The present invention relates to the field of downhole oil, gas, and/or geothermal exploration and more particularly to the field of drill bits for aiding such exploration and drilling.
Drill bits use rotary energy provided by the tool string to cut through downhole formations, thus advancing the tool string further into the ground. To use drilling time effectively, sensors have been placed in the drill string, usually in the tool string, to assist the operator in making drilling decisions. In the patent prior art, equipment and methods of conveying and interpreting sensory data obtained from downhole have been disclosed.
For example, U.S. Pat. No. 6,150,822 to Hong, et al., which is herein incorporated by reference for all that it contains, discloses a microwave frequency range sensor (antenna or wave guide) disposed in the face of a diamond or PDC drill bit configured to minimize invasion of drilling fluid into the formation ahead of the bit. The sensor is connected to an instrument disposed in a sub interposed in the drill stem for generating and measuring the alteration of microwave energy.
U.S. Pat. No. 6,814,162 to Moran, et al., which is herein incorporated by reference for all that it contains, discloses a drill bit, comprising a bit body, a sensor disposed in the bit body, a single journal removably mounted to the bit body, and a roller cone rotatably mounted to the single journal. The drill bit may also comprise a short-hop telemetry transmission device adapted to transmit data from the sensor to a measurement-while-drilling device located above the drill bit on the drill string.
U.S. Pat. No. 5,415,030 to Jogi, et al., which is herein incorporated by reference for all that it contains, discloses a method for evaluating formations and bit conditions. The invention processes signals indicative of downhole weight on bit (WOB), downhole torque (TOR), rate of penetration (ROP), and bit rotations (RPM), while taking into account bit geometry to provide a plurality of well logs and to optimize the drilling process.
U.S. Pat. No. 5,363,926 to Mizuno, which is herein incorporated by reference for all that it contains, discloses a device for detecting inclination of a boring head of a boring tool.
The prior art also discloses devices adapted to steer the direction of penetration of a drill string. U.S. Pat. Nos. 6,913,095 to Krueger, 6,092,610 to Kosmala, et al., 6,581,699 to Chen, et al., 2,498,192 to Wright, 6,749,031 to Klemm, 7,013,994 to Eddison, which are all herein incorporated by reference for all that they contain, discloses directional drilling systems.
In one aspect of the invention, a drill string comprises a drill bit with a body intermediate a shank and a working face, and the working face comprises at least one cutting element. A jack assembly is disposed within the drill bit body and comprises a jack element disposed on a distal end of the assembly. The jack element substantially protrudes from the working face and is adapted to move with respect to the bit body. At least one position feedback sensor is disposed proximate the jack assembly and is adapted to detect a position and/or orientation of the jack element. The position feedback sensor may be adapted to calculate a velocity of the jack element.
The jack element may be adapted to rotate about a central axis and it may be adapted to translate along the central axis. Movement of the jack element may be powered by a downhole motor. The jack element may comprise a distal deflecting surface having an angle relative to the central axis of 15 to 75 degrees. The jack assembly may comprise a driving shaft disposed intermediate a driving mechanism and the jack element. In some embodiments a geartrain may be disposed intermediate the driving mechanism and the driving shaft in the jack assembly. A position feedback sensor may be disposed within the geartrain, and it may be disposed proximate other components of the jack assembly.
The position feedback sensor may be in electrical communication with a downhole network. The feedback sensor may be powered by a downhole power source and may be part of a bottom hole assembly. The drill string may comprise a plurality of position feedback sensors. Position feedback sensors or a plurality thereof may comprise a hall-effect sensor, an optical encoder, a magnet, a mechanical switch, a slide switch, a resolver, an accelerometer, or combinations thereof. Position feedback sensors may sense the position and/or orientation of the jack element by recognizing a characteristic of a signal element disposed proximate the sensor. The characteristic may comprise a change in density, geometry, length, chemical composition, magnetism, conductivity, optical reactivity, opacity, reflectivity, surface coating composition, or combinations thereof. The signal element may be a sprocket that is disposed on the jack assembly and is mechanically coupled to the jack element.
The drill string may comprise at least one electrical component selected from the group consisting of direction and inclination packages, generators, motors, steering boards, and combinations thereof. The at bast one electrical component may be rotationally fixed to the drill string. In some embodiments at least one electrical component may rotationally coupled with respect to the jack element.
Referring now to
The upper generator 204 may provide electricity to a direction and inclination (D&I) package 207. D&I package 207 may monitor the orientation of the BHA 102 with respect to some relatively constant object, such as the center of the planet, the moon, the surface of the planet, a satellite, or combinations thereof. The lower generator 205 may provide electrical power to a computational board 208 and to the motor 203. The computational board 208 may control steering and/or motor functions. The computational board 208 may receive drill string orientation information from the D&I package 207 and may alter the speed or direction of the motor 203.
In the present embodiment a jack assembly 301 is disposed in a terminal region 210 of the drill string 100 and may be adapted to rotate with respect to the drill string 100 while the motor 203 may be rotationally fixed to the drill string 100. In some embodiments one or more motor 203, generator 204, 205, computational board 208, D&I package 207, or some other electrical component, may be rotationally isolated from the drill string 100. In the present embodiment the motor 203 connects to the jack element 201 via a geartrain 209. The geartrain 209 may couple rotation of the motor 203 to rotation of the jack element 201 at a ratio of 25 rotations to 1 rotation and may itself rotationally fixed to the drill string 100. In some embodiments a different ratio may be used. The geartrain 209 and the jack element 201 may be part of the jack assembly 301.
In the present embodiment the jack element 201 comprises a primary deflecting surface 1001 disposed on a distal end of the jack element 201. The deflecting surface 1001 may form an angle relative to a central axis 307 of the jack element 201 of 15 to 75 degrees. The angle may create a directional bias in the jack element 201. The deflecting surface 1001 of the jack element 201 may cause the drill bit 104 to drill substantially in a direction indicated by the directional bias of the jack element 201. By controlling the orientation of the deflecting surface 1001 in relation to the drill bit 104 or to some fixed object the direction of drilling may be controlled. In some drilling applications, the drill bit, when desired, may drill 6 to 20 degrees per 100 feet drilled. In some embodiments, the jack element 201 may be used to steer the drill string 104 in a straight trajectory if the formation 105 comprises characteristics that tend to steer the drill string 104 in an opposing direction.
The primary deflecting surface 1001 may comprise a surface area of 0.5 to 4 square inches. The primary surface 1001 may have a radius of curvature of 0.75 to 1.25 inches. The jack element 201 may have a diameter of 0.5 to 1 inch, and may comprise carbide. The distal end of the jack element 201 may have rounded edges so that stresses exerted on the distal end may be efficiently distributed rather than being concentrated on corners and edges.
The jack element 201 may be supported by a bushing 314 and/or bearing and may be in communication with at least one bearing. The bushing 314 may be placed between the jack element 201 and the drill string 100 in order to allow for low-friction rotation of the jack element 201 with respect to the drill string 100. The bushing 314 may be beneficial in allowing the jack element 201 to be rotationally isolated from the drill string 100. Thus, during a drilling operation, the jack element 201 may steer the drill string 100 as the drill string 100 rotates around the jack element 201. The jack element 201 may be driven by the motor 203 to rotate in a direction opposite the drill string 100.
In the present embodiment two position feedback sensors 202 are disposed proximate the jack assembly 301. A first sensor 308 is disposed proximate a coupler 310 on a geartrain side 311 of the coupler 310. A driving shaft 309 may rotationally couple the jack element 201 to the coupler 310 and may be disposed intermediate the motor 203 and the jack element 201. The coupler 310 may connect the geartrain 209 that is disposed intermediate the motor 203 and the driving shaft 309 to the driving shaft 309. A bearing 312 facilitates rotation of the coupler 310 with respect to the drill string 100. A second sensor 313 may be disposed proximate the jack element 201 in the driving shaft 309. Both the first sensor 308 and the second sensor 313 may be embodiments of position feedback sensors 202. In some embodiments a plurality of position feedback sensors 202 disposed proximate the jack assembly 301 may all be first sensors 308, or they may all be second sensors 313. In other embodiments a drill string 100 may comprise no more than one position feedback sensor 202.
By counting the number of protrusions that pass by the sensor 202 in a given amount of time the differential velocity of the signal element 402 may be detected. The velocity of the signal element 402 may correspond directly to the velocity of the jack element 201 in a fixed ratio, thereby allowing the velocity of the jack element 201 to be determined. Preferably, the velocity of the driving shaft 309 and the signal element 204 may be between 60 and 160 rotations per minute (rpm).
In some embodiments the position feedback sensor 202 may be powered by a downhole source, such as a battery or generator. In other embodiments the sensor 202 may receive electrical power originating from the surface. The position feedback sensor 202 may be in electrical communication with a downhole network. The downhole network may transmit a signal from the sensor 202 to the computational board 208, thereby allowing the computation board to react to the signal by altering or maintaining some characteristic of the drilling operation.
In some embodiments a single position feedback sensor 202 may comprise a plurality of hall-effect sensors. In an embodiment of a position feedback sensor 202 comprising three hall-effect sensors, the position feedback sensor 202 may be able to determine the direction in which a signal element 402 is rotating by monitoring which hall-effect sensor first detects a given ferromagnetic protrusion 403. An example of such a position feedback sensor 202 is the Differential Speed and Direction Sensor model AT5651LSH made by Allegro MicroSystems, Inc., of Worcester, Mass. An example of a position feedback sensor 202 comprising one hall-effect sensor is the Unipolar Hall-Effect Switch model A1145LUA-T, also made by Allegro MicroSystems, Inc.
Referring now to
Referring now to
Referring now to
In the present embodiment the position feedback sensor 202 is a hall-effect sensor. In some embodiments the jack element 201 or the support element 901 may comprise a ferromagnetic material. A gap 902 between the sensor 202 and an inner surface 903 of the support element 901 may be greater than 6 mm when the jack element 201 is fully extended into the formation 105. The gap 902 may be less than 2.8 mm when the jack element is fully retracted from the formation 105. When the gap 902 is less than 2.8 mm the sensor 202 may signal the computational board 208. The amount of time between signals may indicate an oscillation frequency of the jack element 201. It is believed that the jack oscillation frequency may be indicative of a formation characteristic, such as formation hardness.
Referring now to
Referring now to
Referring now to
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
465103 | Wagner | Dec 1891 | A |
616118 | Kunhe | Dec 1898 | A |
946060 | Looker | Jan 1910 | A |
1116154 | Stowers | Nov 1914 | A |
1183630 | Bryson | May 1916 | A |
1189560 | Gondos | Jul 1916 | A |
1360908 | Everson | Nov 1920 | A |
1387733 | Midgett | Aug 1921 | A |
1460671 | Habsacker | Jul 1923 | A |
1544757 | Hufford | Jul 1925 | A |
1821474 | Meroer | Sep 1931 | A |
1879177 | Gault | Sep 1932 | A |
2054255 | Howard | Sep 1936 | A |
2064255 | Garfield | Dec 1936 | A |
2169223 | Christian | Aug 1939 | A |
2216130 | Court | Oct 1940 | A |
2227233 | Noble et al. | Dec 1940 | A |
2320136 | Kammerer | May 1943 | A |
2466991 | Kammerer | Apr 1949 | A |
2540464 | Stokes | Feb 1951 | A |
2544036 | Kammerer | Mar 1951 | A |
2755071 | Kammerer | Jul 1956 | A |
2776819 | Brown | Jan 1957 | A |
2819043 | Henderson | Jan 1958 | A |
2838284 | Austin | Jun 1958 | A |
2894722 | Buttolph | Jul 1959 | A |
2901223 | Scott | Aug 1959 | A |
2963102 | Smith | Dec 1960 | A |
3135341 | Ritter | Jun 1964 | A |
3294188 | Buell | Dec 1966 | A |
3301339 | Pennebaker, Jr. | Jan 1967 | A |
3379264 | Cox | Apr 1968 | A |
3429390 | Bennett | Feb 1969 | A |
3493165 | Schonfield | Feb 1970 | A |
3583504 | Aalund | Jun 1971 | A |
3764493 | Rosar | Oct 1973 | A |
3821993 | Kniff | Jul 1974 | A |
3955635 | Skidmore | May 1976 | A |
3960223 | Kleine | Jun 1976 | A |
4081042 | Johnson | Mar 1978 | A |
4096917 | Harris | Jun 1978 | A |
4106577 | Summer | Aug 1978 | A |
4176723 | Arceneaux | Dec 1979 | A |
4253533 | Baker | Mar 1981 | A |
4280573 | Sudnishnikov | Jul 1981 | A |
4304312 | Larsson | Dec 1981 | A |
4307786 | Evans | Dec 1981 | A |
4397361 | Langford | Aug 1983 | A |
4416339 | Baker | Nov 1983 | A |
4445580 | Sahley | May 1984 | A |
4448269 | Ishikawa | May 1984 | A |
4499795 | Radtke | Feb 1985 | A |
4531592 | Hayatdavoudi | Jul 1985 | A |
4535853 | Ippolito | Aug 1985 | A |
4538691 | Dennis | Sep 1985 | A |
4566545 | Story | Jan 1986 | A |
4574895 | Dolezal | Mar 1986 | A |
4640374 | Dennis | Feb 1987 | A |
4852672 | Behrens | Aug 1989 | A |
4889017 | Fuller | Dec 1989 | A |
4962822 | Pascale | Oct 1990 | A |
4981184 | Knowlton | Jan 1991 | A |
5009273 | Grabinski | Apr 1991 | A |
5027914 | Wilson | Jul 1991 | A |
5038873 | Jurgens | Aug 1991 | A |
5119892 | Clegg | Jun 1992 | A |
5141063 | Quesenbury | Aug 1992 | A |
5163520 | Gibson et al. | Nov 1992 | A |
5186268 | Clegg | Feb 1993 | A |
5222566 | Taylor | Jun 1993 | A |
5255749 | Bumpurs | Oct 1993 | A |
5265682 | Russell | Nov 1993 | A |
5361859 | Tibbitts | Nov 1994 | A |
5410303 | Comeau | Apr 1995 | A |
5417292 | Polakoff | May 1995 | A |
5423389 | Warren | Jun 1995 | A |
5507357 | Hult | Apr 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5568838 | Struthers | Oct 1996 | A |
5655614 | Azar | Aug 1997 | A |
5678644 | Fielder | Oct 1997 | A |
5732784 | Nelson | Mar 1998 | A |
5794728 | Palmberg | Aug 1998 | A |
5896938 | Moeny | Apr 1999 | A |
5947215 | Lundell | Sep 1999 | A |
5950743 | Cox | Sep 1999 | A |
5957223 | Doster | Sep 1999 | A |
5957225 | Sinor | Sep 1999 | A |
5967247 | Pessier | Oct 1999 | A |
5979571 | Scott | Nov 1999 | A |
5992547 | Caraway | Nov 1999 | A |
5992548 | Silva | Nov 1999 | A |
6021859 | Tibbitts | Feb 2000 | A |
6039131 | Beaton | Mar 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6150822 | Hong | Nov 2000 | A |
6186251 | Butcher | Feb 2001 | B1 |
6202761 | Forney | Mar 2001 | B1 |
6213226 | Eppink | Apr 2001 | B1 |
6223824 | Moyes | May 2001 | B1 |
6269893 | Beaton | Aug 2001 | B1 |
6296069 | Lamine | Oct 2001 | B1 |
6340064 | Fielder | Jan 2002 | B2 |
6364034 | Schoeffler | Apr 2002 | B1 |
6394200 | Watson | May 2002 | B1 |
6439326 | Huang | Aug 2002 | B1 |
6466513 | Pabon et al. | Oct 2002 | B1 |
6474425 | Truax | Nov 2002 | B1 |
8484825 | Watson | Nov 2002 | |
6510906 | Richert | Jan 2003 | B1 |
6513606 | Krueger | Feb 2003 | B1 |
6533050 | McCoy | Mar 2003 | B2 |
6575236 | Heijnen | Jun 2003 | B1 |
6594881 | Tibbitts | Jul 2003 | B2 |
6601454 | Botnan | Aug 2003 | B1 |
6622803 | Harvey | Sep 2003 | B2 |
6668949 | Rives | Dec 2003 | B1 |
6729420 | Mensa-Wilmot | May 2004 | B2 |
6732817 | Dewey | May 2004 | B2 |
6822579 | Goswani | Nov 2004 | B2 |
9629076 | Fenuel | Apr 2005 | |
6913095 | Krueger | Jul 2005 | B2 |
6953096 | Gledhill | Oct 2005 | B2 |
7270196 | Hall | Sep 2007 | B2 |
7360610 | Hall et al. | Apr 2008 | B2 |
20030213621 | Britten | Nov 2003 | A1 |
20040238221 | Runia | Dec 2004 | A1 |
20040256155 | Kriesels | Dec 2004 | A1 |
20070079988 | Konschuh et al. | Apr 2007 | A1 |
20070114066 | Hall et al. | May 2007 | A1 |
20070221408 | Hall et al. | Sep 2007 | A1 |
20070221417 | Hall et al. | Sep 2007 | A1 |
20080179098 | Hall et al. | Jul 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090065251 A1 | Mar 2009 | US |