The present disclosure relates generally to wellsite operations. In particular, the present disclosure relates to downhole sensors for measuring parameters of a downhole fluid.
Wellbores are drilled to locate and produce hydrocarbons. A downhole drilling tool with a bit at an end thereof is advanced into the ground to form a wellbore. As the drilling tool is advanced, drilling mud is pumped through the drilling tool and out the drill bit to cool the drilling tool and carry away cuttings. The fluid exits the drill bit and flows back up to the surface for recirculation through the drilling tool. The drilling mud is also used to form a mudcake to line the wellbore.
During a drilling operation, various downhole evaluations may be performed to determine characteristics of the wellbore and surrounding formations. In some cases, the drilling tool may be provided with devices to test and/or sample the surrounding formation and/or fluid contained in reservoirs therein. In some cases, the drilling tool may be removed and a downhole wireline tool may be deployed into the wellbore to test and/or sample the formation. These samples or tests may be used, for example, to determine whether valuable hydrocarbons are present.
Formation evaluation may involve drawing fluid from the formation into the downhole tool for testing and/or sampling. Various devices, such as probes or packers, may be extended from the downhole tool to establish fluid communication with the formation surrounding the wellbore and to draw fluid into the downhole tool. Downhole tools may be provided with fluid analyzers and/or sensors to measure downhole parameters, such as fluid properties. Examples of downhole devices are provided in US Patent/Publication Nos. 2009/0014325, 2009/0090176, U.S. Pat. No. 6,223,822, U.S. Pat. No. 6,939,717, U.S. Pat. No. 7,222,671, U.S. Pat. No. 7,520,160, U.S. Pat. No. 7,025,138, U.S. Pat. No. 7,458,252, and U.S. Pat. No. 8,177,958, the entire contents of which are hereby incorporated by reference herein.
In at least on aspect, the present disclosure relates to an electrochemical sensor of a downhole tool positionable in a wellbore penetrating a subterranean formation. The downhole tool has a flowline to receive downhole fluid. The electrochemical sensor includes a bulkhead carried by the downhole tool, a membrane exposed to the downhole fluid in the flowline, and an electrochemical cell supported by the bulkhead adjacent the membrane. The electrochemical cell includes a plurality of cell sensors, at least one cell electrode, and a sensing solution. The cell sensors include an analyte sensor, a temperature sensor, and a pH sensor. The sensing solution is reactive to certain analytes in the downhole fluid to generate electrical signals measurable by the cell sensors whereby parameters of chemicals in the downhole fluid may be measured.
In another aspect, the disclosure relates to a method of determining downhole parameters of a downhole fluid about a wellbore penetrating a subterranean formation. The downhole tool has a flowline therein to receive downhole fluid. The method involves deploying a downhole tool with an electrochemical sensor into the wellbore. The electrochemical sensor includes a bulkhead carried by the downhole tool, a membrane exposed to the downhole fluid in the flowline, and an electrochemical cell supported by the bulkhead adjacent the membrane. The electrochemical cell includes a plurality of cell sensors, at least one cell electrode, and a sensing solution. The cell sensors include an analyte sensor, a temperature sensor, and a pH sensor. The method further involves exposing the membrane to the downhole fluid in the flowline, and measuring parameters of the downhole fluid by measuring electrical signals generated by reaction of the sensing solution with certain analytes in the downhole fluid with the cell sensors.
In another aspect, the disclosure relates to a method of determining downhole parameters of a downhole fluid about a wellbore penetrating a subterranean formation. The method involves obtaining square wave and cyclic voltammetries measurements an electrochemical sensor exposed to the downhole fluid, generating electrode parameters of the electrochemical sensor based on the square wave and cyclic voltammetries (the electrode parameters including mediator concentration, current-volt relations, and pH). The method further involves obtaining temperature and pressure measurements of the downhole fluid, generating a concentration of an analyte of the downhole fluid by combining the generated electrode parameters with the temperature measurement of the downhole fluid using a calibration model, and generating pressure of the analyte by combining the concentration of the analyte with the pressure measurement of the downhole fluid using a gas solubility model.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Embodiments of the downhole electrochemical measurement method are described with reference to the following figures. The same numbers are used throughout the figures to reference like features and components.
FIGS. 6.1-6.3 are graphs illustrating a relationship between H2S and CO2 concentrations in accordance with embodiments of the present disclosure;
The description that follows includes exemplary apparatuses, methods, techniques, and instruction sequences that embody techniques of the inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details.
The present disclosure relates to formation evaluation involving measurements of downhole fluid. Measurements of fluid parameters may be taken using an electrochemical sensor deployed into a wellbore on a downhole tool. The electrochemical sensor may include a protective membrane with a combination of cell sensors and cell electrodes to measure various fluid parameters. The electrochemical sensor may be used to take various measurements to determine phase behavior and chemical composition, and/or to detect gases, such as hydrogen sulfide (H2S), carbon dioxide (CO2), and methane (CH4). Outputs from the electrochemical sensor may be combined using a measurement chain to determine various downhole parameters, such as pressure and/or concentration of H2S in downhole fluids.
Downhole fluids may be measured and/or analyzed to determine phase behavior and chemical composition. Chemical composition of downhole fluids and/or concentrations of gaseous components, such as H2S, CO2 and CH4, may be used to evaluate producibility and/or economic value of hydrocarbon reserves. Certain chemicals, such as H2S and CO2, may affect downhole operations. For example, the presence of certain chemicals, such as CO2 and H2S, may lead to failures due to, for example, corrosion, stress cracking, welding, pitting, erosion, galvanic, and stress deterioration. H2S may be detected in fluids found in the permeable formations of oil wells. Sulfur content of crude oils may be in the range of from about 0.30 to about 0.80 weight percent. The content of H2S in natural gas may be in the range of from about 0.01 to about 0.40 weight percent, and concentrations of H2S in natural gas of up to 30 weight percent
The downhole drilling tool 10.1 may be withdrawn from the wellbore 14, and the downhole wireline tool 10.2 of
The downhole tools 10.1, 10.2 may also be provided with a formation evaluation tool 28 with an electrochemical sensor 30 for measuring downhole parameters. The formation evaluation tool 28 includes a flowline 32 for receiving the formation fluid from the probe 20 and passing the fluid to the electrochemical sensor 30 for measurement as will be described more fully herein. A surface unit 34 may be provided to communicate with the downhole tool 10.1, 10.2 for passage of signals (e.g., data, power, command, etc.) therebetween.
While
The downhole tool 210 includes the probe 20, formation evaluation tool 28, and the electrochemical sensor 230. The downhole tool 210 may be provided with one or more flowlines 32 for drawing fluid into the downhole tool 210 through an inlet 244 in the probe 20. While one probe 20 is depicted, one or more probes, dual packers and related inlets may be provided to receive downhole fluids and pass them to one or more flowlines 32. Examples of downhole tools and fluid communication devices, such as probes, that may be used are depicted in U.S. Pat. No. 7,458,252, previously incorporated herein.
The flowline 32 passes fluid from the probe 20 to the formation evaluation tool 28 for measurement. The formation evaluation tool may be provided with a sample chamber 246 coupled to the flowline 32 for receiving the downhole fluid. Fluid collected in the sample chamber 246 may be collected therein for retrieval at the surface, or may be exited through an outlet 248 in housing 250 of the downhole tool 210. Optionally, flow of the downhole fluid into and/or through the downhole tool 210 may be manipulated by one or more flow control devices, such as a pump 252, the sample chamber 246, valve 254 and/or other devices.
The electrochemical sensor 230 is positioned in the formation evaluation tool 28 and is coupled to the flowline 32 for measuring parameters of downhole fluid passing through the flowline 32. The electrochemical sensor 230 may be used to detect certain chemicals in the downhole fluid. Detection may be performed using electrochemical techniques, such as sensor detection, potentiometric, galvanostatic, amperometric and other electrochemical techniques.
As shown in
The gas permeable membrane 258 is positioned about the flowline 32 for exposure to the downhole fluid therein. The membrane 258 allows transport of gaseous species, such as H2S through the membrane 258 and into the electrochemical cell 256. In the example of
The electrochemical sensor 230 may provide, for example, a mechanistic pathway detailing the electrocatalytic reduction of ferrocenium by sulfide. For example, ferrocene may oxidize at the sensing surface 262 of the electrochemical cell 256 to form ferricenium ions when sulfide is present, and to homogeneously reduce the ferricenium ion back to ferrocene which can be re-oxidized at the sensing surface 262. An apparent increase in ferricenium ions perturbs baseline voltammetry through an increase in oxidative current (and charge), which can be measured by the electrochemical cell 256 and used to determine the concentration of chemicals (e.g., H2S) in the downhole fluid.
Referring back to
Optionally, the downhole tool may be provided with a downhole unit 234 which may be similar to the surface unit 34 (
The electrochemical cell 356 may include a variety of electrodes, sensor, gauges or other devices capable of measuring downhole parameters. As shown, the electrochemical cell is provided with cell electrodes including a reference electrode 363 and a counter electrode 364. The electrochemical cell 356 also includes a combination of cell sensors including an analyte sensor 366, a pH sensor 368, and a temperature probe 370. The electrodes and cell sensors have a sensing end positioned along a sensing surface 362 of the electrochemical cell 356 adjacent the membrane 358.
The reference and counter electrodes 363, 364 may be conventional electrodes capable of providing reference and counting measurements. The counter (or auxiliary) electrode 364 may be used with the reference electrode 363 and the sensing electrodes for voltammetric analysis or other reaction in which electrical current flows. The reference electrode 363 may be used to establish an electrical potential against which other potentials may be measured. The electrodes 363, 364 may be smaller than (e.g., about half the size of) the cell sensors.
The analyte sensor 366 may be any sensor capable of detecting and/or measuring parameters of chemicals, such as H2S, CH4, CO2, HG, O2, H2, and/or analytes, in the downhole fluid. The analyte sensor 366 may be, for example, a boron-doped diamond (BDD), glassy carbon, graphitic substrates, platinum and/or gold electrode. The analyte sensor 366 may be configured, for example, to measure square wave and cyclic voltammetries of various chemicals within the electrochemical sensor 330.
The pH sensor 368 may be any sensor capable of detecting pH of a chemical in the downhole fluid, such as a modified edge plane graphite (EPPG) electrode. The pH measurement may be based upon either amperometric, potentiometric, or other types of measurement. The potentiometric approach may, for example, utilize a glass electrode to facilitate handling and high selectivity towards pH sensing. A range of other pH sensors that may be used may be based upon ion-selective membranes, ion-selective field-effect transistors, terminal microsensors, as well as optical, and metal oxide layers. One or more such pH sensors may be used.
The pH sensor may be a pH probe fabricated based on, for example, the redox chemistry of anthraquinone, N,N′-diphenyl-p-phenylenediamine (DPPD), and/or nickel hexacyanoferrate. Detection protocol may rely upon, for example, pH sensitivity of the redox chemistry of anthraquinone or DPPD and the pH insensitivity of the nickel-hexacyanoferrate redox species. Such detection may be extended to other redox active pH sensitive and pH insensitive compounds.
In an example, the pH sensor 368 uses an anthraquinone modified edge plane pyrolytic graphite electrode, and the water soluble mediator t-butylferrocene sulfonate used to detect sulfide. In this case the pH sensor 368 may determine, for example, pH using the redox-active and pH-sensitive species (anthraquinone), and use a redox-active, pH-insensitive component as the reference compound (e.g. t-butylferrocene sulfonate). The pH is measured using a difference in potential between two redox-active moieties.
The temperature probe 370 may be, for example, a simple thermocouple accurate to within about 1 degrees C. A response of the electrochemical sensor 330 may rely on a number of parameters, which suggests a combination of several in-situ measurements may be undertaken in order to provide desired operational and interpretable capabilities. Such measurements may include, for example, flowline pressure, temperature, mediator solution pH, mediator concentration, and/or electrode sensing area as provided by the combination of sensing means of the electrochemical sensor 330.
The electrochemical sensor 330 may be provided with additional sensors, such as downhole sensor S as shown in
The electrochemical sensor 330 may also be provided with a mediator sensor M for measuring concentration of the mediator within the electrochemical cell 356. The mediator sensor may also be used to monitor various parameters measured by the various sensing means, and to allow the electrochemical sensor 330 to calibrate itself. Calibration may be used, for example, to address changes in the downhole conditions and/or changes that occur to the electrochemical sensor 330 during measurement.
As shown by graph 400, as the amount of analyte increases, the current increases. This current response may depend on a number of factors. For example, the following Randels-Sevich equation below describes the effect of scan rate on the peak current (ip):
where ip is the maximum current, n is the number of electrons transferred in the redox event (e.g., 1), A is the electrode area, F is the Faraday constant, D is the diffusion coefficient of ferrocene, C is concentration of ferrocene, and v is scan rate. The Randels-Sevich equation (Eqn. (1)) shows that a baseline current may be proportional to the concentration of ferrocene in the downhole fluid, the temperature of the downhole fluid, and the diffusion coefficient of the species.
The analytical response may depend on the parameters as shown in
FIGS. 6.1-6.3 are graphs 600.1-600.3 depicting example concentrations of chemicals (e.g., H2S and CO2) as measured under various conditions.
As also demonstrated by FIGS. 6.1-6.3, the concentration of H2S may be proportional to the concentration of CO2, and, therefore, influxes of CO2 into the electrochemical cell 356 may not be disregarded. To address potential effects of CO2 on the H2S measurement, pH of the cell chamber may also be measured in case the presence of CO2 affects the measurement. Concentrations may be measured at surface using, for example, detector tubes (e.g., Dragor colorimetric gas detector tubes) and considered along with the separator temperature, separator pressure, a recombined composition of the reservoir fluid, the water cut, the reservoir temperature and pressure, and/or a simulator (e.g., a pressure, volume, temperature simulator, such as a PVTsim™) to estimate the concentration of analyte (e.g., H2S) in the downhole fluid.
Referring to
As indicated by
Error may occur due to a variety of reasons. For example, changes in pH may occur during measurement, and/or a concentration of the mediator may change (and so alter a calibration curve) for several reasons. In another example, water might transfer across the membrane due to salinity differences between the fluid within the measurement cell and brines within the flowline (osmosis), causing the effective meditator concentration to change.
In some cases, the sensor 330 may be exposed to concentrated brines (or as in the testing with gas mixtures, gas with low humidity). For example, ferrocene may transport across the membrane 358. This transport may happen if the dense selective layer of the membrane 358 becomes plasticized by prolonged exposure to high concentration CO2 or crude oil, or because of seal failure. In another example, the ferrocene may thermally degrade within the cell at high temperatures, leading to a decrease in its concentration.
Calibration may be used to address at least some of the items that may affect measurement. The graph 900 shows how a pH sensor can be used within an H2S sensor to calibrate for any pH drifts. In addition to the pH measurement, the concentration of mediator may be monitored. This may be conducted using square wave voltammetry to monitor the mediator concentration in the presence and the absence of the analyte.
As shown, the measurement chain 1000 includes three different types of electrochemical measurements 1080.1-1080.3. Measurement 1080.1 is a graph of square wave voltammetry measured by analyte sensor 366. The measured square wave voltammetry may be used to infer an output 1081.1, such as a mediator concentration MC. Measurement 1080.2 may be a graph of cyclic voltammetry measured by the analyte sensor 366 to provide output 1081.2, such as a current-voltage relationship i-V(Q). The measurement 1080.3 may be a square wave voltammetry measured by a pH sensor 368. This measurement 1080.3 may be used to infer an output 1081.3, such as pH.
Additional inputs may be combined with the outputs 1080.1-1080.3 for analysis. For example, other parameters, such as a temperature input 1082.1 measured by temperature sensor 370 and/or a pressure input 1082.2 measured by a pressure sensor PS in the flowline (
A calibration model 1084.1 may be used to combine the various outputs 1081.1-1081.3 generated from the measurements 1080.1-1080.3 with the input 1082.1. The calibration model may be a conventional calibration model capable of combining the outputs. From this combination, a secondary output 1083, such as concentration xH2S of H2S within the electrochemical cell 356, may be inferred. From this secondary output 1083, the temperature input 1082.1 and pressure input 1082.2 may also be combined using a gas solubility model 1084.2. The gas solubility model may be a conventional model capable of combining the outputs. A third output 1085, such as the equivalent partial pressure of H2S within the flowline γH2S·P, may then be inferred based on the gas solubility model 1084.2.
Optionally, additional data may be incorporated into various portions of the measurement chain to further refine the various outputs. For example, historical data concerning the fluid, wellsite, downhole tool, or other information, may be input to enhance the models 1084.1, 1084.2. The additional information may also be used, for example, to enhance the outputs 1081.1-1081.3 generated from the measurements 1080.1-1080.3. Other downhole parameters may be provided by the measurements and/or outputs. Other models and/or combinations of data may be used to obtain other information about downhole operations. Cross-checks and calibrations may optionally be performed for quality assurance and quality control.
The method 1100.2 involves 1195—obtaining square wave and cyclic voltammetries measurements of an electrochemical sensor exposed to a downhole fluid, 1196—generating electrode parameters of an electrochemical sensor based on the square wave and cyclic voltammetries (the electrode parameters comprising mediator concentration, current-volt relations, and pH), 1197—obtaining temperature and pressure measurements of the downhole fluid, 1198—determining a concentration of an analyte of the downhole fluid by combining the generated electrode parameters with the temperature measurement using a calibration model, 1199—generating pressure of the analyte by combining the concentration of the analyte with the measured pressure using a gas solubility model. Various combinations of the methods 1100.1, 1100.2 may be performed in any order.
Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.