1. Field of the Invention
The present invention relates to electric power generators and more particularly to electric power generators for use in a downhole drilling environment.
2. Background
The ability to access and transmit data along a drill string has been a goal of the oil and gas industry for more than half a century. As exploration and drilling technology has improved, this goal has become more important to the industry. For example, to take advantage of various advances in downhole tools and techniques, it would be highly beneficial to transmit real-time data such as temperature, pressure, inclination, salinity, and the like to the surface where it can be analyzed and used beneficially. Nevertheless, because of the complexity, expense, and unreliability of many proposed or attempted downhole transmission systems, these systems have failed to achieve significant commercial use or acceptance.
In U.S. Pat. No. 6,670,880 as well as numerous other related patents and pending patent applications, the present inventors have disclosed a “downhole transmission system” that overcomes many of the problems and limitations of prior art systems. In this downhole transmission system, data is transmitted in real time along a drill string using network hardware integrated directly into the drill string. This network hardware enables high-speed communication between surface equipment, such as analysis, diagnostic, and control equipment, and downhole equipment, such as tools and sensors located along the drill string.
With the installation of network and other related hardware comes the need for an efficient and reliable power source to operate this hardware. Such a power source must be able to provide reliable power in the extreme conditions of a downhole environment. Although batteries provide one option, the use of batteries is hindered by their inherently finite life and the need for frequent replacement and/or recharging. This may be problematic in downhole drilling application where access to these batteries may require tripping and disassembly of the drill string. Battery function may also be impaired by the extreme temperatures, pressures, or other conditions downhole.
In addition, various electrical generators have also been disclosed for generating electrical power in a downhole environment. These generators, however, create additional problems that limit their usefulness downhole. Specifically, some of these generators obstruct the central borehole of the drill string. This undesirably inhibits the flow of drilling fluid and obstructs the passage of wireline tools or other equipment through the central bore. Moreover, many downhole generators are designed for implementation in production wells rather than in downhole drilling strings. Some of these generators may also be complex and have substantial mass, making them costly to implement and maintain and/or difficult to replace or repair. In other cases, these generators may be ill-equipped for operation in the extreme temperatures, pressures, and corrosive conditions downhole.
Accordingly, what is needed is an improved and robust electrical generator for use in a downhole environment. Ideally, such a generator would generate electricity without obstructing the central borehole of a drill string. Further needed is a generator that is more compact and efficient than previously disclosed downhole generators.
Consistent with the foregoing, and in accordance with the invention as embodied and broadly described herein, a downhole electric power generator is disclosed in one embodiment of the invention as including an inlet channel to convey a moving downhole fluid and a turbine coupled to the inlet channel to receive the downhole fluid. The turbine converts the energy of the moving downhole fluid into rotational energy where it is stored with a flywheel. The flywheel is coupled to an electrical generator to convert the rotational energy to electrical energy. In certain embodiments, a continuously variable transmission is inserted between the turbine and the flywheel. The entire generator may, in certain embodiments, be designed small enough to reside in the wall of a downhole tool.
In selected embodiments, the flywheel includes magnetic bearings to support the load of the flywheel during rotation thereby conserving energy and reducing friction. These magnetic bearing may be provided, for example, using a Halbach array of magnets. The flywheel may, in certain embodiments, be enclosed within a vacuum chamber to reduce windage losses of the flywheel and other components.
In certain embodiments, the downhole generator may also include an outlet channel to carry away the downhole fluid routed through the turbine. This outlet channel may, in certain embodiments, be routed into the central bore of a downhole tool to return the downhole fluid to the central bore. Alternatively, the outlet channel may be routed into the annulus between the downhole tool and a borehole wall.
In another aspect of the invention, a method for generating electricity in a downhole environment may include receiving a moving downhole fluid and converting the energy of the downhole fluid to rotational energy. This rotational energy may then be stored. The stored energy may then be converted to electrical energy.
In certain embodiments, storing includes storing the rotational energy with a rotating flywheel. The method may also include magnetically levitating the rotating flywheel. The magnetic levitation, for example, may include levitating the flywheel using a Halbach array of magnets.
In another aspect of the invention, an apparatus for generating electricity in a downhole environment includes a downhole tool and a downhole generator installed in the downhole tool to provide a source of electrical power. The downhole generator includes a turbine to receive a moving downhole fluid and to convert the energy thereof into rotational energy. A flywheel is coupled to the turbine to store the rotational energy. An electrical generator is coupled to the flywheel to convert the rotational energy to electrical energy.
These and other features and advantages of the present invention will be set forth or will become more fully apparent in the description that follows and in the appended claims. The features and advantages may be realized and obtained by means of the elements and combinations particularly pointed out in the appended claims. Furthermore, the features and advantages of the invention may be learned by the practice of the invention or will be obvious from the description, as set forth hereinafter.
In order that the manner in which the above recited and other features and advantages of the present invention are obtained, a more particular description of the invention will be rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. Understanding that the drawings depict only typical embodiments of the present invention and are not, therefore, to be considered as limiting the scope of the invention, the present invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
It will be readily understood that the components of the present invention, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of apparatus and methods in accordance with the present invention, as represented in the Figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of certain examples of presently contemplated embodiments in accordance with the invention. The presently described embodiments will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout.
Referring to
The cover 22 and downhole tool 10 together may form one or more enclosures 26. These enclosures 26 may be used to house electronics such as sensors, tools, network hardware, computer hardware, or the like. The enclosures 26 may also provide an ideal location for a downhole generator in accordance with the invention, as will be described in more detail hereafter. Because the enclosures 26 are located around the outside diameter of the downhole tool 10 but inside the cover 22, the enclosures' contents may be protected from fluid or other substances present inside the central bore 14 as well as those flowing through the annulus. To prevent unwanted fluids or other substances from entering the enclosures 26, one or more O-rings or other suitable seals may be installed between the cover 22 and the downhole tool 10, such as near the ends 28 of the cover 22. For more information regarding the design and function of the compliant cover 22, the reader is referred to patent application Ser. No. 11/164,572, and entitled Compliant Covering of a Downhole Component, having common inventors with the present invention, which is herein incorporated by reference in its entirety.
Referring to
In general, a downhole generator 30 in accordance with the invention may include a turbine 34, one or more flywheels 36, and an electrical generator 38. The turbine 34 may receive, through an inlet channel 40, a moving downhole fluid, such as drilling mud. This downhole fluid may be used to turn blades on the turbine 34 to produce rotational energy (e.g., by rotating a shaft, etc.). This rotational energy may be used to accelerate one or more flywheels 36 to store the energy. In one embodiment, the energy stored by the flywheels 36 may be used to drive an electrical generator 38. As previously mentioned, the electrical power produced by the generator 38 may be used to power electrical devices such as network or computer hardware located downhole.
One advantage of using flywheels 36 to store energy downhole is that flywheels 36 are not as affected by high downhole temperatures as are chemical batteries. Flywheels 36 are also not hindered by the memory effect of chemical batteries. Consequently, flywheels 36 have a longer service life than chemical batteries and may be charged and recharged repeatedly without degradation. Other positive attributes of flywheels 36 are their large power densities and power outputs. This may be especially advantageous when integrating a generator 30 into a downhole drill string, where space is typically very limited. The ability to make a flywheel 36 very compact, for example, allows the flywheel 36 to be installed within the narrow confines of the wall of a downhole tool.
In selected embodiments, the turbine 34 may be used to periodically accelerate the flywheels 36. After the flywheels 36 have acquired a desired speed, the turbine 34 may be shut down. This may be accomplished by simply interrupting the flow of fluid through the inlet channel 40. The flywheels 36 may then continue to drive the electrical generator 38. This may save the turbine 34 from the abrasive effects of drilling fluids passing therethrough by utilizing it only when needed. In certain embodiments, a valve 42 may be used to interrupt the flow of drilling fluid through the inlet channel 40 to selectively start and stop the turbine 34. It is contemplated that the valve 42 could be characterized by discrete operation (i.e., either “open” or “closed”), or the valve 42 could be gradually opened or closed to vary the amount and speed of fluid used to rotate the turbine 34. The latter example may be used to gradually bring the turbine 34 and flywheels 36 up to speed, or gradually to a stop, to reduce torque or stress on the components.
In certain embodiments, a feedback loop may be used to open the valve 42 when the speed of the flywheels 36 falls below a certain threshold. In other embodiments, the valve 42 may be opened based on the demand for electricity. In selected embodiments, the valve 42 may either be controlled uphole at the surface or downhole by devices such as electronic hardware.
In certain embodiments, a transmission 44, such as a continuously variable transmission 44, may be installed between the turbine 34 and the flywheels 36. A continuously variable transmission 44, for example, may be used to gradually bring the flywheels 36 up to speed by adjusting the “gear ratio” between the turbine 34 and the flywheels 36. This may reduce the chance that the turbine 34 or flywheels 36 are damaged by rapid or sudden movement of one of the components 34, 36 and may reduce the torque or stress between the two.
In certain embodiments, one or more of the flywheels 36, electrical generator 38, continuously variable transmission 44, or other components may be housed within a vacuum chamber 46. The vacuum chamber 46 may improve the efficiency of the system by reducing the windage losses (e.g., losses due to air resistance) of the flywheels 36, electrical generator 38, continuously variable transmission 44, or the like. To create a mechanical coupling between the turbine 34 and the continuously variable transmission 44 without compromising the seal of the vacuum chamber 46, a magnetic coupling may be used between the turbine 34 and the continuously variable transmission 44. Wires for carrying electrical current, on the other hand, may be routed from the generator 38 through the vacuum chamber 46 using a static seal. In selected embodiments, a fitting 48 may be provided to remove air, gases, or other matter from the chamber 46. These concepts will be illustrated and explained in more detail hereafter in association with
Once the turbine 34 has extracted the energy from the downhole fluids passing therethrough, the downhole fluids may be vented or expelled through an outlet channel 50. In selected embodiments, the outlet channel 50 may simply return the downhole fluid to the central bore 14 where it originated. In other embodiments, an outlet channel 52 (indicated by the dotted lines) may be vented to the annulus between the downhole tool 10 (including the cover 22) and the borehole wall. The greater pressure differential that exists between the central bore 14 and the annulus may be used to increase the speed of the fluid and thus provide additional energy transfer to the turbine 34. However, due to the risks of leaks or “wash outs,” there may be reluctance on the part of some drilling operators to provide a channel between the central bore 14 and the annulus. In such cases, the downhole fluid may be routed back into the central bore 14.
Referring to
In selected embodiments, a magnetic coupling 56 may be used between the turbine 34 and the continuously variable transmission 44. This magnetic coupling 56 may include, for example, various magnets 58 along an inner circumference of a shaft 62 coupled to the turbine 34. These magnets 58 may interact with magnets 60 placed around the outer circumference of a shaft 64 coupled to the transmission 44. Power may be transmitted between the shafts 62, 64 by the magnetic forces acting between the magnets 58, 60. Such a magnetic coupling may be used to prevent vacuum leaks that would occur with a physical coupling, where a rotating shaft typically contacts a static housing.
Referring to
As is also shown, the downhole generator 30a may include a magnetic coupling 56 to transmit power between the turbine shaft 62 and the continuously variable transmission shaft 64. In one embodiment, an outer rotor 66 containing one or more magnets 58 may be connected to the turbine shaft 62. Similarly, an inner rotor 68 containing one or more magnets 60 may be connected to the shaft 64 of the continuously variable transmission 44a. The inner rotor 68 and outer rotor 66 may be separated by a closed cylinder 70, which may be statically sealed to the vacuum chamber 46. For example, one or more O-rings 72 or other seals 72 may be used to create a static seal between the cylinder 70 and the vacuum chamber 46, thereby completely sealing the vacuum chamber 46 from the outside environment. Alternatively, the cylinder 70 and the vacuum chamber 46 may be formed from or connected into a single structure. The outer rotor 66 may be used to exert torque on the inner rotor 68 by way of the magnetic fields, which pass through the cylinder 70, generated by the permanent magnets 58, 60.
Referring to
In contrast to the moving rotor 74, a stationary structure 82, or centralizer structure 82, may be used to hold stationary parts in place, as well as to maintain the stability of the shaft 76 and the rotor 74. In one embodiment, inductive laminates 80a, 80b may be connected to the centralizer structure 82. Similarly, arrays of permanent magnets 78a, 78b, in this example Halbach arrays of magnets 78a, 78b, may be connected to the rotor 74. The inductive laminates 80a, 80b, and arrays of permanent magnets 78a, 78b together provide “magnetic bearings” to support the load of the rotor 74 by causing it to magnetically levitate. To keep various components in place, the flywheel 36 may also include one or more retention mechanisms 90a, 90b, such as snap rings 90a, 90b. Some retention mechanisms 90a may rotate with the rotor 74 while other retention mechanisms 90b may remain stationary relative to the centralizer structure 82.
Referring to
Referring to
When the rotor 74 reaches a critical speed, the magnetic field begins to levitate the rotor 74. Similarly, at some critical speed, the centrifugal force created by the rotation causes the bearings 88 to disengage from the bearing surface 94 and retract towards the surface 92. In addition to reducing friction, this also saves the bearings 88 from wear and tear that would otherwise occur when the rotor 74 is spinning at a very high velocity.
Referring to
Furthermore, the shape and configuration of the rotor 74 may also affect the magnitude and concentration of stresses exerted on the rotor 74. For example, the material of the rotor 74 may tend to fail at or near locations, such as at or near the corners 98, where the permanent magnets 78a are inset into the rotor 74. Thus, in selected embodiments, the rotor 74 may be formed with radius cuts 100 at or near the corners 98 of the magnets 78a. This may diffuse stresses by distributing them over a larger area and may reduce the number of sharp angles where cracks or points of fatigue may develop. This may also provide greater flexibility to the projections 102, enabling them to flex rather than crack or break.
Referring to
Referring to
Referring to
As shown in this example, the north and south poles of every other magnet 110a, 110b in the Halbach array are directed radially toward and away from the axis 76. The magnetic orientations of these magnets 110a, 110b are alternated. That is, the north poles of magnets 110a are oriented toward the axis 76 while the north poles of magnets 110b are oriented away from the axis 76. The intervening magnets 112a, 112b, on the other hand, are magnetically oriented along the cylinder in alternating orientation. For example, the north pole of a first magnet 112a is oriented circumferentially in a first direction whole the north pole of a second magnet 112b is oriented in the opposite direction. This pattern is repeated around the cylinder to provide the illustrated magnetic fields.
Referring to
The drill string 214 is typically rotated by the drill rig 210 to turn a drill bit 220 that is loaded against the earth 219 to form a borehole. Rotation of the drill bit 220 may alternately be provided by other downhole tools such as drill motors, or drill turbines (not shown) located adjacent to the drill bit 220.
A bottom hole assembly 221 may include a drill bit 220, sensors, and other downhole tools such as logging-while-drilling (“LWD”) tools, measurement-while-drilling (“MWD”) tools, diagnostic-while-drilling (“DWD”) tools, or the like. Other downhole tools may include heavyweight drill pipe, drill collar, stabilizers, hole openers, sub-assemblies, under-reamers, rotary steerable systems, drilling jars, drilling shock absorbers, and the like, which are all well known in the drilling industry.
While drilling, a drilling fluid is typically supplied under pressure at the drill rig 210 through the drill string 214. The drilling fluid typically flows in a direction 215 downhole through the central bore of the drill string 214 and then returns in an opposite direction uphole to the drill rig 210 through the annulus 211. Pressurized drilling fluid is circulated around the drill bit 220 to provide a flushing action to carry cuttings to the surface.
The present invention may be embodied in other specific forms without departing from its essence or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation-in part of U.S. patent application Ser. No. 10/982,612 which was filed on Nov. 5, 2004 now U.S. Pat. No. 7,190,084 and is herein incorporated by reference for all that it discloses.
Number | Name | Date | Kind |
---|---|---|---|
2414719 | Cloud | Jan 1947 | A |
2940039 | Yost et al. | Jun 1960 | A |
3036645 | Rowley | May 1962 | A |
3967201 | Rorden | Jun 1976 | A |
RE30055 | Claycomb | Jul 1979 | E |
4416494 | Watkins | Nov 1983 | A |
4676310 | Scherbatskoy | Jun 1987 | A |
4721172 | Brett | Jan 1988 | A |
4785247 | Meador | Nov 1988 | A |
4788544 | Howard | Nov 1988 | A |
4806928 | Vereruso | Feb 1989 | A |
4965998 | Estigoy et al. | Oct 1990 | A |
5248896 | Forrest | Sep 1993 | A |
5539258 | Sutton et al. | Jul 1996 | A |
5839508 | Tubel et al. | Nov 1998 | A |
6123561 | Turner et al. | Sep 2000 | A |
6392317 | Hall | May 2002 | B1 |
6495929 | Bosley | Dec 2002 | B2 |
6550534 | Brett | Apr 2003 | B2 |
6670880 | Hall | Dec 2003 | B1 |
6672409 | Dock et al. | Jan 2004 | B1 |
6688396 | Floerke et al. | Feb 2004 | B2 |
6717501 | Hall | Apr 2004 | B2 |
6745844 | Henderson | Jun 2004 | B2 |
6794777 | Fradella | Sep 2004 | B1 |
6799632 | Hall | Oct 2004 | B2 |
6821147 | Hall | Nov 2004 | B1 |
6830467 | Hall | Dec 2004 | B2 |
6844498 | Hall | Jan 2005 | B2 |
6888473 | Hall | May 2005 | B1 |
6913093 | Hall | Jul 2005 | B2 |
6929493 | Hall | Aug 2005 | B2 |
6945802 | Hall | Sep 2005 | B2 |
6968611 | Hall | Nov 2005 | B2 |
7165608 | Schultz et al. | Jan 2007 | B2 |
7201239 | Perry | Apr 2007 | B1 |
7246660 | Fripp et al. | Jul 2007 | B2 |
20020135179 | Boyle et al. | Sep 2002 | A1 |
20020162654 | Bauer et al. | Nov 2002 | A1 |
20030042812 | Post | Mar 2003 | A1 |
20030192449 | Fiske et al. | Oct 2003 | A1 |
20040104797 | Hall | Jun 2004 | A1 |
20040113808 | Hall | Jun 2004 | A1 |
20040145492 | Hall | Jul 2004 | A1 |
20040150532 | Hall | Aug 2004 | A1 |
20040164833 | Hall | Aug 2004 | A1 |
20040164838 | Hall | Aug 2004 | A1 |
20040182366 | Andersson et al. | Sep 2004 | A1 |
20040216847 | Hall | Nov 2004 | A1 |
20040244916 | Hall | Dec 2004 | A1 |
20040244964 | Hall | Dec 2004 | A1 |
20040246142 | Hall | Dec 2004 | A1 |
20050001735 | Hall | Jan 2005 | A1 |
20050001736 | Hall | Jan 2005 | A1 |
20050001738 | Hall | Jan 2005 | A1 |
20050035874 | Hall | Feb 2005 | A1 |
20050035875 | Hall | Feb 2005 | A1 |
20050035876 | Hall | Feb 2005 | A1 |
20050036507 | Hall | Feb 2005 | A1 |
20050039912 | Hall | Feb 2005 | A1 |
20050045339 | Hall | Mar 2005 | A1 |
20050046586 | Hall | Mar 2005 | A1 |
20050046590 | Hall | Mar 2005 | A1 |
20050067159 | Hall | Mar 2005 | A1 |
20050070144 | Hall | Mar 2005 | A1 |
20050082092 | Hall | Apr 2005 | A1 |
20050092499 | Hall | May 2005 | A1 |
20050093296 | Hall | May 2005 | A1 |
20050115717 | Hall | Jun 2005 | A1 |
20050139393 | Maurer et al. | Jun 2005 | A1 |
20050145406 | Hall | Jul 2005 | A1 |
20050150653 | Hall | Jul 2005 | A1 |
20050155450 | Jennings | Jul 2005 | A1 |
20050161215 | Hall | Jul 2005 | A1 |
20050173128 | Hall | Aug 2005 | A1 |
20050212530 | Hall | Sep 2005 | A1 |
20050236160 | Hall | Oct 2005 | A1 |
20050284662 | Hall | Dec 2005 | A1 |
20060016606 | Tubel et al. | Jan 2006 | A1 |
20060117759 | Hall et al. | Jun 2006 | A1 |
20060260797 | Hall | Nov 2006 | A1 |
20060260798 | Hall et al. | Nov 2006 | A1 |
20060260801 | Hall et al. | Nov 2006 | A1 |
20070017671 | Clark et al. | Jan 2007 | A1 |
20070194948 | Hall et al. | Aug 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080047753 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10982612 | Nov 2004 | US |
Child | 11467095 | US |