechanism may be at least one spring biased catcher member adapted to engage with at least one groove, recess of shoulder or the like located circumferentially around or on the outer surface of said data acquisition device and/or data acquisition device carrier housing.
According to a fourth aspect of the present invention, there is provided a drop device for data acquisition during fracing operations, comprising:
Advantageously, the obturation member may be adapted to sealingly engage with a seat member of said downhole tool so as to prevent fluid communication through said downhole tool between a region inside the throughbore of the wellbore located uphole of said obturation member and a region inside the wellbore located downhole of said obturation member when in situ. Preferably, the data acquisition device may be located uphole of said obturation member when in situ.
This provides the advantage that physical properties of the formation and wellbore environment can be measured and recorded before, during and after the fracing operation to provide important downhole information for evaluation. For example, the initial pressure increase after a perforation operation has been completed may provide important information about the structural integrity of the wellbore/casing and opened fractures.
Furthermore, frac pressure and temperature may be monitored during the fracing operation and/or pressure and temperature between different zones may be monitored during all subsequent fracing operations in the wellbore. Also, a drop device provides the advantage of improved ease of use and minimized cost, since the drop device is simply pumped down to the required location where the obturation member engages with the determined downhole tool automatically locating the data acquisition tool in the required position within the throughbore.
The data acquisition device may be operatively coupled to said obturation member via a data acquisition device carrier housing that may be removably mountable to said obturation member and adapted to accommodate said at least one data acquisition device.
This provides the advantage that a plurality of data acquisition devices can simply be placed inside a data acquisition device carrier and be replaced according to current specific requirements. Furthermore, since the data acquisition device carrier is operatively coupled to the obturation member such as to provide a direct fluid communication with an uphole wellbore region, no alterations are necessary to the data acquisition devices in order to expose the data acquisition devices to the fluid communication and allow unperturbed measurements of the predetermined uphole wellbore environment.
The drop device may further comprise a centralizing member operatively coupled to said data acquisition device and adapted to centralize and/or fixate and/or rotationally stabilize said data acquisition device within the wellbore. Advantageously, the centralizing member may be operatively coupled to said data acquisition device via said data acquisition device carrier housing. Even more advantageously, the centralizer member may comprise a plurality of spreading elements adapted to spread radially towards and in engagement with the inner wall of the wellbore.
This provides the advantage that the data acquisition tool is securely fixed within the wellbore region that is measured during fracing operation, minimizing the risk that the data acquisition tool is dislodged or tilted, twisted or wedged within the throughbore when exposed to the substantial hydraulic pressures during fracing operation. A data acquisition tool tilted or wedged within the throughbore would also make it more difficult or even impossible to recover. In addition, a data acquisition tool that is not optimally placed within the throughbore may provide biased or falsified measurements.
The drop device may further comprise a flange member operatively coupled to said data acquisition device and adapted to provide a contact surface for fluid flowing through the wellbore. Advantageously, the contact surface may comprise an uphole contact surface adapted to operatively engage with fluid flowing in an uphole direction, and a downhole surface adapted to operatively engage with fluid flowing in a downhole direction when in situ. Advantageously, the flange member may be adapted to actuate said centralizing member and preferably may be adapted to slidingly actuate said centralizing member.
This provides the advantage that the hydraulic energy provided by fluid flowing uphole or downhole can be used to move or remove the drop device to or from a desired location within the wellbore and/or actuate the centralizing member. For example, the hydraulic energy of the fluid flowing downhole may be used to slidingly move the flange member along a longitudinal axis and with respect to the data acquisition tool and/or data acquisition tool carrier housing, compressing and subsequently spreading the plurality of spreading elements into engagement with the interior wall of the throughbore, thus centrally fixating the data acquisition tool within the throughbore. During recovery of the drop device, the hydraulic energy of the fluid flowing uphole may be used to slidingly move the flange member back along the longitudinal axis and with respect to the data acquisition tool and/or data acquisition tool carrier housing expanding and disengaging the plurality of spreading elements from the interior wall of the throughbore so that the drop device can be pushed uphole through the throughbore of the wellbore.
The at least one data acquisition device may comprise an integrated data storage device adapted to record a predetermined maximum amount of data. Advantageously, the data acquisition device may comprise a data interface adapted to permit download of at least part of said predetermined amount of data to a remote data storage means. Even more advantageously, the data acquisition device may be further adapted to transmit data to a remote location uphole of said downhole tool within the wellbore.
This provides the advantage that the measured data can be recovered for evaluation either after recovering the at least one data acquisition device to the surface or while the bottom hole assembly is still downhole after or during fracing operations.
Preferably, the at least one data acquisition device may be any one or all of a pressure data acquisition device and/or a temperature data acquisition device and/or a geophone and/or a micro seismic sensor. Even more preferably, the obturation member may be a drop ball, dart or the like.
According to a fifth aspect of the present invention, there is provided a method for acquiring data during fracing operations in a subterranean formation having a wellbore penetrating the formation, the method comprising the steps of:
(a) providing a drop device according to the fourth aspect of the present invention at a predetermined location and in engagement with a predetermined downhole tool;
(b) initiating at least one data acquisition device for monitoring at least one physical property;
(c) closing a first fluid path for fluid communication through the downhole tool between a region inside the wellbore located uphole of said drop device and a region inside the wellbore located downhole of said drop device when in situ;
(d) initiating a fracing operation while monitoring said at least one physical property through at least one data acquisition device of said drop device, and
(e) recovering said monitored physical property after the fracing operation is completed.
This provides the advantage that important data can be determined before, after and during fracing operations and provided to an operator for evaluation to optimize production and/or improve quality and safety of fracing operations, therefore improving output and minimizing cost. Furthermore, being able to fully recovering the data acquisition device instead of destroying or damaging it, provides the advantage that expensive data acquisition devices can be reused thus minimizing costs.
The drop device may be recovered by fluid flowing uphole through the wellbore and/or drill string and engaging with a contact surface of a flange member of said drop device.
This provides the advantage that there is no need for additional equipment and/or energy to recover the drop device and data acquisition tool thus minimizing cost.
Alternatively, the drop device may be recovered by running a milling device, comprising at least one data acquisition device retrieval barrel, downhole inside a wellbore. In particular, during recovery of the drop device, the milling device engages said drop device so as to, for example, telescopingly and slidingly irretrievably move a data acquisition device carrier housing and/or data acquisition device of said drop device into and along a longitudinal axis of said data acquisition device retrieval barrel, milling away any parts of said drop device and/or downhole tool exceeding an inner diameter of said data acquisition device retrieval barrel, and subsequently removes said milling device including said data acquisition device from said wellbore. However, it is understood by the skilled person in the art that any other suitable retrieval barrel and retrieval mechanism may be used to recover and store the drop device and/or at least one data acquisition device when using a milling device.
Alternatively, the drop device may be recovered by securing it with an alternative retrieval device such as a fishing tool or the like on the end of an elongate member such as a wireline or slick line and pulling it out of the hole.
This provides the advantage that at least one data acquisition device and/or data acquisition device carrier can be reusably recovered from its downhole location. Preferably, a plurality of data acquisition device carrier housings and/or data acquisition devices are recovered on a single downhole “trip”. Furthermore, the recovering method of the fifth aspect of the present invention provides the advantage for embodiments thereof that the data acquisition device retrieval barrel protects the at least one data acquisition device carrier housing and/or data acquisition device while pulling them out of the wellbore.
According to a sixth aspect the present invention provides a frac plug comprising a downhole device according to the first aspect of the present invention.
Preferred embodiments of the present invention will now be described, by way of example only and not in any limitative sense, with reference to the accompanying drawings, in which:
b) shows a perspective view; 13(c) a side view and 13(d) a bottom view of the spring based catcher ring of the less preferred embodiment of milling device and retrieval mechanism of
a) shows a cross-sectional side view of a second and most preferred embodiment of a milling device and data acquisition device retrieval mechanism in accordance with the third aspect of the present invention;
b) shows a close up more detailed view of the milling device and part of the retrieval mechanism of
a) shows a cross-sectional side view of a third and most preferred embodiment of a downhole device according to the present invention, with the bypass sub mounted within and just below the uphole end of a frac plug and one data acquisition device located inside the mandrel of the frac plug;
b) shows a different cross-sectional side view of the downhole device of
c) shows a cross-sectional side view of the most preferred embodiment of a milling device and data acquisition device retrieval mechanism as shown in
d) shows the milling device and retrieval mechanism of
e) shows the milling device and retrieval mechanism of
a) shows a perspective view of a drop device in accordance with a fourth aspect of the present invention, the drop device including a obturation member (drop ball), a data acquisition tool (logging tool) that is mounted to the drop ball, and a centralizing member that is actuatable by a flange member;
b) shows a cross sectional side view of the drop device of
The following definitions will be followed in the specification. As used herein, the term “wellbore” refers to a wellbore or borehole being provided or drilled in a manner known to those skilled in the art. The wellbore may be ‘open hole’ or ‘cased’, being lined with a tubular string. Reference to up or down will be made for purposes of description with the terms “above”, “up”, “upward”, “upper”, or “upstream” meaning away from the bottom of the wellbore along the longitudinal axis of a work string and “below”, “down”, “downward”, “lower”, or “downstream” meaning toward the bottom of the wellbore along the longitudinal axis of the work string. Similarly ‘work string’ refers to any tubular arrangement for conveying fluids and/or tools from a surface into a wellbore. In the present invention, a coiled tubing string or a drill pipe string is the preferred work string.
Referring to
Alternatively, and as shown in
As shown in
Referring to
Note that
In the event that the perforation is unsuccessful, a second perforation gun is pumped downhole to the first downhole device 100, before blocking the first fluid path with a drop ball 124.
After a successful perforation, as shown in
A second smaller diameter “d” rop ball 124 or 224, which is adapted to engage with the seat 121 or 221 or 271 of a second, subsequently run in downhole device 100 or 200 or 250, is then pumped downhole to block the first fluid path 118 or 218 or 268 of the second upper most downhole device 100 or 200 or 250 before repeating the fracing operation for that upper most downhole device 100 or 200 or 250 while recording, for example, well pressure and temperature for evaluation. These steps are repeated with further bottom hole assemblies 100 or 200 or 250 until all dedicated formation regions are perforated and fraced.
Once the fracing operations have been completed, as shown in
a) shows a first but less preferred embodiment of a part of a coring-style bit mill 300 in accordance with the present invention as comprising TSP cutters 302, a data acquisition device catcher lower shoe 303 and its data acquisition device catcher 304, an outer barrel 306 and an inner barrel 308. The data acquisition device catcher 304 is, for example, a spring biased catcher ring 304 mounted within the shoe 303 as shown in
a) and 15(b) show the most preferred embodiment of mill 350 and will be detailed subsequently.
The mill 300 with bottom hole assemblies 100 located therein is then pulled out of the wellbore 101 to the surface, where the data acquisition device carriers can be removed and recovered from the inner barrel 308/pick-up shoe 312 and the data stored therein can be downloaded or otherwise retrieved and analysed.
a) and 20(b) show an alternative and indeed most preferred embodiment of a downhole device 250 in accordance with the present invention, where the bypass sub 252 and the data acquisition device 258 are mounted within the throughbore of the frac plug 20 (rather than being mounted below the frac plug 10 as shown in
The bypass sub 252 is coupled via a screwthread 275 provided on its outer surface to a similarly shaped screwthread surface formed on the inner throughbore 21 of the frac plug 20, where the screwthread 275 is a relatively large diameter and which is preferably larger than the inner cutting diameter “d” of a milling tool 350 to be detailed subsequently. The lower end of the bypass sub 252 is coupled to the upper end of the data acquisition device carrier 254 via a fluid tight screwthread 276 having a relatively smaller diameter than thread 275 and preferably a smaller diameter than the inner cutting diameter “d” of the milling tool 350, for reasons which will be discussed subsequently.
a) and 20(b) also show the data acquisition device such as sensors or gauges 258 as being housed within the interior cavity 272. The data acquisition device 258 is similar in form to the data acquisition device 108 as described above.
The downhole device 250 has a first shoulder 280 formed at its very upper end around the outer circumference of its very upper end such that the shoulder 280 projects outwardly, and a second outwardly projecting shoulder 281 approximately one quarter of the way down the length of the tunnel device 250 and just below the thread 276, and a third outwardly projecting shoulder 282 approximately three quarters of the length down the downhole device 250 and a fourth outwardly projecting shoulder 283 provided at its lower most end where the functions of the first 280, second 281, third 282 and fourth 283 shoulders will be discussed in detail subsequently.
The upper end of the downhole device 250 is secured by means of the screwthread 275 to the inner bore 21 of the plug 20 as described above. The lower end of the downhole device 250 is provided with a downwardly projecting insert 285 and which projects downwardly through an aperture formed in an annular ring centraliser 287 where the centraliser 287 is secured via a left hand thread to the inner bore 21 of the frac plug 20, the left hand thread ensuring that the centraliser 287 can not be rotated out of secure connection with the inner bore 21 if the rest of the downhole device 250 were to rotate or to be caused to rotate in the right hand direction within the inner bore 21. The insert 285 is however not in threaded coupling with the inner bore of the centraliser 287 and therefore it would be possible for the downhole device 250 to rotate within the centraliser 287 if it were caused to do so and the centraliser 287 prevents the insert 285 and therefore the downhole device 250 from moving downwardly through the centraliser 287 and therefore the centraliser axially locks the downhole device 250 in a downwards direction. However, the centraliser 287 does not prevent the insert 285 from moving upwardly through it if for instance the downhole device 250 were pulled upwards with respect to the inner bore 21 of the frac plug 20 and that possibility will be described subsequently. Consequently, the centraliser 287 centralises the lower end of the downhole device 250 within the throughbore 21 of the frac plug 20 and in doing so prevents the insert 285 and therefore the downhole device 250 from moving in a radial direction with respect to the longitudinal access of the frac plug 20 and further prevents the downhole device 250 from moving downwards through the centraliser 287 but does not prevent the downhole device 250 from being moved upwards out of the frac plug 20 were that to be possible for instance were the screwthread 275 to be milled away. As can be seen in
Once the fracing operation with frac plug 20 and downhole device 250 have been completed, as shown in
The most preferred coring style bit mill or milling device 350 is shown in
Both the shoe 353 and the outer barrel 356 contain longitudinally extending centralising pads 363 which will act to prevent lateral movement of the data acquisition device carrier 354 as it enters the retrieval barrel 361. As shown in
c) shows the mill 350 of
Importantly, once the first shoulder 280 of a downhole device 250 has passed the slips 354, the relatively large diameter threads 275 will have been milled away and therefore it would be possible for the mill 350 to pick up the downhole device 250 at any point thereafter because the slips 354 will prevent the first shoulder 280 from passing back through the slips 354 but the downhole device 250 would only be pulled out of the well in that configuration as a last resort because the rest of the downhole device 250 would be protruding out of the lower end of the mill 350 and therefore would be more susceptible to damage as it was pulled out of the wellbore and therefore it is much preferred that the mill 350 does mill away all of the frac plug 20 so that the downhole device 250 fully enters the retrievable barrel 361 and is retained therein by its fourth shoulder 283. The third 282 and fourth 283 shoulders are therefore beneficial particularly when there are at least two downhole devices 250 to recover from the wellbore.
Referring now to
A centralizing member 406 is operatively mounted to the data acquisition device 404 or data acquisition device carrier housing 403. The centralizing member 406 comprises a plurality of spreading elements 408 adapted to engage with an interior wall of the throughbore of the wellbore so as to fixate and centralize the drop device 400 within the throughbore. In particular, the centralizing member 406 is actuated by slidingly compressing the spreading elements 408 until the spreading elements 408 bend towards and engage with the interior wall of the throughbore. The centralizing member 406 is actuated by a flange member 410 that is operatively coupled to the data acquisition device 404 or data acquisition device carrier housing 403. The flange member 410 is adapted to slide along a longitudinal axis of the drop device 400, but is prevented from sliding off the data acquisition device 404 or data acquisition device carrier housing 403. The flange member 410 provides an uphole contact surface 412 and a downhole contact surface 414, both of which are adapted to engage with fluid flowing uphole or downhole, respectively.
It is understood by the skilled person in the art that any other suitable obturation member may be used. In particular, alternatively to the drop ball, the obturation member may be a dart or plug or other device suitable for obturating a packer or shifting a sleeve.
Referring now to
For example, in a multi stage fracturing system, the drop ball 402 may actuate a hydraulically-activated flow port 504 that is run in conjunction with a fracture port sleeve (not shown), thus allowing specific zones of the wellbore to be isolated and selectively fractured. In particular, the multiple hydraulically-activated flow ports can be successively activated by locating the ball seat 502 with the largest diameter at the top (most uphole) of the line. Starting with the smallest diameter “d” rop ball 402, the flow ports and fracture port sleeves can be isolated and activated one by one.
As shown in
When the fracing operation is completed and hydrocarbons flow into the wellbore, the production fluid is pumped uphole (see
In an alternative method for recovering the drop device 400, a milling device (e.g. mill plug) 600, similar in design to the milling device 300 described with the third aspect of the invention and shown in
The procedure described for the drop device 400 may be repeated for each of the isolated regions covered by the multi stage fracturing system.
It will be appreciated by persons skilled in the art that the above embodiments have been described by way of example only and not in any limitative sense, and that various alterations and modifications are possible without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1113110.9 | Jul 2011 | GB | national |
1114719.6 | Aug 2011 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2012/051835 | 7/27/2012 | WO | 00 | 9/11/2014 |