Downhole fluid separation

Information

  • Patent Grant
  • 9127546
  • Patent Number
    9,127,546
  • Date Filed
    Friday, January 22, 2010
    14 years ago
  • Date Issued
    Tuesday, September 8, 2015
    9 years ago
Abstract
The invention includes systems and methods for operating, monitoring and controlling downhole fluid control system at a below ground location in a wellhole. The system may include a downhole fluid control system comprising at least one pump, a spoolable composite pipe comprising a fluid channel and at least one energy conductor, and a distal connection device adapted to couple a distal end of the fluid channel to the at least one pump and couple a distal end of the at least one energy conductor to the downhole fluid control system.
Description
FIELD

The present invention relates generally to the field of fluid transport, and more particularly to methods and devices for operating, monitoring and controlling pumps at a below ground location in a wellhole, such as an oil or gas producing wellhole.


BACKGROUND

Produced water is underground formation water that is brought to the surface along with oil or gas. It is by far the largest (in volume) by-product or waste stream associated with oil and gas production. According to the American Petroleum Institute (API), about 18 billion barrels (bbl) of produced water were generated by U.S. onshore operations in 1995 (API 2000). Additional large volumes of produced water are generated at U.S. offshore wells and at thousands of wells in other countries, and it has been estimated that in 1999 there was an average of 210 million bbl of water produced each day worldwide. This volume represented about 77 billion bbl of produced water for the entire year. Given that worldwide oil production from conventional sources is nearly 80 million barrels per day (bbl/d, or bpd), one may conclude that 3 bbl of water are produced for each 1 bbl of oil worldwide, and that for the United States, one of the most mature petroleum provinces in the world, the ratio is closer to 6 or 7 bbl of water per 1 bbl of oil. One estimate, in 2004, calculated that more than 14 billion bbl of produced water was derived directly from state oil and gas agencies, with this estimate not including produced water from coal-bed methane (CBM) wells or from offshore U.S. production.


Management of produced water presents challenges and costs to operators. The cost of managing produced water after it is already lifted to the surface and separated from the oil or gas product can range from less than $0.01 to more than several dollars per barrel. If the entire process of lifting, treating, and reinjecting can be avoided, costs are likely to be reduced. With this idea in mind, during the 1990s, oil and gas industry engineers developed various technologies to separate oil or gas from water inside the well. The oil- or gas-rich stream is thereafter carried to the surface, while the water-rich stream is injected to an underground formation without ever being lifted to the surface. These devices are known as downhole oil/water separators (DOWS) and downhole gas/water separators (DGWS).


A number of downhole separation systems have been developed, tested and in some cases implemented, but these have been hampered by several problems implicit in the current systems. These problems include, for example, the fact that downhole equipment is more complicated and expensive that traditional equipment, the installation of the downhole equipment is more complex, and the downhole equipment has to be removed for maintenance at intervals using conventional and expensive equipment.


In addition, a number of authorities require metering of the water injected even if it is not brought to surface, meaning that the downhole equipment is further complicated. The pumps, and possibly meters, have to be powered and the data brought to surface. This requires installing cables into the well further complicating installation and removal, with these power and data cables themselves being sources of failure because they are exposed in installation and easily damaged. Finally, the application of downhole separation is usually most desirable in high water/low producing hydrocarbon wells which cannot stand the additional cost of the current technology.


SUMMARY

The present invention includes methods and systems for operating, monitoring, and controlling fluid control systems at a below ground, or downhole, location in a wellhole.


In one aspect, the invention includes a system for operating, monitoring and controlling pumps at a below ground location in a wellhole. The system includes a downhole fluid control system comprising at least one pump, a spoolable composite pipe comprising a fluid channel and at least one energy conductor, and a distal connection device. The distal connection device is adapted to couple a distal end of the fluid channel to the at least one pump and couple a distal end of the at least one energy conductor to the downhole fluid control system.


In one embodiment, the energy conductor includes at least one of a power conductor and a data conductor. The power conductor may include at least one of an electrical power conductor and a hydraulic power conductor. The data conductor may include at least one of a fiber-optic cable and an electrically conductive cable. In one embodiment, the electrically conductive cable includes copper.


The spoolable composite pipe may include a plurality of layers, including, for example, a substantially fluid impervious inner layer, a composite layer enclosing the inner layer and comprising high strength fibers, and an outer protective layer enclosing the composite layer and inner liner. The substantially fluid impervious inner layer may define the fluid channel. In one embodiment, the at least one energy conductor is embedded within at least one layer of the spoolable composite pipe. The at least one energy conductor may be helically wound around at least one inner layer of the spoolable composite pipe, or may extend substantially parallel with an elongate axis of the spoolable composite pipe.


In one embodiment, the spoolable composite pipe includes at least one reinforcing element. The pipe may be designed so that the total elongation of the pipe under maximum load conditions is always less than the elongation to failure of any integrated conductor. The spoolable composite pipe may include a bonding element. In one embodiment, the bonding element is adapted to provide load transfer between the at least one energy conductor and at least one layer of the spoolable composite pipe.


In one embodiment, the downhole fluid control system includes a measurement device. The measurement device may include at least one of a flow meter, a pressure meter, a temperature meter, a stress meter, a strain gauge, and a chemical composition measuring device.


In one embodiment, the system further includes a proximal connection device adapted to connect a proximal end of the spoolable composite pipe to external pipework above a wellhead. The proximal connection device may be adapted to be seated within the wellhead. The system may further include a sealed wireway adapted to allow breakout of a proximal end of the at least one energy conductor from a wellhead.


In one embodiment, the system may include at least one power element coupled to the proximal end of the energy conductor. In one embodiment, the system may include at least one of a communication device and a control device coupled to the proximal end of the energy conductor. In one embodiment, the system may include a spooling system adapted to at least one of deploy and remove the spoolable composite pipe. In one embodiment, the distal connection device is adapted to at least one of provide fluid pressure integrity and transfer tensile loads.


The downhole fluid control system may further include at least one fluid separation device. The fluid separation device may be adapted to separate a fluid mixture passing through the downhole fluid control system into at least one first fluid and at least one second fluid. The at least one first fluid may be directed into the fluid channel of the spoolable composite pipe. The at least one second fluid may be directed into an underground formation.


Another aspect of the invention includes a method of providing a fluid separation system at a below ground location in a wellhole. The method includes providing a spoolable composite pipe comprising a fluid channel and at least one energy conductor, providing a downhole fluid control system comprising at least one pump, coupling a distal end of the fluid channel to at least one of the pump and the water separation device, coupling a distal end of the at least one energy conductor to the downhole fluid control system, and unspooling the spoolable composite pipe from a reel to deploy the downhole fluid control system down a wellhole.


In one embodiment, the method further includes connecting a proximal end of the spoolable composite pipe to external pipework above a wellhead. In one embodiment, the method further includes coupling at least one power element to the proximal end of the energy conductor. In one embodiment, the method further includes coupling at least one of a communication device and a control device to the proximal end of the energy conductor. In one embodiment, the downhole fluid control system includes at least one fluid separation device, wherein the fluid separation device is adapted to separate a fluid mixture passing through the downhole fluid control system into at least one first fluid and at least one second fluid.


Another aspect of the invention includes a method of separating fluids at a below ground location in a wellhole. The method includes positioning a fluid control system comprising at least one pump and at least one fluid separation device at a below ground location in a wellhole, connecting the fluid control system to an above-ground location through a spoolable composite pipe comprising a fluid channel and at least one energy conductor, providing at least one of a power supply or a control signal to the fluid control system through the at least one energy conductor, passing a fluid mixture through the fluid control system, separating the fluid mixture into at least one first fluid and at least one second fluid, pumping the first fluid to the surface through the fluid channel, and releasing the second fluid to an underground formation.


The first fluid may include at least one of oil-rich fluid and a gas-rich fluid. The second fluid may include a water-rich fluid. The fluid control system may be connected to the spoolable composite pipe prior to positioning the fluid control system at the below ground location in the wellhole. In one embodiment, the energy conductor comprises at least one of a power conductor and a data conductor. The power supply provided to the fluid control system may include at least one of an electrical power conductor and a hydraulic power conductor.


In one embodiment, the data conductor includes at least one of a fiber-optic cable and an electrically conductive cable. The electrically conductive cable may include copper. In one embodiment, both power supply and control signals are provided to the fluid control system through separate energy conductors. The method may further include connecting a proximal end of the spoolable composite pipe to external pipework above a wellhead.


In one embodiment, the spoolable composite pipe includes a plurality of layers including, for example, a substantially fluid impervious inner layer, a composite layer enclosing the inner layer and comprising high strength fibers, and an outer protective layer enclosing the composite layer and inner liner. The substantially fluid impervious inner layer may define the fluid channel.


In one embodiment, the at least one energy conductor is embedded within at least one layer of the spoolable composite pipe. The at least one energy conductor may be helically wound around the at least one inner layer of the spoolable composite pipe, or extend substantially parallel with an elongate axis of the spoolable composite pipe.


In one embodiment, the method further includes measuring at least one property of the fluid mixture passing through the fluid control system. The measuring step may include measuring at least one property of the fluid with at least one of a flow meter, a pressure meter, a temperature meter, a stress meter, a strain gauge, and a chemical composition measuring device.


These and other objects, along with advantages and features of the present invention, will become apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:



FIG. 1 is a side view, partially broken away, of a spoolable pipe that includes an inner pressure barrier and a reinforcing layer, in accordance with one embodiment of the invention;



FIG. 2 is a cross-sectional view of a spoolable pipe having an inner pressure barrier surrounded by multiple reinforcing layers, in accordance with one embodiment of the invention;



FIG. 3 is cross-sectional view of a spoolable pipe having an inner pressure barrier surrounded by a reinforcing layer that includes two plies of fibers with an abrasion layer between the two plies, in accordance with one embodiment of the invention;



FIG. 4 is a side view, partially broken away, of a spoolable pipe having an inner pressure barrier, a reinforcing layer, and an external layer, in accordance with one embodiment of the invention;



FIG. 5 is a side view, partially broken away, of a spoolable pipe that includes an energy conductor.



FIG. 6 is a cross-sectional view of a composite pipe with integrated energy conductors, in accordance with one embodiment of the invention;



FIG. 7 is a side view of a connection device coupled to a composite pipe with integrated energy conductors, in accordance with one embodiment of the invention;



FIG. 8 is a perspective view of a mounting for a connection device for a composite pipe with integrated energy conductors, in accordance with one embodiment of the invention;



FIGS. 9A-9C include a schematic side view of a downhole fluid separation system and magnified views of a discharge housing and a barrel seal manifold, respectively, in accordance with one embodiment of the invention; and



FIG. 10 is a schematic side view of a downhole fluid separation system in operation, in accordance with one embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

To provide an overall understanding, certain illustrative embodiments will now be described; however, it will be understood by one of ordinary skill in the art that the systems and methods described herein can be adapted and modified to provide systems and methods for other suitable applications and that other additions and modifications can be made without departing from the scope of the systems and methods described herein.


Unless otherwise specified, the illustrated embodiments can be understood as providing exemplary features of varying detail of certain embodiments, and therefore, unless otherwise specified, features, components, modules, and/or aspects of the illustrations can be otherwise combined, separated, interchanged, and/or rearranged without departing from the disclosed systems or methods. Additionally, the shapes and sizes of components are also exemplary and unless otherwise specified, can be altered without affecting the scope of the disclosed and exemplary systems or methods of the present disclosure.


One embodiment of the invention includes a spoolable pipe that provides a path for conducting fluids (i.e., liquids and gases) along the length of the spoolable pipe. For example, the spoolable pipe can transmit fluids down a well hole for operations upon the interior surfaces of the well hole, the spoolable pipe can transmit fluids or gases to hydraulic or pneumatic machines operably coupled to the spoolable pipe, and/or the spoolable pipe can be used to transmit fluids on surface from well holes to transmission or distribution pipelines. Accordingly, the spoolable pipe can provide a conduit for powering and controlling hydraulic and/or pneumatic machines, and/or act as a conduit for fluids, for example gases or liquids.



FIG. 1 illustrates a spoolable pipe 10 constructed of an internal pressure barrier 12 and a reinforcing layer 14. The spoolable pipe can be generally formed along a longitudinal axis 17. Although illustrated in FIG. 1 as having a circular cross-section, the disclosed spoolable pipe can have a variety of tubular cross-sectional shapes, including but not limited to circular, oval, rectangular, square, polygonal, and/or others.


The internal pressure barrier 12, otherwise referred to as a liner, can serve as a pressure containment member to resist leakage of internal fluids from within the spoolable pipe 10. In some embodiments, the internal pressure barrier 12 can include a polymer, a thermoset plastic, a thermoplastic, an elastomer, a rubber, a co-polymer, and/or a composite. The composite can include a filled polymer and a nano-composite, a polymer/metallic composite, and/or a metal (e.g., steel, copper, and/or stainless steel). Accordingly, an internal pressure barrier 12 can include one or more of a high density polyethylene (HDPE), a cross-linked polyethylene (PEX), a polyvinylidene fluoride (PVDF), a polyamide, polyethylene terphthalate, polyphenylene sulfide and/or a polypropylene. In one embodiment, the internal pressure barrier 12 includes a modulus of elasticity greater than about approximately 50,000 psi, and/or a strength greater than about approximately 1,000 psi. In some embodiments, the internal pressure barrier 12 can carry at least fifteen percent of the axial load along the longitudinal axis, at least twenty-five percent of the axial load along the longitudinal axis, or at least thirty percent of the axial load along the longitudinal axis at a termination, while in some embodiments, the internal pressure barrier 12 can carry at least fifty percent of the axial load along the longitudinal axis at a termination. Axial load may be determined at the ends of a pipe. For example, at the ends, or a termination, of a pipe, there may be a tensile (e.g. axial) load equal to the internal pressure multiplied by the area of the pipe.


Referring back to FIG. 1, the spoolable pipe 10 can also include one or more reinforcing layers, such as, for example, one or more composite reinforcing layer 14. In one embodiment, the reinforcing layers can include fibers having a cross-wound and/or at least a partially helical orientation relative to the longitudinal axis of the spoolable pipe. The fibers may have a helical orientation between substantially about thirty degrees and substantially about seventy degrees relative to the longitudinal axis 17. For example, the fibers may be counterwound with a helical orientation of about ±40°, ±45°, ±50°, ±55°, and/or ±60°. The reinforcing layer may include fibers having multiple, different orientations about the longitudinal axis. Accordingly, the fibers may increase the load carrying strength of the composite reinforcing layer(s) 14 and thus the overall load carrying strength of the spoolable pipe 10. In another embodiment, the reinforcing layer may carry substantially no axial load carrying strength along the longitudinal axis at a termination.


Exemplary fibers include but are not limited to graphite, KEVLAR, fiberglass, boron, polyester fibers, polymer fibers, mineral based fibers such as basalt fibers, and aramid. For example, fibers can include glass fibers that comprise e-cr glass, Advantex®, s-glass, d-glass, or a corrosion resistant glass.


The reinforcing layer(s) 14 can be formed of a number of plies of fibers, each ply including fibers. In one embodiment, the reinforcing layer(s) 14 can include two plies, which can optionally be counterwound unidirectional plies. The reinforcing layer(s) can include two plies, which can optionally be wound in about equal but opposite helical directions. The reinforcing layer(s) 14 can include four, eight, or more plies of fibers, each ply independently wound in a helical orientation relative to the longitudinal axis. Plies may have a different helical orientation with respect to another ply, or may have the same helical orientation. The reinforcing layer(s) 14 may include plies and/or fibers that have a partially and/or a substantially axial orientation. The reinforcing layer may include plies of fibers with an abrasion resistant material disposed between each ply, or optionally disposed between only certain plies. In some embodiments, an abrasion resistant layer is disposed between plies that have a different helical orientation.


The fibers can include structural fibers and flexible yarn components. The structural fibers can be formed of carbon, aramid, thermoplastic, and/or glass. The flexible yarn components, or braiding fibers, can be formed of either polyamide, polyester, aramid, thermoplastic, glass and/or ceramic. The fibers included in the reinforcing layer(s) 14 can be woven, braided, knitted, stitched, circumferentially (axially) wound, helically wound, and/or other textile form to provide an orientation as provided herein (e.g., in the exemplary embodiment, with an orientation between substantially about thirty degrees and substantially about seventy degrees relative to the longitudinal axis 17). The fibers can be biaxially or triaxially braided.


In one embodiment, the reinforcing layer(s) 14 includes fibers having a modulus of elasticity of greater than about 5,000,000 psi, and/or a strength greater than about 100,000 psi. In some embodiments, an adhesive can be used to bond the reinforcing layer(s) 14 to internal pressure barrier 12. In other embodiments, one or more reinforcing layers are substantially not bonded to one or more of other layers, such as the inner liner, internal pressure barriers, or external outer protective layer(s).



FIG. 2 illustrates a cross-section of a circular spoolable pipe 10 having an inner pressure barrier liner 12 and a first reinforcing layer 14A, a second reinforcing layer 14B, and a third reinforcing layer 14C. Each of the reinforcing layers 14A-C may be formed of fibers, and each of the reinforcing layers 14A-C successively encompasses and surrounds the underlying reinforcing layer and/or pressure barrier 12.


The fibers in each of the reinforcing layers 14A-C can be selected from the same or different material. For example, the first reinforcing layer 14A can comprise helically oriented glass fibers; second reinforcing layer 14B can comprise a ply having helically oriented glass fiber at the same angle, but at an opposite orientation of the first reinforcing layer 14A; and third reinforcing layer 14C can comprise plies of fibers having a clockwise and counter-clockwise helically oriented glass fibers. Further, the different reinforcing layers 14A-C can include different angles of helical orientation. For example, in one embodiment, the different layers can have angles of orientation between substantially about thirty degrees and substantially about seventy degrees, relative to the axis 17. Alternatively, the different layers can have angles of orientation between substantially about forty-six degrees and substantially about fifty-two degrees, relative to the axis 17. In some embodiments, the different layers 14A-C can have more than one fiber within a layer, such as carbon and glass, and/or carbon and aramid, and/or glass and aramid. Further, the different layers 14A-C may each comprise multiple plies, each independent ply having a different, or substantially the same, helical orientation with respect to other plies within a layer.



FIG. 3 illustrates a cross-section of a circular spoolable pipe 10 having an inner pressure barrier liner 12 and a first reinforcing layer 14. Reinforcing layer 14 comprises a first ply of fibers 114A, an abrasion resistant layer 120, and a second ply of fibers 114B. Each of the plies 114A, B may be formed of fibers, and each of ply 114A, abrasion resistant layer 120, and ply 114B successively encompasses and surrounds any other underlying reinforcing layer, abrasion resistant layer, ply(s) and/or pressure barrier 12.


The fibers in each of plies 114A, B can be selected from the same or different material. For example, the ply 114A can comprise at least partially helically oriented glass fibers; second ply 114B can comprise a ply having at least partially helically oriented glass fiber at the same angle, but at an opposite orientation of the first ply 114A. Further, the plies 114A, B can include different angles of helical orientation. For example, in one embodiment, the different plies can have angles of orientation between substantially about thirty degrees and substantially about seventy degrees, relative to the axis 17. Alternatively, the different plies can have angles of orientation between substantially about forty-six degrees and substantially about fifty-two degrees, relative to the axis 17. For example, one ply 114A may comprise fibers with helical orientation of about ±40°, ±45°, ±50°, ±55°, and/or ±60°, and a second ply 114B may comprise fibers with about an equal but opposite orientation. One or more plies, or one or more fibers within a ply may be substantially axially oriented. Further, the plies 114A, B can include about the same angle of helical orientation. In some embodiments, the different plies 114A, B can have more than one fiber within a ply, such as carbon and glass, and/or carbon and aramid, and/or glass and aramid.


In some embodiments, the abrasion resistant layer 120 may include a polymer. Such abrasion resistant layers can include a tape or coating or other abrasion resistant material, such as a polymer. Polymers may include polyethylene such as, for example, high-density polyethylene and cross-linked polyethylene, polyvinylidene fluoride, polyamide, polypropylene, terphthalates such as polyethylene therphthalate, and polyphenylene sulfide. For example, the abrasion resistant layer may include a polymeric tape that includes one or more polymers such as a polyester, a polyethylene, cross-linked polyethylene, polypropylene, polyethylene terphthalate, high-density polypropylene, polyamide, polyvinylidene fluoride, polyamide, and a elastomer. An exemplary pipe as in FIG. 3 may include at least one reinforcing layer that includes a first ply of fiber, for example glass, an abrasion resistant layer, for example a polymeric tape spirally wound around the first ply of fiber, and a second ply of fiber with a substantially different, or substantially similar, helical orientation to that of the first ply. In an alternative embodiment, the reinforcing layer 14 may include four, eight, or more plies of fibers, with an abrasion resistant layer optionally between each ply.



FIG. 4 illustrates a spoolable pipe 10 elongated along an axis 17 and having an internal pressure barrier 12, a reinforcing layer 14, and at least one external/outer protective layer 56 enclosing the reinforcing layer(s) 14. The external layer(s) 56 may otherwise be understood to be an outer protective layer. The external layer 56 can bond to a reinforcing layer(s) 14, and in some embodiments, also bond to an internal pressure barrier 12. In other embodiments, the external layer 56 is substantially unbonded to one or more of the reinforcing layer(s) 14, or substantially unbonded to one or more plies of the reinforcing layer(s) 14. The external layer 56 may be partially bonded to one or more other layers of the pipe.


The external layer(s) 56 can provide wear resistance and impact resistance. For example, the external layer 56 can provide abrasion resistance and wear resistance by forming an outer surface to the spoolable pipe that has a low coefficient of friction thereby reducing the wear on the reinforcing layers from external abrasion. Further, the external layer 56 can provide a seamless layer, to, for example, hold the inner layers 12, 14 of the coiled spoolable pipe 10 together. The external layer 56 can be formed of a filled or unfilled polymeric layer. Alternatively, the external layer 56 can be formed of a fiber, such as aramid or glass, with or without a matrix. Accordingly, the external layer 56 can be a polymer, thermoset plastic, a thermoplastic, an elastomer, a rubber, a co-polymer, and/or a composite, where the composite includes a filled polymer and a nano-composite, a polymer/metallic composite, and/or a metal. In some embodiments, the external layer(s) 56 can include one or more of high density polyethylene (HDPE), a cross-linked polyethylene (PEX), a polyvinylidene fluoride (PVDF), a polyamide, polyethylene terphthalate, polyphenylene sulfide and/or a polypropylene. The external layer 56 can include a modulus of elasticity greater than about approximately 50,000 psi, and/or a strength greater than about approximately 1,000 psi. In an embodiment, the external layer 56 can carry at least ten percent, twenty percent, twenty-five percent, thirty percent or even at least fifty percent of an axial load in the longitudinal direction at a termination. A seamless external layer can comprise, for example, a perforated thermoplastic.


In some embodiments, the external layer 56 can be formed by extruding, while the layer 56 can be formed using one or more materials applied at least partially helically and/or at least partially axially along the longitudinal axis 17. The material can include, for example, one or more polymeric tapes. In an example embodiment, the external layer 56 can include and/or otherwise have a coefficient of friction less than a coefficient of friction of a reinforcing layer 14.


Particles can be added to the external layer 56 to increase the wear resistance of the external layer 56. The particles used can include one or more of ceramics, metallics, polymerics, silicas, or fluorinated polymers. For example, adding TEFLON (MP 1300) particles and an aramid powder (PD-T polymer) to the external layer 56 can reduce friction and enhance wear resistance.


It can be understood that pressure from fluids transported by the spoolable pipes 10 disclosed herein may not be properly released from the reinforcing layer(s) 14, and/or from the inner pressure barrier liner and/or from within the external layer, without, for example, an external layer having a permeability to provide such pressure release. Such accumulation of pressure can cause deterioration of the spoolable pipe 10, for example, external layer rupture or inner pressure barrier collapse. Accordingly, in some embodiments, to allow for pressure release along the length of the spoolable pipe 10, the external layer(s) 56 can include and/or have a permeability at least five, or at least ten times greater than the permeability of the internal pressure barrier 12. For example, external layer(s) 56 include perforations or holes spaced along the length of pipe. Such perforations can, for example, be spaced apart about every 10 ft, about every 20 ft, about every 30 ft, and even about or greater than about every 40 ft. In one embodiment, the external layer 56 can be perforated to achieve a desired permeability, while additionally and optionally, an external layer 56 can include one or more polymeric tapes, and/or may be discontinuous.


One example spoolable pipe 10 can also include one or more couplings or fittings. For example, such couplings may engage with, be attached to, or in contact with one or more of the internal and external layers of a pipe, and may act as a mechanical load transfer device. Couplings may engage one or both of the inner liner, the external wear layer or the reinforcing layer. Couplings or fittings may be comprised, for example, of metal or a polymer, or both. In some embodiments, such couplings may allow pipes to be coupled with other metal components. In addition, or alternatively, such couplings or fittings may provide a pressure seal or venting mechanism within or external to the pipe. One or more couplings may each independently be in fluid communication with the inner layer and/or in fluid communication with one or more reinforcing layers and/or plies of fibers or abrasion resistant layers, and/or in fluid communication with an external layer. Such couplings may provide venting, to the atmosphere, of any gasses or fluids that may be present in any of the layers between the external layer and the inner layer, inclusive.


With reference to FIG. 5, a spoolable pipe 10 can also include one or more energy conductors 62 that can be integral with the wall of the spoolable pipe 10. The energy conductors 62 can be integral with the internal pressure barrier, reinforcing layer(s), outer protective layers, and/or barrier layers and/or exist between such internal pressure barrier 12 and reinforcing layer 14, and/or exist between the internal pressure barrier 12 and an external outer protective layer. In some embodiments, the energy conductor 62 can extend along the length of the spoolable pipe 10. The energy conductors 62 can include an electrical guiding medium (e.g., electrical wiring), an optical and/or light guiding medium (e.g., fiber optic cable), a hydraulic power medium (e.g., a high pressure pipe or a hydraulic hose), a data conductor, and/or a pneumatic medium (e.g., high pressure tubing or hose).


The disclosed energy conductors 62 can be oriented in at least a partially helical direction relative to a longitudinal 17 axis of the spoolable pipe 10, and/or in an axial direction relative to the longitudinal axis 17 of the spoolable pipe 10.



FIG. 5 illustrates a spoolable pipe 10 elongated along an axis 17 wherein the spoolable pipe includes an internal pressure barrier 12, a reinforcing layer 14, and an energy conductor 62. In the FIG. 5 embodiment, the energy conductor 62 forms part of the reinforcing layer 14; however, as provided previously herein, it can be understood that the energy conductor(s) 62 can be integrated with and/or located between internal pressure barrier 12 and the reinforcing layer 14.


A hydraulic control line embodiment of the energy conductor 62 can be either formed of a metal, composite, and/or a polymeric material.


In one embodiment, several energy conductors 62 can power and/or control a machine operably coupled to the coiled spoolable pipe 10. For instance, a spoolable pipe 10 can include three electrical energy conductors that provide a primary line 62, a secondary line 62, and a tertiary line 62 for electrically powering a machine using a three-phase power system. As provided previously herein, the spoolable pipe 10 can also include internal pressure barriers 12 for transmitting fluids along the length of the pipe 10. Possible machines include, but are not limited to, pumps, fluid separation systems, measurement devices, flow control devices, and/or drilling devices.


In one embodiment of the invention, an energy conductor may be coupled to one or more sensors mounted with the pipe, attached to the pipe, or located at an end of the pipe. In one embodiment, the sensor is a structure that senses either the absolute value or a change in value of a physical quantity. Exemplary sensors for identifying physical characteristics include acoustic sensors, optical sensors, mechanical sensors, electrical sensors, fluidic sensors, pressure sensors, temperature sensors, strain sensors, and chemical sensors.


Optical sensors include intensity sensors that measure changes in the intensity of one or more light beams and interferometric sensors that measure phase changes in light beams caused by interference between beams of light. Optical intensity sensors can rely on light scattering, spectral transmission changes, microbending or radiative losses, reflectance changes, and changes in the modal properties of optical fiber to detect measurable changes. One embodiment of the invention may include an optical chemical sensor to perform remote spectroscopy (either absorption or fluorescence) of a substance.


Optical temperature sensors include those sensors that: remotely monitor blackbody radiation; identify optical path-length changes, via an interferometer, in a material having a known thermal expansion coefficient and refractive index as a function of temperature; monitor absorption characteristics to determine temperature; and monitor fluorescence emission decay times from doped compositions to determine temperature. For instance, optical fibers having a Bragg Grating etched therein can be used to sense temperature with an interferometer technique.


In one embodiment, Bragg Gratings can also be used to measure strain. Particularly, a refractive index grating can be created on a single-mode optical fiber and the reflected and transmitted wavelength of light from the grating can be monitored. The reflected wavelength of light varies as a function of strain induced elongation of the Bragg Grating. Other optical sensors measure strain by stimulated Brillouin scattering and through polarimetry in birefringent materials.


Hybrid sensors including optical fibers can also be fashioned to detect electrical and magnetic fields. Typically, the optical fiber monitors changes in some other material, such as a piezo crystal, that changes as a function of electrical or magnetic fields. For example, the optical fiber can determine dimensional changes of a piezoelectric or piezomagnetic material subjected to electric or magnetic fields, respectively. Bragg Gratings in an optical fiber can also be used to measure high magnetic fields. In particular, the Naval Research Laboratory has identified that the reflectance of a Bragg Grating as a function of wavelength differed for right and left circularly polarized light. The Naval Research Laboratory observed that magnetic fields can be detected by interferometrically reading the phase difference due to the Bragg Grating wavelength shifts.


Fiber optic sensors for measuring current also exist. Hoya Glass and Tokyo Electric Power Co. identified that a single-mode optical fiber made of flint glass (high in lead) can be used to sense current. Current is measured by observing the rotation of polarized light in the optical fiber.


In one embodiment, optical pressure sensors that rely on movable diaphragms, Fabry-Perot interferometers, or microbending, may be utilized. The movable diaphragm typically senses changes in pressure applied across the diaphragm using piezoresistors mounted on the diaphragm. The resistance of the piezoresistors varies as the diaphragm flexes in response to various pressure levels. The Fabry-Perot interferometers can include one two parallel reflecting surfaces wherein one of the surfaces moves in response to pressure changes. The interferometers then detect the movement of the surface by comparing the interference patterns formed by light reflecting of the moving surface. Microbending sensors can be formed of two opposing serrated plates that bend the fiber in response to the pressure level. The signal loss in the fiber resulting from the movement of the opposing serrated plates can be measured, thereby sensing displacement and pressure change.


Various optical sensors exist for measuring displacement and position. Simple optical sensors measure the change in retroreflectance of light passing through an optical fiber. The change in retroflectance occurs as a result of movement of a proximal mirror surface.


Additionally, optical sensors can be employed to measure acoustics and vibration. For example, an optical fiber can be wrapped around a compliant cylinder. Changes in acoustic waves or vibrations flex the cylinder and in turn stress the coil of optical fiber. The stress on the optical fiber can be measured interferometrically and is representative of the acoustic waves or vibrations impacting the cylinder.


Mechanical sensors suitable for deployment in the composite tubular member 10 include piezoelectric sensors, vibration sensors, position sensors, velocity sensors, strain gauges, and acceleration sensors. The sensor can also be selected from those electrical sensors, such as current sensors, voltage sensors, resistivity sensors, electric field sensors, and magnetic field sensors. Fluidic sensors appropriate for selection as the sensor include flow rate sensors, fluidic intensity sensors, and fluidic density sensors. Additionally, the sensor can be selected to be a pressure sensor, such as an absolute pressure sensor or a differential pressure sensor. For example, the sensor can be a semiconductor pressure sensor having a moveable diaphragm with piezoresistors mounted thereon.


The sensor can be also selected to be a temperature sensor. Temperature sensors include thermocouples, resistance thermometers, and optical pyrometers. A thermocouple makes use of the fact that junctions between dissimilar metals or alloys in an electrical circuit give rise to a voltage if they are at different temperatures. The resistance thermometer consists of a coil of fine wire. Copper wires lead from the fine wire to a resistance measuring device. As the temperature varies the resistance in the coil of fine wire changes.


One embodiment of the invention may utilize a spoolable composite pipe including one or more energy conductors, as described herein, to connect to and at least one of power, operate, monitor, and control a downhole fluid control system at a below ground location in a wellhole. These downhole fluid control systems may, for example, include one or more pumps and/or one or more fluid separation devices for using in downhole well systems. The fluid separation devices may, for example, include downhole oil/water separators (DOWS) and/or downhole gas/water separators (DGWS).


In one example embodiment, a spoolable composite pipe including one or more energy conductors may be connected to a DOWS system. DOWS technology reduces the quantity of produced water that is handled at the surface by separating it from the oil downhole and simultaneously injecting it underground. A DOWS system may include, for example, an oil/water separation system and at least one pump to lift oil to the surface and inject the water. Two basic types of DOWS systems have been developed, one that uses hydrocyclones to mechanically separate oil and water, and the other relies on gravity separation that takes place in the well bore.


Hydrocyclones use centrifugal force to separate fluids of different specific gravity. They operate without any moving parts. A mixture of oil and water enters the hydrocyclone at a high velocity from the side of a conical chamber. The subsequent swirling action causes the heavier water to move to the outside of the chamber and exit through one end, while the lighter oil remains in the interior of the chamber and exits through a second opening. The water fraction, containing a low concentration of oil (typically less than 500 mg/L), can then be injected, and the oil fraction along with some water is pumped to the surface. The Hydrocyclone-type DOWS may be coupled with pumps, such as electric submersible pumps (ESPs), progressing cavity pumps, gas lift pumps, and rod pumps.


Gravity separator-type DOWS are designed to allow the oil droplets that enter a well bore through perforations to rise and form a discrete oil layer in the well. Most gravity separator tools are vertically oriented and have two intakes, one in the oil layer and the other in the water layer. This type of DOWS may use rod pumps, although other types of pump, including, but not limited to as electric submersible pumps (ESPs), progressing cavity pumps, gas lift pumps, may also be used. As the sucker rods move up and down, the oil is lifted to the surface and the water is injected. In an alternative embodiment, a gravity-separation DOWS that works by allowing gravity separation to occur in the horizontal section of an extended reach well may also be used. The downhole conditions allow for rapid separation of oil and water. Oil is lifted to the surface, while water is injected by a hydraulic submersible pump.


In another example embodiment, a spoolable composite pipe including one or more energy conductors may be connected to a DGWS system. Since the difference in specific gravity between natural gas and water is large, allowing separation to occur more easily in the well, the purpose of the DGWS is not so much one of separation of the fluid streams but of disposing the water downhole while allowing gas production. This technology is somewhat different than DOWS technology, for which the fluid separation component is very important.


DGWS technologies can be classified into four main categories: bypass tools, modified plunger rod pumps, ESPs, and progressive cavity pumps. The particular DGWS system most appropriate for a particular application may depend on factors including, but not limited to, the depth involved, the specific application, produced water rates, and well depth.


Bypass tools are installed at the bottom of a rod pump. On the upward pump stroke, water is drawn from the casing-piping annulus into the pump chamber through a set of valves. On the next downward stroke, these valves close and another set of valves opens, allowing the water to flow into the piping. Water accumulates in the piping until it reaches a sufficient hydrostatic head so that it can flow by gravity to a disposal formation. The pump provides no pressure for water injection; water flows solely by gravity. Bypass tools may be appropriate, for example, for water volumes from 25 to 250 bbl/d and for depths up to approximately 8,000 ft.


Modified plunger rod pump systems incorporate a rod pump, which has its plunger modified to act as a solid assembly, and an extra section of pipe with several sets of valves located below the pump. On the upward pump stroke, the plunger creates a vacuum and draws water into the pump barrel. On the downward stroke, the plunger forces water out of the pump barrel to a disposal zone. This type of DGWS can generate higher pressure than the bypass tool, which is useful for injecting into a wide range of injection zones. Modified plunger rod pump systems may, in one embodiment, be well suited for moderate to high water volumes (250 to 800 bbl/d) and depths from 2,000 to 8,000 ft.


ESPs may, in one embodiment, be used in the petroleum industry to lift fluids to the surface. In a DGWS application, they can be configured to discharge downward to a lower injection zone. A packer is used to isolate the producing and injection zones. ESPs can, in one embodiment, handle flow rates greater than 800 bbl/d, and can operate at great depths (more than 6,000 ft).


The fourth type of DGWS uses progressive cavity pumps (also referred to as progressing cavity pumps). This type of pump has been used throughout the petroleum industry. For DGWS applications, the pump is configured to discharge downward to an injection zone, or the pump rotor can be designed to turn in a reversed direction. In an alternate configuration, the progressive cavity pump can be used with a bypass tool. Then the pump would push water into the piping, and the water would flow by gravity to the injection formation. Progressive cavity pumps can, in one embodiment, handle solids (e.g., sand grains or scale) more readily than rod pumps or ESPs.


One embodiment of the invention provides an integrated and spoolable pipe incorporating at least one of a fluid channel and one or more energy conductors (such as, but not limited to, one or more power conductors and/or one or more data conductors) for incorporation into a downhole fluid control system. The spoolable pipe may include any of the elements described hereinabove, and may be used with any of the DOWS and/or DGWS described herein, or for any other appropriate downhole fluid control system including elements such as, but not limited to, pumps, measurement devices, fluid separation devices, fluid control devices, and/or drilling devices.


Using such spoolable composite pipes including both a fluid channel and at least one integrated energy conductor provides significant advantages over prior downhole fluid control systems. These advantages may include, but are not limited to, easier installation, easier operation, easier removal, and/or improved reliability of downhole separation systems, and/or significantly reduced costs related with the installation, use, maintenance, and removal of such systems. These lower costs not only increase the viability of downhole separation in existing wells, but also promote viability of wells which cannot be cost-effectively drilled or completed by any other method. More particularly, a downhole fluid control system coupled to a spoolable pipe with integrated energy conductor(s) may enable the commercial viability of downhole separation in even marginal wells by providing, for example, a simpler and lower cost installation and removal system, protection of the energy conductor(s) during installation and removal for better reliability, simple downhole metering with incorporated power and data channels to the surface to meet regulatory requirements, and/or improved control of downhole equipment for better reliability and longer well life.


One example embodiment of the invention may include, for example, a system for operating and controlling a downhole fluid control system including one or more downhole pumps, one or more metering devices, one or more fluid separation devices, a spoolable composite pipe fluid channel and integrated energy conductor(s). The system may further include a connection device on the bottom of the pipe to couple the fluid channel to the downhole device(s) and/or to couple the energy conductor(s) from the pipe to the downhole devices. The system may further include a connection device placed on the top of the pipe to connect the pipe to the external pipework above the well head and to seat in the wellhead, and/or to connect the energy conductor(s) to a sealed wireway to allow breakout of the energy conductor(s) from the wellhead. One embodiment of the invention may further include equipment to control spooling of the system into and/or out of the well when required.


In one embodiment, the integrated energy conductor(s) may include any combination of power conductors, data conductors (such as, but not limited to, electrical conductors and/or fiber optics). These integrated energy conductor(s) can be positioned along an elongate axis of the pipe or helically wound around a pipe as described above.


In one embodiment, the invention provides a composite spoolable pipe, such as any one of the spoolable pipes described herein, which incorporates copper conductors and/or fiber optics which are used to transmit electrical power and data signals. This integrated spoolable pipe is connected directly to downhole fluid control system elements, such as, but not limited to, downhole pumps and/or flow separators, by connectors which provide fluid pressure integrity and transfer tensile loads.


In one embodiment, the spoolable pipe may be transported on a reel and connected to the downhole systems and devices. The complete system may be installed by spooling equipment which lowers the assembly into the well in a single operation. Similarly the complete assembly can be removed by spooling when required for maintenance or repair. Alternatively, the spoolable pipe may be deployed down a wellhole to be coupled to a pre-deployed downhole fluid control system.


An example spoolable pipe 200 for coupling to a downhole fluid control system is shown in FIG. 6. The spoolable pipe 200 includes a substantially fluid impervious inner barrier layer 202 enclosed by an intermediate composite layer 204. The inner barrier layer defines the boundary of an interior fluid channel 203. The composite layer 204 may include high strength fibers. An outer protective barrier layer 206 surrounds the composite layer 204. In an alternative embodiment, additional layers, such as additional intermediate composite layers and/or additional outer protection layers may be incorporated into the pipe 200.


The pipe 200 includes a plurality of energy conductors 208 embedded within the outer protective barrier layer 206. The energy conductors 208 are embedded within the outer protective barrier layer 206 substantially parallel with the elongate axis of the pipe 200. In an alternative embodiment, the energy conductors 208 are embedded substantially helically about the elongate axis of the pipe 200 within the outer protective barrier layer 206. In an alternative embodiment, one or more of the energy conductors 208 may be embedded within a different layer of the pipe 200, and/or be embedded between two layers of the pipe 200.


In one embodiment of the invention, each of the plurality of energy conductors may provide a different function for the downhole fluid control system. These functions may include, but are not limited to, providing power to a pump, fluid separation device, measurement device, and/or other downhole fluid control system element, provide a control signal to a pump, fluid separation device, measurement device, and/or other downhole fluid control system element, and/or provide a data conductor to transport a data signal from a pump, fluid separation device, measurement device, and/or other downhole fluid control system element to the top of the wellhole. The power conductor(s) may include an electrical power conductor and/or a hydraulic power conductor. In one embodiment, an electrical power conductor may be manufactured from copper.


The energy conductors 208 may, in one embodiment, include a cover 209. This cover 209 may provide protection for the energy conductors 208. In one embodiment, the covers 209 are color coded, or otherwise marked, to assist in the correct connection of each energy conductor 208 to its appropriate element.


In alternative embodiments of the invention, multiple energy conductors 208 may be adapted to provide the same function, thereby providing additional backup energy paths for one element of the downhole fluid control system. In one embodiment, one or more energy conductors 208 may be adapted to provide multiple functions, such as, but not limited to, providing a path for both a control signal to a downhole fluid control system element and providing a path for a data signal from the downhole fluid control system element back to the surface. In an alternative embodiment, a greater or lesser number of energy conductors 208 may be used. In further alternative embodiments, any appropriate combination of energy conductors may be integrated into the spoolable pipe 200.



FIG. 7 shows an example connection device 210 coupled to a spoolable pipe 200 with integrated energy conductors 208. The connection device 210 includes a first connection end 212 adapted to mate with an end of the spoolable pipe 200. In one embodiment, as shown in FIG. 7, the first connection end 212 adapted to fit within the inner barrier layer 202 of the spoolable pipe 200. The fit between the spoolable pipe 200 and the first connection end 212 of the connection device 210 may be a pressure fitting, or may include a threaded, knurled, or other appropriate mating means.


The connection device 210 includes a second connection end 214 adapted to allow the connection device 210 to be coupled to another element such as, but not limited to, another spoolable pipe 200, a pump, a fluid separation device, or any other appropriate element. The second connection end 214 may include a threaded portion, a knurled portion, or any other appropriate mating element allowing the connection device 210 to be releasably connected.


The connection device 210 is configured to provide a fluid connection for the interior fluid channel 203, while allowing the energy conductors 208 to extend around the outside of the connection device 210. In an alternative embodiment, the connection device may include additional paths for extension of the energy conductors 208 therethrough.



FIG. 8 shows an example mounting 220 for a composite pipe 200 with integrated energy conductors 208. The mounting 220 includes a plurality of paths 222 through which the energy conductors 208 may be passed, and a central path 224 through which the inner barrier layer 202, and possibly intermediate composite layer 204, that defines the interior fluid channel 203 may pass. In one embodiment, the composite pipe 200 may be coupled to a connection device 210 that is then releasably coupled to the mounting 220. In an alternative embodiment, the composite pipe 200 may be coupled directly to the mounting 220.


In use, the mounting 220 provides a means for coupling a distal end of the spoolable pipe 200 to a downhole fluid control system, such as, but not limited to, a pump, a DOWS and/or a DGWS. The mounting 220 also provides an example means of coupling a proximal end of the spoolable pipe 200 to a fluid control system, power system, and/or measurement system at the wellhead (i.e. at or near the surface of the wellhole). The mounting 220 may be adapted to be mounted to a structural support at the wellhead, thereby providing a stable anchor for the downhole fluid control system.



FIG. 9A shows an example downhole fluid separation system 230. The downhole fluid separation system 230 may be either a DOWS or a DGWS system, as appropriate. The downhole fluid separation system 230 includes an intake section 232 to provide an inlet for a fluid mixture trapped within a rock formation. For one example DGWS systems, the fluid mixture may then be separated out into the water-based fluid and the gas within the downhole fluid separation system 230. In one embodiment, one or more pumps are used to control the flow of the water-based fluid to the disposal zone. In another embodiment, gravity may be sufficient to enable flow/injection of water-based fluid into the disposal zone in the lower rock formation.


The water-based fluid is then transported, by a gravity and/or pump based mechanism to a discharge zone at a distal end 236 of the downhole fluid separation system 230. A pump 234, located near the distal end of the downhole fluid separation system 230, is then used to pump the water-based fluid through a pump intake 242 out of the distal end 236 of the downhole fluid separation system 230 into a disposal zone of the surrounding rock formation. A barrier seal manifold (BSM tool) 244 is located at the pump intake 242.


The gas, after being separated from the water-based fluid, passes upwards towards a proximal end 238 of the downhole fluid separation system 230 past a downhole stuffing box (DSB Tool) 240 and into a spoolable pipe 200 for transport to the surface. The downhole stuffing box 240 is used, for example to provide an axial seal around a rod string driving a downhole pump.



FIG. 10 shows the downhole fluid separation system 230 for liquid/gas separation in operation. Upon deployment downhole (i.e. at a location at or near a distal end of a wellhole), the fluid mixture (e.g. a water/gas mixture for DGWS applications) is forced into an entrance port 232 of the downhole fluid separation system 230 at an intermediate distance along its length. Upon entering the downhole fluid separation system 230, the water-based fluid within the fluid mixture is driven (by gravity and/or pump action) down towards a distal end 236 of the downhole fluid separation system 230. The gas within the fluid mixture is then free to rise up to a proximal end 238 of the downhole fluid separation system 230 and pass into the fluid channel of the spoolable pipe 200 for transport to the surface. The gas may be transported to the surface through a gravity driven, pressure driven, and/or pump driven mechanism. In one embodiment, a separation device may be incorporated into the downhole fluid separation system 230 to assist with the separation of the gas from the water-based fluid. In an alternative embodiment, the gas may be separable from the water-based fluid, for example due to gravity and/or pressure, without the need for a separation device in the downhole fluid separation system 230.


An isolation packer 246 may be located near the distal end 236 of the downhole fluid separation system 230 to prevent the water-based fluid being discharged into the disposal zone 248 of the rock formation from flowing back up the wellhole.


In one embodiment, a metering device 258 may be placed at the distal end 236 of the downhole fluid separation system 230 to measure the volume of water-based fluid being injected into the disposal zone 248. As discussed above, this metering device 258 may be coupled to one or more energy conductors 208 of the spoolable pipe 200, thereby allowing the metering device 258 to communicate with a recording device at the surface, and/or be powered by a powering device at the surface.


In one embodiment of the invention, a second isolation packer 252 may be located at the proximal end 238 of the downhole fluid separation system 230 to prevent fluid flow up the wellhole in the annulus between the spoolable pipe 200 and the casing 254 of the wellhole, and thereby forcing the produced gas into the fluid channel 203 of the spoolable pipe 200 through the inlets ports 256 in a zonal isolation seal/cross-over at the proximal end 238 of the downhole fluid separation system 230 and through the coupling connector 210. This may be advantageous, for example, in embodiments where the produced gas is corrosive and would damage steel casing (outer most tubular). Corrosive materials may include, but are not limited to, gas with CO2, H2S, brines, moisture rich material, or other materials corrosive to metal used as standard in casing. In one embodiment, an area above the fluid producing zone, between the production piping and casing, may be filled with a fluid to protect the casing, e.g. a steel casing, from corrosion. In addition, since there may be corrosive fluids below the fluid producing zone, a liner may be used to protect the casing in that zone. In one embodiment, water, or another fluid, may be held within a discrete section of the wellhole above the gas producing zone by using additional isolation packers and/or cross-over devices. For example, in one embodiment a third isolation may be positioned above the second isolation packer 252, with a cross-over device providing fluid access thereto, such that water may be injected into a discrete section of the wellhole bounded by the second isolation packer 252 and third isolation packer. This may be of use, for example, in embodiments where the water-based fluid disposal zone is above the gas producing zone.


In an alternative embodiment, where it is acceptable for produced gas to flow up the annulus between the casing 254 and the spoolable pipe 200 (e.g. when the produced gas is non-corrosive), no upper isolation packer 252, or cross-over device, is required. In this embodiment, the gas may be allowed to flow up within the annulus between the casing 254 and the spoolable pipe 200 to the surface.


In one embodiment, the downhole fluid separation system may include additional elements, such as, but not limited to, sensors, valves, and/or power/date conduits. As described above, these sensors, valves, and/or power/date conduits may be control and/or powered by an energy signal transported to the element along one or more of the energy conductors integrated within the spoolable pipe and described herein. In one example embodiment, a fluid flow metering device is integrated into the downhole fluid separation system 230 to measure the quantity of fluid passing through the system 230. This metering device may be powered by, and communicate with, a surface device through one or more energy conductors 208.


In the embodiment of FIG. 10, the injection/disposal zone 248 for injection of the water-based fluid back into the rock formation is positioned below the liquid/gas producing zone 250. In an alternative embodiment, the water-based fluid injection zone 248 may be placed above the liquid/gas producing zone 250, for example in applications where the formation of the surrounding rock above the liquid/gas producing zone is better structured to receive the waste water-based fluid. In this embodiment, additional zonal isolation seals, or cross-overs, may be required.


One embodiment of the invention may include a downhole fluid separation system coupled to a spoolable pipe with integrated energy conductors that may be used for deep wells (i.e. wells extending up to, or more than, 10,000 ft from the surface. Such deep well configurations may include spoolable pipe that incorporates selective reinforcement of the pipe structure to maintain the integrity of the pipe over extended distances, and to allow the pipe to support its own weight, the weight of the fluid passing therein, and possible even the weight of the downhole fluid separation system to which it is coupled.


For example, in one embodiment selectively applied reinforcement may be incorporated into the composite pipe to carry the additional tensile load provided by the weight of the conductors in a vertical application. This selective reinforcement may include, but is not limited to, strengthening elements (such as, but not limited to, ribs, wires, filaments, fibers, or other appropriate elongate strengthening elements) of the same, or different, materials to that of the pipe layers that may extend along an inner and/or outer surface of the pipe, and/or between different layers of the pipe. The reinforcement may extend substantially parallel with an elongate axis of the pipe, and/or be helically wound around the pipe.


The materials for these selective reinforcement elements may include, but are not limited to metal (such as, but not limited to, steel), composite materials, Kevlar™, graphite, boron, or any other appropriate material described herein. This selective reinforcement may be added along the entire length of the spoolable pipe, or along only a portion thereof.


In one embodiment, the spoolable pipe may incorporate lighter materials along its length, or a portion of its length (e.g. a distal end section of the length of the spoolable pipe) to minimize the weight of the pipe, thereby reducing the load on the pipe as it is deployed downhole. Example materials include, but are not limited to, carbon fiber. These lighter materials may be utilized along with, or in place of, reinforcement elements to provide a spoolable pipe with energy conductors that have sufficient strength and structural integrity to be used in deep hole applications.


In one embodiment, appropriate bonding methods may be utilized to ensure sufficient load transfer between the energy conductor(s) and the pipe to allow the pipe to sufficient support the energy conductor(s), thereby preventing damage to the energy conductor(s) during deployment and use. For example, in one embodiment, the selective reinforcement may be adapted to closely match the stress/strain curve of the energy conductor(s) to ensure that there is no relative movement between the pipe and the power cables which could lead to failure or damage of either component.


All publications and patents mentioned herein, including those items listed below, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.


This application is related to U.S. Pat. No. 6,016,845, U.S. Pat. No. 6,148,866, U.S. Pat. No. 6,286,558, U.S. Pat. No. 6,357,485, U.S. Pat. No. 6,604,550, U.S. Pat. No. 6,857,452, U.S. Pat. No. 5,921,285, U.S. Pat. No. 5,176,180, U.S. Pat. No. 6,004,639, U.S. Pat. No. 6,361,299, U.S. Pat. No. 6,706,348, U.S. Pat. No. 6,663,453, U.S. Pat. No. 6,764,365, U.S. Pat. No. 7,029,356, U.S. Pat. No. 7,234,410, U.S. Pat. No. 7,285,333, and U.S. Pat. No. 7,498,509. This application is also related to US Patent Publication Nos. US2005/0189029, US2007/0125439, US2008/0720029, US2008/0949091, US2008/0721135, and US2009/0278348. All publications and patents mentioned herein, including those items listed above, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.


While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.


Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.


The terms “a” and “an” and “the” used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.

Claims
  • 1. A system for operating, monitoring and controlling pumps at a below ground location in a wellhole, comprising: a spoolable composite pipe comprising a fluid channel defined by a composite layer enclosing a substantially fluid impervious inner layer and at least one energy conductor; at least one fluid separation device comprising at least one pump and adapted to separate a fluid mixture into at least one first fluid and at least one second fluid, wherein the at least one first fluid is directed into the fluid channel of the spoolable composite pipe and the at least one second fluid is directed into an underground formation; anda distal mounting comprising a central path and at least one outer path, the distal mounting adapted to (i) couple a distal end of the fluid channel to the at least one pump by passing the composite layer and the inner layer completely through the central path and (ii) couple a distal end of the at least one energy conductor to the at least one fluid separation device by extending the at least one conductor completely through the at least one outer path exclusive of the central path.
  • 2. The system of claim 1, wherein the energy conductor comprises at least one of a power conductor or a data conductor.
  • 3. The system of claim 2, wherein the power conductor comprises at least one of an electrical power conductor or a hydraulic power conductor.
  • 4. The system of claim 2, wherein the data conductor comprises at least one of a fiber-optic cable or an electrically conductive cable.
  • 5. The system of claim 1, wherein the spoolable composite pipe comprises: an outer protective layer enclosing the composite layer and inner liner, wherein the composite layer comprises high strength fibers.
  • 6. The system of claim 5, wherein the at least one energy conductor is at least one of (i) embedded within at least one layer of the spoolable composite pipe, (ii) helically wound around at least one inner layer of the spoolable composite pipe, or (iii) extended substantially parallel with an elongate axis of the spoolable composite pipe.
  • 7. The system of claim 1, wherein the spoolable composite pipe comprises at least one reinforcing element.
  • 8. The system of claim 1, wherein the at least one fluid separation device further comprises at least one of a measurement device or a communication device.
  • 9. The system of claim 8, wherein the measurement device comprises at least one of a flow meter, a pressure meter, a temperature meter, a stress meter, a strain gauge, and a chemical composition measuring device.
  • 10. A method of separating fluids at a below ground location in a wellhole, comprising: positioning at least one separation device comprising at least one pump at a below ground location in a wellhole;connecting the at least one separation device to an above-ground location through a spoolable composite pipe comprising a fluid channel defined by a composite layer enclosing a substantially fluid impervious inner layer and at least one energy conductor via a distal mounting comprising a central path and at least one outer path, the distal mounting adapted to couple a distal end of the fluid channel to the at least one pump by passing the composite layer and the inner layer completely through the central path;providing at least one of a power supply or a control signal to the at least one separation device through the at least one energy conductor extending completely through the at least one outer path exclusive of the central path;passing a fluid mixture through the at least one fluid separation device;separating the fluid mixture into at least one first fluid and at least one second fluid;pumping the first fluid to the surface through the fluid channel; andreleasing the second fluid to an underground formation.
  • 11. The method of claim 10, wherein the first fluid comprises at least one of oil-rich fluid and a gas-rich fluid.
  • 12. The method of claim 10, wherein the second fluid comprises a water-rich fluid.
  • 13. The method of claim 10, wherein the at least one fluid separation device is connected to the spoolable composite pipe prior to positioning the at least one fluid separation device at the below ground location in the wellhole.
  • 14. The method of claim 10, wherein the energy conductor comprises at least one of a power conductor and a data conductor.
  • 15. The method of claim 10, wherein both power supply and control signals are provided to the at least one fluid separation device through separate energy conductors.
  • 16. The method of claim 10, wherein the spoolable composite pipe further comprises an outer protective layer enclosing the composite layer and inner liner.
  • 17. The method of claim 10, further comprising measuring at least one property of the fluid mixture passing through the at least one fluid separation device.
  • 18. The method of claim 17, wherein the measuring step comprises measuring at least one of a flow rate, a pressure, a temperature, a stress, a strain, or a chemical composition.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. provisional patent application Ser. No. 61/146,785, filed Jan. 23, 2009, which is incorporated herein by reference in its entirety.

US Referenced Citations (389)
Number Name Date Kind
87993 Watson Mar 1869 A
142388 Goble Sep 1873 A
396176 Simpson Jan 1889 A
418906 Bosworth Jan 1890 A
482181 Kellom Sep 1892 A
646887 Stowe et al. Apr 1900 A
749633 Seeley Jan 1904 A
1234812 Simmons Jul 1917 A
1793455 Buchanan Feb 1931 A
1890290 Hargreaves Dec 1932 A
1930285 Robinson Oct 1933 A
2099407 Raymond Nov 1937 A
2178931 Crites Nov 1939 A
2464416 Raybould Mar 1949 A
2467520 Brubaker Apr 1949 A
2481001 Burckle Sep 1949 A
2624366 Pugh Jan 1953 A
2648720 Alexander Aug 1953 A
2690769 Brown Oct 1954 A
2725713 Blanchard Dec 1955 A
2742931 De Ganahl Apr 1956 A
2750569 Moon Jun 1956 A
2810424 Swartswelter at al. Oct 1957 A
2969812 De Ganahl Jan 1961 A
2973975 Ramberg et al. Mar 1961 A
2991093 Guarnaschelli Jul 1961 A
3086369 Brown Apr 1963 A
3116760 Matthews Jan 1964 A
3167125 Bryan Jan 1965 A
3170137 Brandt Feb 1965 A
3212528 Haas Oct 1965 A
3277231 Downey at al. Oct 1966 A
3306637 Press at al. Feb 1967 A
3334663 Peterson Aug 1967 A
3354292 Kahn Nov 1967 A
3379220 Kiuchi at al. Apr 1968 A
3383223 Rose May 1968 A
3390704 Woodell Jul 1968 A
3413169 Krings Nov 1968 A
3459229 Croft Aug 1969 A
3477474 Mesler Nov 1969 A
3507412 Carter Apr 1970 A
3522413 Chrow Aug 1970 A
3526086 Morgan Sep 1970 A
3554284 Nystrom Jan 1971 A
3563825 Segura Feb 1971 A
3579402 Goldsworthy et al. May 1971 A
3589135 Ede Jun 1971 A
3589752 Spencer et al. Jun 1971 A
3604461 Matthews Sep 1971 A
3606396 Prosdocimo at al. Sep 1971 A
3606402 Medney Sep 1971 A
3612580 Jones Oct 1971 A
3654967 Atwell et al. Apr 1972 A
3677978 Dowbenko et al. Jul 1972 A
3685860 Schmidt Aug 1972 A
3692601 Goldsworthy et al. Sep 1972 A
3696332 Dickson, Jr. et al. Oct 1972 A
3700519 Carter Oct 1972 A
3701489 Goldsworthy et al. Oct 1972 A
3728187 Martin Apr 1973 A
3730229 D'Onofrio May 1973 A
3734421 Karlson et al. May 1973 A
3738637 Goldsworthy et al. Jun 1973 A
3740285 Goldsworthy et al. Jun 1973 A
3744016 Davis Jul 1973 A
3769127 Goldsworthy et al. Oct 1973 A
3773090 Ghersa et al. Nov 1973 A
3776805 Hansen Dec 1973 A
3783060 Goldsworthy et al. Jan 1974 A
3790438 Lewis et al. Feb 1974 A
3814138 Courtot Jun 1974 A
3817288 Ball Jun 1974 A
3828112 Johansen et al. Aug 1974 A
3856052 Feucht Dec 1974 A
3858616 Thiery et al. Jan 1975 A
3860040 Sullivan Jan 1975 A
3860742 Medney Jan 1975 A
3866633 Taylor Feb 1975 A
3901281 Morrisey Aug 1975 A
3907335 Burge et al. Sep 1975 A
3913624 Ball Oct 1975 A
3932559 Cantor et al. Jan 1976 A
3933180 Carter Jan 1976 A
3955601 Plummer, III May 1976 A
3956051 Carter May 1976 A
3957410 Goldsworthy et al. May 1976 A
3960629 Goldsworthy Jun 1976 A
3963377 Elliott et al. Jun 1976 A
3974862 Fuhrmann et al. Aug 1976 A
3980325 Robertson Sep 1976 A
RE29112 Carter Jan 1977 E
4001442 Stahlberger et al. Jan 1977 A
4007070 Busdiecker Feb 1977 A
4013101 Logan et al. Mar 1977 A
4032177 Anderson Jun 1977 A
4048807 Ellers et al. Sep 1977 A
4053343 Carter Oct 1977 A
4057610 Goettler et al. Nov 1977 A
4067916 Jaeger et al. Jan 1978 A
4095865 Denison et al. Jun 1978 A
4104095 Shaw Aug 1978 A
4108701 Stanley Aug 1978 A
4111237 Mutzner et al. Sep 1978 A
4111469 Kavick Sep 1978 A
4114393 Engle, Jr. et al. Sep 1978 A
4119122 de Putter Oct 1978 A
4125423 Goldsworthy Nov 1978 A
4133972 Andersson et al. Jan 1979 A
4137949 Linko, III et al. Feb 1979 A
4138178 Miller et al. Feb 1979 A
4139025 Carlstrom et al. Feb 1979 A
4148963 Bourrain et al. Apr 1979 A
4190088 Lalikos et al. Feb 1980 A
4196307 Moore et al. Apr 1980 A
4200126 Fish Apr 1980 A
4220381 van der Graaf et al. Sep 1980 A
4226446 Burrington Oct 1980 A
4229613 Braun Oct 1980 A
4241763 Antal et al. Dec 1980 A
4241787 Price Dec 1980 A
4248062 McLain et al. Feb 1981 A
4261390 Belofsky Apr 1981 A
4273160 Lowles Jun 1981 A
4303263 Legris Dec 1981 A
4303457 Johansen et al. Dec 1981 A
4306591 Arterburn Dec 1981 A
4307756 Voigt et al. Dec 1981 A
4308999 Carter Jan 1982 A
4330017 Satoh et al. May 1982 A
4336415 Walling Jun 1982 A
4345784 Walling Aug 1982 A
4351364 Cocks et al. Sep 1982 A
4380252 Gray et al. Apr 1983 A
4385644 Kaempen May 1983 A
4402346 Cheetham et al. Sep 1983 A
4417603 Argy Nov 1983 A
4421806 Marks et al. Dec 1983 A
4422801 Hale et al. Dec 1983 A
4434816 Di Giovanni et al. Mar 1984 A
4445734 Cunningham May 1984 A
4446892 Maxwell et al. May 1984 A
4447378 Gray et al. May 1984 A
4463779 Wink et al. Aug 1984 A
4469729 Watanabe et al. Sep 1984 A
4476923 Walling Oct 1984 A
4488577 Shilad et al. Dec 1984 A
4507019 Thompson Mar 1985 A
4515737 Karino et al. May 1985 A
4522058 Ewing Jun 1985 A
4522235 Kluss et al. Jun 1985 A
4530379 Policelli Jul 1985 A
4556340 Morton Dec 1985 A
4567916 Antal et al. Feb 1986 A
4578675 MacLeod Mar 1986 A
4606378 Meyer et al. Aug 1986 A
4627472 Goettler et al. Dec 1986 A
4652475 Haney et al. Mar 1987 A
4657795 Foret et al. Apr 1987 A
4676563 Curlett et al. Jun 1987 A
4681169 Brookbank, III Jul 1987 A
4700751 Fedrick Oct 1987 A
4706711 Czvikovszky et al. Nov 1987 A
4712813 Passerell et al. Dec 1987 A
4728224 Salama et al. Mar 1988 A
4729106 Rush et al. Mar 1988 A
4741795 Grace et al. May 1988 A
4758455 Campbell et al. Jul 1988 A
4789007 Cretel et al. Dec 1988 A
4842024 Palinchak Jun 1989 A
4844516 Baker Jul 1989 A
4849668 Crawley et al. Jul 1989 A
4854349 Foreman Aug 1989 A
4859024 Rahman Aug 1989 A
4869293 Botsolas Sep 1989 A
4903735 Delacour et al. Feb 1990 A
4913657 Naito et al. Apr 1990 A
4936618 Sampa et al. Jun 1990 A
4941774 Harmstorf et al. Jul 1990 A
4942903 Jacobsen et al. Jul 1990 A
4972880 Strand Nov 1990 A
4992787 Helm Feb 1991 A
4995761 Barton Feb 1991 A
5024252 Ochsner Jun 1991 A
5048572 Levine Sep 1991 A
5072622 Roach et al. Dec 1991 A
5077107 Kaneda et al. Dec 1991 A
5080560 LeRoy et al. Jan 1992 A
5090741 Yokomatsu et al. Feb 1992 A
5097870 Williams Mar 1992 A
5123453 Robbins Jun 1992 A
5156206 Cox Oct 1992 A
5170011 Martucci Dec 1992 A
5172765 Sas-Jaworsky et al. Dec 1992 A
5176180 Williams et al. Jan 1993 A
5182779 D'Agostino et al. Jan 1993 A
5184682 Delacour et al. Feb 1993 A
5188872 Quigley Feb 1993 A
5209136 Williams May 1993 A
5222769 Kaempen Jun 1993 A
5257663 Pringle et al. Nov 1993 A
5261462 Wolfe et al. Nov 1993 A
5265648 Lyon Nov 1993 A
5285008 Sas-Jaworsky et al. Feb 1994 A
5285204 Sas-Jaworsky Feb 1994 A
5330807 Williams Jul 1994 A
5332269 Homm Jul 1994 A
5334801 Mohn et al. Aug 1994 A
5343738 Skaggs Sep 1994 A
5346658 Gargiulo Sep 1994 A
5348088 Laflin et al. Sep 1994 A
5348096 Williams Sep 1994 A
5351752 Wood et al. Oct 1994 A
RE34780 Trenconsky et al. Nov 1994 E
5364130 Thalmann Nov 1994 A
5373870 Derroire et al. Dec 1994 A
5394488 Fernald et al. Feb 1995 A
5395913 Bottcher et al. Mar 1995 A
5398729 Spurgat Mar 1995 A
5400602 Chang et al. Mar 1995 A
5416724 Savic May 1995 A
5423353 Sorensen Jun 1995 A
5426297 Dunphy et al. Jun 1995 A
5428706 Lequeux et al. Jun 1995 A
5435867 Wolfe et al. Jul 1995 A
5437311 Reynolds Aug 1995 A
5437899 Quigley Aug 1995 A
5443099 Chaussepied et al. Aug 1995 A
5452923 Smith Sep 1995 A
5460416 Freidrich et al. Oct 1995 A
RE35081 Quigley Nov 1995 E
5469916 Sas-Jaworsky et al. Nov 1995 A
5472764 Kehr et al. Dec 1995 A
5494374 Youngs et al. Feb 1996 A
5499661 Odru et al. Mar 1996 A
5507320 Plumley Apr 1996 A
5524937 Sides, III et al. Jun 1996 A
5525698 Bottcher et al. Jun 1996 A
5538513 Okajima et al. Jul 1996 A
5551484 Charboneau Sep 1996 A
5558375 Newman Sep 1996 A
5622211 Martin et al. Apr 1997 A
5641956 Vengsarkar et al. Jun 1997 A
5671811 Head et al. Sep 1997 A
5679425 Plumley Oct 1997 A
5683204 Lawther et al. Nov 1997 A
5692545 Rodrigue Dec 1997 A
5718956 Gladfelter et al. Feb 1998 A
5730188 Kalman et al. Mar 1998 A
5755266 Aanonsen et al. May 1998 A
5758990 Davies et al. Jun 1998 A
5778938 Chick et al. Jul 1998 A
5785091 Barker, II Jul 1998 A
5795102 Corbishley et al. Aug 1998 A
5797702 Drost et al. Aug 1998 A
5798155 Yanagawa et al. Aug 1998 A
5804268 Mukawa et al. Sep 1998 A
5826623 Akiyoshi et al. Oct 1998 A
5828003 Thomeer et al. Oct 1998 A
5865216 Youngs Feb 1999 A
5868169 Catallo Feb 1999 A
5875792 Campbell, Jr. et al. Mar 1999 A
5902958 Haxton May 1999 A
5908049 Williams et al. Jun 1999 A
5913337 Williams et al. Jun 1999 A
5913357 Hanazaki et al. Jun 1999 A
5921285 Quigley et al. Jul 1999 A
5933945 Thomeer et al. Aug 1999 A
5950651 Kenworthy et al. Sep 1999 A
5951812 Gilchrist, Jr. Sep 1999 A
5979506 Aarseth Nov 1999 A
5984581 McGill et al. Nov 1999 A
5988702 Sas-Jaworsky Nov 1999 A
6004639 Quigley et al. Dec 1999 A
6016845 Quigley et al. Jan 2000 A
6032699 Cochran et al. Mar 2000 A
6065540 Thomeer et al. May 2000 A
6066377 Tonyali et al. May 2000 A
6076561 Akedo et al. Jun 2000 A
6093752 Park et al. Jul 2000 A
6109306 Kleinert Aug 2000 A
6123110 Smith et al. Sep 2000 A
6136216 Fidler et al. Oct 2000 A
6148866 Quigley et al. Nov 2000 A
RE37109 Ganelin Mar 2001 E
6209587 Hsich et al. Apr 2001 B1
6220079 Taylor et al. Apr 2001 B1
6264244 Isennock et al. Jul 2001 B1
6286558 Quigley et al. Sep 2001 B1
6315002 Antal et al. Nov 2001 B1
6328075 Furuta et al. Dec 2001 B1
6334466 Jani et al. Jan 2002 B1
6357485 Quigley et al. Mar 2002 B2
6357966 Thompson et al. Mar 2002 B1
6361299 Quigley et al. Mar 2002 B1
6372861 Schillgalies et al. Apr 2002 B1
6390140 Niki et al. May 2002 B2
6397895 Lively Jun 2002 B1
6402430 Guesnon et al. Jun 2002 B1
6422269 Johansson et al. Jul 2002 B1
6461079 Beaujean et al. Oct 2002 B1
6470915 Enders et al. Oct 2002 B1
6532994 Enders et al. Mar 2003 B1
6538198 Wooters Mar 2003 B1
6557485 Sauter et al. May 2003 B1
6557905 Mack et al. May 2003 B2
6561278 Restarick et al. May 2003 B2
6585049 Leniek, Sr. Jul 2003 B2
6604550 Quigley et al. Aug 2003 B2
6620475 Reynolds, Jr. et al. Sep 2003 B1
6631743 Enders et al. Oct 2003 B2
6634387 Glejbøl et al. Oct 2003 B1
6634388 Taylor et al. Oct 2003 B1
6634675 Parkes Oct 2003 B2
6663453 Quigley et al. Dec 2003 B2
6691781 Grant et al. Feb 2004 B2
6706348 Quigley et al. Mar 2004 B2
6706398 Revis Mar 2004 B1
6746737 Debalme et al. Jun 2004 B2
6764365 Quigley et al. Jul 2004 B2
6773774 Crook et al. Aug 2004 B1
6787207 Lindstrom et al. Sep 2004 B2
6803082 Nichols et al. Oct 2004 B2
6807988 Powell et al. Oct 2004 B2
6807989 Enders et al. Oct 2004 B2
6857452 Quigley et al. Feb 2005 B2
6868906 Vail et al. Mar 2005 B1
6889716 Lundberg et al. May 2005 B2
6902205 Bouey et al. Jun 2005 B2
6935376 Taylor et al. Aug 2005 B1
6978804 Quigley et al. Dec 2005 B2
6983766 Baron et al. Jan 2006 B2
7000644 Ichimura et al. Feb 2006 B2
7021339 Hagiwara et al. Apr 2006 B2
7025580 Heagy et al. Apr 2006 B2
7029356 Quigley et al. Apr 2006 B2
7069956 Mosier Jul 2006 B1
7080667 McIntyre et al. Jul 2006 B2
7152632 Quigley et al. Dec 2006 B2
7234410 Quigley et al. Jun 2007 B2
7243716 Denniel et al. Jul 2007 B2
7285333 Wideman et al. Oct 2007 B2
7306006 Cornell Dec 2007 B1
7328725 Henry et al. Feb 2008 B2
7498509 Brotzell et al. Mar 2009 B2
7523765 Quigley et al. Apr 2009 B2
7600537 Bhatnagar et al. Oct 2009 B2
7647948 Quigley et al. Jan 2010 B2
8187687 Wideman et al. May 2012 B2
20010006712 Hibino et al. Jul 2001 A1
20010013669 Cundiff et al. Aug 2001 A1
20010025664 Quigley et al. Oct 2001 A1
20020040910 Pahl Apr 2002 A1
20020081083 Griffioen et al. Jun 2002 A1
20020094400 Lindstrom et al. Jul 2002 A1
20020119271 Quigley et al. Aug 2002 A1
20020185188 Quigley et al. Dec 2002 A1
20030008577 Quigley et al. Jan 2003 A1
20030087052 Wideman et al. May 2003 A1
20040014440 Makela et al. Jan 2004 A1
20040025951 Baron et al. Feb 2004 A1
20040052997 Santo Mar 2004 A1
20040074551 McIntyre Apr 2004 A1
20040094299 Jones May 2004 A1
20040096614 Quigley et al. May 2004 A1
20040134662 Chitwood et al. Jul 2004 A1
20040226719 Morgan et al. Nov 2004 A1
20040265524 Wideman et al. Dec 2004 A1
20050087336 Surjaatmadja et al. Apr 2005 A1
20050189029 Quigley et al. Sep 2005 A1
20060000515 Huffman Jan 2006 A1
20060054235 Cohen et al. Mar 2006 A1
20060249508 Teufl et al. Nov 2006 A1
20070125439 Quigley et al. Jun 2007 A1
20070154269 Quigley et al. Jul 2007 A1
20070187103 Crichlow Aug 2007 A1
20070246459 Loveless et al. Oct 2007 A1
20080006337 Quigley et al. Jan 2008 A1
20080006338 Wideman et al. Jan 2008 A1
20080014812 Quigley et al. Jan 2008 A1
20080164036 Bullen Jul 2008 A1
20080185042 Feechan et al. Aug 2008 A1
20080210329 Quigley et al. Sep 2008 A1
20090090460 Wideman et al. Apr 2009 A1
20090107558 Quigley et al. Apr 2009 A1
20090173406 Quigley et al. Jul 2009 A1
20090194293 Stephenson et al. Aug 2009 A1
20090278348 Brotzell et al. Nov 2009 A1
20100101676 Quigley et al. Apr 2010 A1
Foreign Referenced Citations (49)
Number Date Country
559688 Aug 1957 BE
2282358 Aug 1998 CA
461199 Aug 1968 CH
1959738 Jun 1971 DE
3603597 Aug 1987 DE
4040400 Aug 1992 DE
4214383 Sep 1993 DE
19905448 Aug 2000 DE
0024512 Mar 1981 EP
0203887 Dec 1986 EP
352148 Jan 1990 EP
0427306 May 1991 EP
0477704 Apr 1992 EP
0503737 Sep 1992 EP
505815 Sep 1992 EP
0536844 Apr 1993 EP
0681085 Nov 1995 EP
0854029 Jul 1998 EP
0953724 Nov 1999 EP
0970980 Jan 2000 EP
0981992 Mar 2000 EP
989204 Sep 1951 FR
553110 May 1943 GB
809097 Feb 1959 GB
909187 Oct 1962 GB
956500 Apr 1964 GB
1297250 Nov 1972 GB
2103744 Feb 1983 GB
2159901 Dec 1985 GB
2193006 Jan 1988 GB
2255994 Nov 1992 GB
2270099 Mar 1994 GB
2365096 Feb 2002 GB
163 592 Jun 1990 JP
WO-8704768 Aug 1987 WO
WO-9113925 Sep 1991 WO
WO-9221908 Dec 1992 WO
WO-9307073 Apr 1993 WO
WO-9319927 Oct 1993 WO
WO-9502782 Jan 1995 WO
WO-9712115 Apr 1997 WO
WO-9712166 Apr 1997 WO
WO-9748932 Dec 1997 WO
WO-9919653 Apr 1999 WO
WO-9961833 Dec 1999 WO
WO-0009928 Feb 2000 WO
WO-0031458 Jun 2000 WO
WO-0073695 Dec 2000 WO
WO-2006003208 Jan 2006 WO
Non-Patent Literature Citations (35)
Entry
International Search Report mailed on Jan. 22, 2001.
International Search Report mailed on Mar. 5, 2001.
International Search Report mailed on Nov. 8, 2005.
Austigard E. and R. Tomter; “Composites Subsea: Cost Effective Products; an Industry Challenge ”, Subsea 94 International Conference, the 1994 Report on Subsea Engineering: The Continuing Challenges.
Connell Mike et al.; “Coiled Tubing: Application for Today's Challenges”, Petroleum Engineer International, pp. 18-21 (Jul. 1999).
Feechan Mike et al.; “Spoolable Composites Show Promise”, The American Oil & Gas Reporter, pp. 44-50 (Sep. 1999).
Fowler Hampton et al.; “Development Update and Applications of an Advanced Composite Spoolable Tubing”, Offshore Technology Conference held in Houston Texas from 4th to 7th of May 1998, pp. 157-162.
Fowler Hampton; “Advanced Composite Tubing Usable”, The American Oil & Gas Reporter, pp. 76-81 (Sep. 1997).
Hahn H. Thomas and Williams G. Jerry; “Compression Failure Mechanisms in Unidirectional Composites”. NASA Technical Memorandum pp. 1-42 (Aug. 1984).
Hansen et al.; “Qualification and Verification of Spoolable High Pressure Composite Service Lines for the Asgard Field Development Project”, paper presented at the 1997 Offshore Technology Conference held in Houston Texas from May 5-8, 1997, pp. 45-54.
Hartman, D.R., et al., “High Strength Glass Fibers,” Owens Coming Technical Paper (Jul. 1996).
Haug et al.; “Dynamic Umbilical with Composite Tube (DUCT)”, Paper presented at the 1998 Offshore Technology Conference held in Houston Texas from 4th to 7th, 1998; pp. 699-712.
Lundberg et al.; “Spin-off Technologies from Development of Continuous Composite Tubing Manufacturing Process”, Paper presented at the 1998 Offshore Technology Conference held in Houston, Texas from May 4-7, 1998 pp. 149-155.
Marker et al.; “Anaconda: Joint Development Project Leads to Digitally Controlled Composite Coiled Tubing Drilling System”, Paper presented at the SPEI/COTA, Coiled Tubing Roundtable held in Houston, Texas from Apr. 5-6, 2000, pp. 1-9.
Measures et al.; “Fiber Optic Sensors for Smart Structures”, Optics and Lasers Engineering 16: 127-152 (1992).
Measures R. M.; “Smart Structures with Nerves of Glass”. Prog. Aerospace Sci. 26(4): 289-351 (1989).
Moe Wood T. et al.; “Spoolable, Composite Piping for Chemical and Water Injection and Hydraulic Valve Operation”, Proceedings of the 11th International Conference on Offshore Mechanics and Arctic Engineering-I 992-, vol. III, Part A—Materials Engineering, pp. 199-207 (1992).
Poper Peter; “Braiding”, International Encyclopedia of Composites, Published by VGH, Publishers, Inc., 220 East 23rd Street, Suite 909, New York, NY 10010.
Quigley et al.; “Development and Application of a Novel Coiled Tubing String for Concentric Workover Services”, Paper presented at the 1997 Offshore Technology Conference held in Houston, Texas from May 5-8, 1997, pp. 189-202.
Rispler K. et al.; “Composite Coiled Tubing in Harsh Completion/Workover Environments”, Paper presented at the SPE Gas Technology Symposium and Exhibition held in Calgary, Alberta, Canada, on Mar. 15-18, 1998, pp. 405-410.
Sas-Jaworsky II Alex.; “Developments Position CT for Future Prominence”, The American Oil & Gas Reporter, pp. 87-92 (Mar. 1996).
Sas-Jaworsky II and Bell Steve “Innovative Applications Stimulate Coiled Tubing Development”, World Oil, 217(6): 61 (Jun. 1996).
Sas-Jaworsky II and Mark Elliot Teel; “Coiled Tubing 1995 Update: Production Applications”, World Oil, 216 (6): 97 (Jun. 1995 ).
Sas-Jaworsky, A. and J.G. Williams, “Advanced composites enhance coiled tubing capabilities”, World Oil, pp. 57-69 (Apr. 1994).
Sas-Jaworsky, A. and J.G. Williams, “Development of a composite coiled tubing for oilfield services”, Society of Petroleum Engineers, SPE 26536, pp. 1-11 (1993).
Sas-Jaworsky, A. and J.G. Williams, “Enabling capabilities and potential applications of composite coiled tubing”, Proceedings of World Oil's 2nd International Conference on Coiled Tubing Technology, pp. 2-9 (1994).
Shuart J. M. et al.; “Compression Behavior of ≠45o-Dominated Laminates with a Circular Hole or Impact Damage”, AIAA Journal 24(1):115-122 (Jan. 1986).
Silverman A. Seth; “Spoolable Composite Pipe for Offshore Applications”, Materials Selection & Design pp. 48-50 (Jan. 1997).
Williams G. J. et al.; “Composite Spoolable Pipe Development, Advancements, and Limitations”, Paper presented at the 2000 Offshore Technology Conference held in Houston Texas from May 1-4, 2000, pp. 1-16.
Williams, J.G., “Oil Industry Experiences with Fiberglass Components,” Offshore Technology Conference, 1987, pp. 211-220.
Dalmolen “The Properties, Qualification, and System Design of, and Field Experiences with Reinforced Thermoplastic Pipe for Oil and Gas Applications” NACE International, 2003 West Conference (Feb. 2003).
Fiberspar Tech Notes, “Horizontal well deliquification just got easier—with Fiberspar Spoolable Production Systems,” TN21-R1UN1-HybridLift, 2010, 2 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/060582 mailed on Feb. 16, 2011 (10 pages).
Mesch, K.A., “Heat Stabilizers,” Kirk-Othmer Encyclopedia of Chemical Technology, 2000 pp. 1-20.
Sperling, L.H., “Introduction to Physical Polymer Science 3rd Edition,” Wiley-Interscience, New York, NY, 2001, p. 100.
Related Publications (1)
Number Date Country
20100218944 A1 Sep 2010 US
Provisional Applications (1)
Number Date Country
61146785 Jan 2009 US