The present invention relates to circulation tools of a type used downhole in a well for transferring fluid through ports from a bore within the tool to an annulus surrounding the tool and for subsequently closing the ports to pass fluid through the tool. The circulation tools of the present invention are sometimes referred to as surge tools or surge reduction tools.
Downhole circulation tools have been used for decades to selectively flow fluid from the interior of a tubing string or work string to the annulus surrounding the tool. Some tools have the ability to selectively close off circulation ports to subsequently pass fluid down the tubing string or work string. Many of these tools, however, make it difficult or unreliable to pass a cementing plug through the work string after the circulation ports are closed without damaging the plug. Other tools require that the work string be placed on bottom or engage some type of restriction in the well to cycle the tool. Various types of circulation tools have thus been devised for circulating fluid within a tubular string to an annulus, and for subsequently moving a sleeve to close the annulus so that fluid can be passed through the tool.
Prior art circulation tools for selectively closing off flow through a side port in the tool and for subsequently passing cement and cement plugs through the tool include tools with a deformable or expandable seat to allow the ball to pass through the seat and thus through the tool once the sleeve has shifted to close off flow ports in the tool. This type of tool significantly restricts the size of the cement plug which may be reliably passed through the tool, and the deformable seats may damage the plug wiper seals or rubber wafers while passing through the deformable seat. As a consequence, cementing operations are adversely affected since an unknown quantity of cement may pass by the wiper plug after the wiper plug has passed through the tool. Other types of tools employ a flangible disc within the bore of the tool. Pressure builds up on top of the disc to shift a sleeve to close off the circulation ports. A subsequent increase in pressure breaks the flangible disc. Fragments from the disc can be very damaging, however, to a cementing plug which is subsequently passed through the tool. Disc fragments may cut or tear at the wiper plug, thereby damaging the wiper plug.
Another type of tool utilizes a J-type mechanism for moving the sleeve between the open and closed positions. This type of tool or a tubular extending downward from the tool conventionally sits on the bottom of the well so that weight can be applied to manipulate the J-type mechanism.
Other types of surge tools do not provide substantially a full bore opening through the tool, and the restriction in the ID of the tool is thus a significant detriment to the use of the tool.
U.S. Pat. No. 6,275,929 discloses a circulation tool with axially moveable sleeves. Similar tools are disclosed in U.S. Pat. Nos. 6,571,875 and 5,176,208. U.S. Pat. No. 5,402,850 discloses a tool for reverse circulation of fluid in the wellbore. A circulation tool with wash ports is disclosed in U.S. Pat. No. 4,987,841. Another type of circulation tool is disclosed in U.S. Pat. No. 4,657,092. A downhole tool with a combination ball valve and sliding sleeve is disclosed in U.S. Pat. No. 5,335,731.
The disadvantages of the prior art are overcome by the present invention. An improved downhole circulation tool which may be reliably used with cementing operations is subsequently disclosed.
In one embodiment, a circulation tool for use downhole in a well is suspended in a well from a tubular string. The tool includes a tubular housing including one or more bypass ports for circulation between a bore within the housing and an annulus surrounding the housing. A sleeve is axially movable within the housing and supports axially spaced seals. A pivotally mounted flapper includes a seat about a central bore in the flapper for sealing engagement with a plug. A stop prevents pivoting of the flapper to an open position until the sleeve has moved axially to position the seals above and below the one or more bypass or circulation ports.
In one embodiment, a recess is provided in the housing for allowing movement of the stop to release the flapper to the open position. The tool preferably is substantially full bore, since in the closed position the flapper does not restrict the diameter of the sleeve.
These and further features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
An inner mandrel 32 includes a bore 33 which has a substantially uniform internal diameter between the upper connector 12 and the lower connector 60. Mandrel 32 has a radially outward extending shoulder or flange 28, and the housing 12 has a radially inward and lower shoulder or flange 26, thereby axially interconnecting the upper connector 12 and the mandrel 32. The flanges 26, 28 are not annular but instead are arc segments that axially connect and disconnect upon rotation of the connector 12 relative to the mandrel 32. Seal 36 seals between the OD of the mandrel 32 and the ID of actuating sleeve 50, which is sandwiched between the mandrel 32 and the outer housing 22. A shear pin or other shear member 30 axially interconnects the mandrel 32 and the sleeve 50, and shears to allow the sleeve 50 to move downward and close off the circulation ports 52 in the housing 22, as shown in
As shown on
As shown by the dashed line 87 in
The lower end of the housing 22 is connected by thread 62 to the lower connector 60, with inadvertent rotation being prevented by set screws 72. External threads 66 on the lower connector 60 are thus adapted for engagement with a tubular extending downward from the circulation tool. The circulation tool 10 has a central axis 64, which is also the axis of the full diameter bore 33 through the tool.
As shown on
During operation of the circulation tool, fluid conventionally travels upward through the full diameter bore 33 and passes outward through the one or more circulation ports 52 to the annulus surrounding the tool. Some fluid may also flow upward through the port 85 in the flapper 84. When it is desired to close off the ports 52, e.g., for a cementing operation, a plug or other ball may be dropped to seat on the flapper 84, thereby raising the pressure above the flapper. This creates a downward force which acts upon the sleeve 50, shearing the pin 30 and moving the sleeve downward to close off the ports 52. When the sleeve is in the fully closed position, the recess 38 as shown in
The circulation tool of the present invention is particularly well suited for operations involving the run in of the liner in a well, and the subsequent cementing of the liner by pumping through the work string. When the liner is run in a well, a check valve at the bottom of the liner is conventionally opened so that well fluid enters and passes upward through the liner. The work string or drill pipe at the upper end of the liner thus begins to fill with fluid, and desirably that fluid passes through the circulation tool to the annulus rather than continuing up the drill string or work string. Once the liner is at bottom and positioned for cementing in place, a plug or ball is dropped from the surface and lands on the flapper 84, closing off the hole 85 through the flapper and creating a downward force to move the sleeve 50 to the closed position. As previously explained, the flapper then moves to the open position to provide a full bore flow path through the circulation tool, at which time the ball may be released to either be caught by a conventional ball catcher or passed to the bottom of the string. Flapper plugs or darts may then be passed through the drill string or work string to cement the liner in place, with the darts or plugs passing through the open bore 33 in the circulation tool, which is not restricted and has no sharp edges to damage the plug or wiper.
For the embodiment depicted, the seals between the sleeve 50 and the housing 22 are provided on the sleeve. In other embodiments, the seals could be provided on the housing. In a preferred embodiment, a flapper is provided with a hole therein, so that when the flapper is closed some fluid can pass from below to above the flapper. This construction allows fluid to drain from above to below the flapper in the event the operator needs to pick up on the tubular string before setting the liner in place. Although various types of plugs may be used for seating with the flapper, a preferred plug is a ball. The seat on the flapper is also configured for seating with balls of various sealing diameters, thereby increasing the versatility of the tool.
Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.
Number | Name | Date | Kind |
---|---|---|---|
3376935 | Baker | Apr 1968 | A |
4582140 | Barrington | Apr 1986 | A |
4657092 | Franks, Jr. | Apr 1987 | A |
4987841 | Rawson et al. | Jan 1991 | A |
5176208 | Lalande et al. | Jan 1993 | A |
5335731 | Riggenberg et al. | Aug 1994 | A |
5402850 | Lalande et al. | Apr 1995 | A |
5960881 | Allamon et al. | Oct 1999 | A |
6275929 | Blum et al. | Aug 2001 | B1 |
6491103 | Allamon et al. | Dec 2002 | B2 |
6508309 | French | Jan 2003 | B1 |
6834726 | Giroux et al. | Dec 2004 | B2 |
6920930 | Allamon et al. | Jul 2005 | B2 |
7063156 | Patel et al. | Jun 2006 | B2 |
20060011354 | Logiudice et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060272824 A1 | Dec 2006 | US |