The present disclosure relates generally to wellsite operations. In particular, the present disclosure relates to formation evaluation involving testing, measuring, sampling, monitoring and/or analyzing downhole fluids.
Wellbores are drilled to locate and produce hydrocarbons. A downhole drilling tool with a bit at an end thereof is advanced into the ground to form a wellbore. As the drilling tool is advanced, drilling mud is pumped through the drilling tool and out the drill bit to cool the drilling tool and carry away cuttings. The fluid exits the drill bit and flows back up to the surface for recirculation through the drilling tool. The drilling mud is also used to form a mudcake to line the wellbore.
During or after a drilling operation, various downhole evaluations may be performed to determine characteristics of the wellbore and surrounding formations. In some cases, the drilling tool may be provided with devices to test and/or sample the surrounding formation and/or fluid contained in reservoirs therein. In some cases, the drilling tool may be removed and a downhole wireline tool may be deployed into the wellbore to test and/or sample the formation. These samples or tests may be used, for example, to determine whether valuable hydrocarbons are present. Production equipment may be positioned in the wellbore to draw located hydrocarbons to the surface.
Formation evaluation may involve drawing fluid from the formation into the downhole tool for testing and/or sampling. Various devices, such as probes or packers, may be extended from the downhole tool to establish fluid communication with the formation surrounding the wellbore and to draw fluid into the downhole tool. Downhole tools may be provided with fluid analyzers and/or sensors to measure downhole parameters, such as fluid properties. Examples of downhole tools are provided in U.S. Pat. No. 7,458,252, the entire contents of which are hereby incorporated by reference. The downhole tool may also be provided with sensors for measuring downhole parameters. Examples of sensors are provided in patent/publication Nos. US2012/0132544 and U.S. Pat. No. 7,183,778, the entire contents of which are hereby incorporated by reference.
In one aspect, the disclosure relates to a fluid sensor for a downhole tool positionable in a wellbore penetrating a subterranean formation. The downhole tool has a housing with a flowline therethrough receiving downhole fluid therein. The fluid sensor includes an insulative base positionable in the downhole tool, a conductive shield positionable on the insulative base, and a plurality of electrodes each having a non-conductive coating thereon. Each of the electrodes includes a sensing element and a pin. The sensing element is positionable in the insulative base and exposed to the downhole fluid passing through the flowline. The pin operatively connects the sensing element to a downhole unit whereby parameters of the downhole fluid are measured.
In another aspect, the disclosure relates to a downhole tool positionable in a wellbore penetrating a subterranean formation. The downhole tool includes a housing with a flowline therethrough, a downhole unit, and a fluid sensor positionable in the housing. The fluid sensor includes an insulative base positionable in the downhole tool, a conductive shield positionable on the insulative base, and a plurality of electrodes each having a non-conductive coating thereon. Each of the electrodes includes a sensing element and a pin. The sensing element is positionable in the insulative base and exposed to the downhole fluid passing through the flowline. The pin operatively connects the sensing element to a downhole unit whereby parameters of the downhole fluid are measured.
In still another aspect, the disclosure relates to a method of sensing downhole parameters of a fluid about a wellbore penetrating a subterranean formation. The method involves deploying a downhole tool into the wellbore. The downhole tool includes a housing with a flowline therethrough, a downhole unit, and a fluid sensor positionable in the housing. The fluid sensor includes an insulative base positionable in the downhole tool, a conductive shield positionable on the insulative base, and a plurality of electrodes each having a non-conductive coating thereon. The method also involves passing a fluid through the flowline and past the electrodes, and measuring downhole parameters of the fluid with the electrodes.
In yet another aspect, the disclosure relates to a fluid sensor for a downhole tool positionable in a wellbore penetrating a subterranean formation. The downhole tool has a housing with a flowline therethrough receiving a downhole fluid therein. The fluid sensor includes a plurality of electrodes and an insulative base. Each of the electrodes includes a sensing element and a pin. The insulative base is integrally formed with the electrodes therein such that the insulative base is positionable in the downhole tool and has a passage in fluid communication with the flowline to pass the downhole fluid therethrough. The electrodes are formed within the insulative base such that the sensing element is exposed to the downhole fluid passing through the flowline and the pin operatively connects the sensing element to a downhole unit whereby parameters of the downhole fluid are measured.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Embodiments of downhole fluid sensors with conductive shield and methods of using the same are described with reference to the following figures. The same numbers are used throughout the figures to reference like features and components.
The description that follows includes exemplary systems, apparatuses, methods, techniques, and instruction sequences that implement techniques of the inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details.
The present disclosure relates to a downhole fluid sensor positionable about a downhole tool for measuring parameters of downhole fluids. The fluid sensor includes an insulative base and a conductive shield with a plurality of electrodes extending therethrough. The electrodes have an insulative coating thereabout to electrically isolate the electrodes about the conductive shield. The fluid sensor may have various configurations, such as an eccentric (or offset) electrode, glass seal, and/or an integrally molded insulative base, and be provided with various non-conductive features, such as centralizers, rings, caps, o-rings and others.
‘Formation evaluation’ as used herein relates to the measurement, testing, sampling, and/or other analysis of wellsite materials, such as gases, fluids and/or solids. Such formation evaluation may be performed at a surface and/or downhole location to provide data, such as downhole parameters (e.g., temperature, pressure, permeability, porosity, seismic, etc.), material properties (e.g., viscosity, composition, density, etc.), and the like.
‘Fluid analysis’ as used herein relates to a type of formation evaluation of downhole fluids, such as wellbore, formation, reservoir, and/other fluids located at a wellsite. Fluid analysis may be performed by a fluid analyzer which is capable of measuring fluid properties, such as viscosity, composition, density, temperature, pressure, flow rate, optical parameters, etc. Fluid analysis may be performed using, for example, optical sensors (e.g., spectrometers), gauges (e.g., quartz), densitometers, viscometers, resistivity sensors, nuclear sensors, and/or other fluid measurement and/or detection devices.
The downhole drilling tool 10.1 may be withdrawn from the wellbore 14, and the downhole wireline tool 10.2 of
The downhole tools 10.1, 10.2 may be also provided with a formation evaluation tool 28 with a fluid sensor 30 for measuring parameters of the formation fluid drawn into the downhole tool 10.1, 10.2. The formation evaluation tool 28 includes a flowline 32 for receiving the formation fluid from the probe 20 and passing the fluid to the fluid sensor 30 for measurement as will be described more fully herein. A surface unit 34 may be provided to communicate with the downhole tool 10.1, 10.2 for passage of signals (e.g., data, power, command, etc.) therebetween.
While
The formation evaluation tool 28 may be provided with one or more flowlines 32 for drawing fluid into the downhole tool 10 through an inlet 44 in the probe 20. While one probe 20 with one inlet 44 is depicted, one or more probes, dual packers and related inlets may be provided to receive downhole fluids and pass them to one or more flowlines 32. Examples of downhole tools and fluid communication devices, such as probes, that may be used are depicted in U.S. Pat. No. 7,458,252, previously incorporated herein.
The flowline 32 extends into the downhole tool 10 to pass downhole fluid to the formation evaluation tool 28. The formation evaluation tool 28 may be used to analyze, test, sample and/or otherwise evaluate the downhole fluid.
The fluid sensor 30 is positioned about the flowline 32 and exposed to the downhole fluid passing therethrough. A sample chamber 46 is also coupled to the flowline 32 for receiving the downhole fluid. Fluid collected in the sample chamber 46 may be collected therein for retrieval at the surface, or may be exited through an outlet 48 in housing 50 of the downhole tool 10.
One or more downhole sensors S may optionally be provided to measure various downhole parameters and/or fluid properties. The downhole sensor(s) may include, for example, gauges (e.g., quartz), densitometers, viscometers, resistivity sensors, nuclear sensors, and/or other measurement and/or detection devices capable of taking downhole data relating to, for example, downhole conditions and/or fluid properties.
Optionally, flow of the downhole fluid into and/or through the downhole tool 10 may be manipulated by one or more flow control devices, such as a pump 52, the sample chamber 46, valves 54 and/or other devices. Optionally, a surface and/or downhole unit 34 may be provided to communicate with the formation evaluation tool 28, the fluid sensor 30, and/or other portions of the downhole tool 10 for the passage of signals (e.g., data, power, command, etc.) therebetween. These units 34 may include, for example, a measurement while drilling tool, a logging while drilling tool, a processor, a controller, a transceiver, a power source and other features for operating and/or communication with the formation evaluation tool 28 and/or the fluid sensor 30.
The flowline 32 extends through the drill collar 39, housing 37, air section 43 and chassis 41. The fluid sensor 30 is supported in the chassis 41 and the air section 43 with a portion of the fluid sensor 30 extending into the flowline 32 for exposure to the fluid passing therethrough. As shown, the fluid sensor 30 is positioned for measurement of fluid from formation F that passes into the flowline 32 as indicated by the arrows.
The fluid sensor 30 is positioned in the receptacle 31 and through the flowline 32. A cell cap 33 is positioned on the fluid sensor 30 to retain and protect the fluid sensor 30 in the downhole tool 10. The fluid sensor 30 has a passage 351 therethrough in fluid communication with the flowline 32 for passing fluid therethrough. In this configuration, the fluid sensor 30 is positioned to measure properties of the fluid passing through flowline 32 and passage 351.
The fluid sensor 30 has an insulative base 350, a conductive shield (or outer layer) 352 with electrodes 354 extending therethrough. The insulative base 350 comprises an insulative material, such as PEEK (polyether ether ketone), to support the electrodes 354 therein. The insulative base 350 has the flow passage 351 therethrough. The conductive shield 352 is positioned on the insulative base 350 and comprises a hard, conductive material, such as metal (e.g., INCONEL™), to support and protect the electrodes 354 therein. The conductive shield 352 may be provided as a protective layer between the cell cap 33 and the insulative base 350.
The electrodes 354 are positioned through the conductive shield 352 with an exterior end 357 thereof extending into the cell cap 33. A sensing end 358 of the electrodes 354 is positionable about the passage 351 for measurement of the fluid passing therethrough. The electrodes 354 may be electrically connected to a surface and/or downhole unit 34 as schematically depicted. An insulative coating 359 is provided about the electrodes 354 as will be described more fully herein.
The sensing end 358 of each electrodes 354.1 includes a sensing element 360.1 having a hole 362 in fluid communication with the passage 351 for measuring fluid passing therethrough. A pin 364 of electrodes 354.1 extends from each sensing element 360.1 through the conductive shield 352.1. The pin 364 extends from a central portion of the sensing element 360.1 in an aligned configuration.
In the version of
The centralizer support 370 may be a layer adhered to the insulative base 350.1 and shaped to receive the conductive shield 352.1. A centralizer 372 may be positioned between the centralizer support 370 and the electrode 354.1. The threaded cap 376 may be positioned in the conductive shield 350.1 about the exterior end 357 of the electrodes 354.1. One or more centralizers 373 may be positioned between the threaded cap 376 and the conductive shield 352.1. One or more back up rings 374 may be provided between the electrodes 354.1 and the conductive shield 352.1 to provide additional support.
One or more interior o-rings 378 or other sealing devices may be positioned along the electrode 354.1 to provide fluid isolation along the electrode 354.1 to prevent fluid passage between the conductive shield 352.1 and the insulative layer 350.1. One or more exterior o-rings 380 may also be provided about a perimeter of the conductive shield to provide fluid isolation between the fluid sensor 30.1 and the downhole tool 10 when installed (see, e.g.,
The fluid sensor 30.1 is depicted as having five electrodes 354.1, but one or more may be provided. The electrodes 354.1 may be used for measuring fluid properties of the fluid passing through passage 351. The fluid sensor 30.1 may also be provided with other sensors capable of taking downhole measurements, such as temperature, pressure, composition, viscosity, etc. As shown, a temperature sensor 382 is also provided in the conductive shield 352.1.
As shown in
As shown by the sequence depicted in
While the figures herein depict specific configurations of a fluid sensor 30-30.4, various features of certain sensors may be provided on other sensors. For example, certain centralizers, supports or o-rings may be provided about any of the provided fluid sensors 30.1-30.4. One or more of various types of the fluid sensors 30-30.4 may be provided in the downhole tool. One or more additional sensors capable of measuring other downhole parameters may also be provided.
Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without substantially departing from the spirit of this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
Number | Name | Date | Kind |
---|---|---|---|
3305771 | Arps | Feb 1967 | A |
5070725 | Cox et al. | Dec 1991 | A |
5095758 | Cox et al. | Mar 1992 | A |
5721492 | Saenger | Feb 1998 | A |
7140434 | Chouzenoux et al. | Nov 2006 | B2 |
7183778 | Homan et al. | Feb 2007 | B2 |
7242194 | Hayman et al. | Jul 2007 | B2 |
7458252 | Freemark et al. | Dec 2008 | B2 |
7986144 | He et al. | Jul 2011 | B2 |
20070018659 | Homan | Jan 2007 | A1 |
20090090176 | Toribio et al. | Apr 2009 | A1 |
20100089569 | van Zuilekom | Apr 2010 | A1 |
20120055672 | Tollefsen et al. | Mar 2012 | A1 |
20120096935 | Finke | Apr 2012 | A1 |
20120132544 | Lawrence et al. | May 2012 | A1 |
20130002258 | Ligneul et al. | Jan 2013 | A1 |
20130037263 | Cheung | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2010008994 | Jan 2010 | WO |
Entry |
---|
Examination report for the equivalent Australian patent application No. 2014203431 issued on Aug. 21, 2015. |
Number | Date | Country | |
---|---|---|---|
20150000977 A1 | Jan 2015 | US |