Well logging instruments used in the oil and gas industry often employ nuclear magnetic resonance (NMR) downhole sensor assemblies for determining properties of subterranean earth formations including, among other things, the fractional volume of pore space, the fractional volume of mobile fluid filling the pore space and other petrophysical parameters. Existing NMR downhole sensor assemblies use soft magnetic materials to improve efficiency and shield the NMR magnet assembly from the NMR antenna. While increasing the efficiency of the NMR antenna in producing the radio frequency (RF) magnetic field, the soft magnetic material also affects the static magnetic field distribution in a volume of investigation. The soft magnetic material can produce undesired reduction of the static magnetic field in the volume of investigation depending on a position and shape of the soft magnetic material. This reduction requires a larger magnet (e.g., having a larger cross-sectional area) to achieve a desired magnetic field strength of the static magnetic field.
In existing configurations, the soft magnetic core partly closes (or shorts) the magnetic flux and therefore reduces the magnetic field in the volume of investigation. Another existing configuration employs longitudinal dipole type magnets for generating a static magnetic field and orthogonal transversal-dipole antennae for generating a radio frequency (RF) magnetic field to generate excitation and for acquiring NMR signals. The static magnetic field produced in this configuration is restricted due to the soft magnet core, which is typically in a shape of a cylindrical shell elongated in an axial direction. The soft magnetic core results in a reduced static magnetic field and a reduced excitation frequency of the magnetic field in the volume of investigation, and the lower excitation frequency increases dead time of the measurement and the SNR.
The following figures are included to illustrate certain aspects of the present disclosure, and should not be viewed as exclusive embodiments. The subject matter disclosed is capable of considerable modifications, alterations, combinations, and equivalents in form and function, without departing from the scope of this disclosure.
Embodiments of the disclosure are directed to NMR downhole tools that utilize an anisotropic soft magnetic material having a lower magnetic permeability in the direction of the static magnetic field as compared to the magnetic permeability in the direction of the radio frequency (RF) magnetic field. Such NMR tools have a higher signal-to-noise ratio (SNR) (e.g., for a given DC power budget) and a reduced power consumption. The reduced magnetic permeability in the direction of the static magnetic field may increase the static magnetic field strength in a volume of investigation. The relatively higher magnetic field and, therefore, the relatively higher NMR frequency, may reduce the dead time of measurement, and reduced dead time may enable resolving a shorter relaxation time of the NMR signal and may increase SNR per unit time. NMR tools utilizing the anisotropic soft magnetic material may advantageously require smaller magnets (e.g., magnets having a reduced cross-sectional area) and, therefore, may make NMR tools cheaper and relatively more robust.
The drilling system 100 may include a derrick 108 supported by the drilling platform 102 and having a traveling block 110 for raising and lowering a drill string 112. A kelly 114 may support the drill string 112 as it is lowered through a rotary table 116. A drill bit 118 may be coupled to the drill string 112 and driven by a downhole motor and/or by rotation of the drill string 112 by the rotary table 116. As the drill bit 118 rotates, it creates the wellbore 104, which penetrates the subterranean formations 106. A pump 120 may circulate drilling fluid through a feed pipe 122 and the kelly 114, downhole through the interior of drill string 112, through orifices in the drill bit 118, back to the surface via the annulus defined around drill string 112, and into a retention pit 124. The drilling fluid cools the drill bit 118 during operation and transports cuttings from the wellbore 104 into the retention pit 124.
The drilling system 100 may further include a bottom hole assembly (BHA) coupled to the drill string 112 near the drill bit 118. The BHA may comprise various downhole measurement tools such as, but not limited to, measurement-while-drilling (MWD) and logging-while-drilling (LWD) tools, which may be configured to take downhole measurements of drilling conditions. The MWD and LWD tools may include at least one logging tool 126, which may comprise a nuclear magnetic resonance (NMR) logging tool or sensor.
As the drill bit 118 extends the wellbore 104 through the formations 106, the logging tool 126 may collect NMR measurements of the surrounding subterranean formations 106. The logging tool 126 and other sensors of the MWD and LWD tools may be communicably coupled to a telemetry module 128 used to transfer measurements and signals from the BHA to a surface receiver (not shown) and/or to receive commands from the surface receiver. The telemetry module 128 may encompass any known means of downhole communication including, but not limited to, a mud pulse telemetry system, an acoustic telemetry system, a wired communications system, a wireless communications system, or any combination thereof. In certain embodiments, some or all of the measurements taken at the logging tool 126 may also be stored within the logging tool 126 or the telemetry module 128 for later retrieval at the surface upon retracting the drill string 112.
At various times during the drilling process, the drill string 112 may be removed from the wellbore 104, as shown in
As illustrated in
The static magnetic field is generated in a volume of investigation 306 (e.g., a desired volume of the formation 106) and the direction thereof is parallel to the longitudinal axis of the wellbore, as generally indicated by the arrow 308. It should be noted that the volume of investigation 306 forms a complete cylinder about the magnet 301. However, for the sake of clarity of illustration, a cutaway view of the volume of investigation 306 is shown in
The NMR sensor 300 also includes a transversal-dipole antenna 315 that extends at least partially about the circumference of a portion of the magnet 301. The transversal-dipole antenna 315 may operate by generating a radio frequency (RF) magnetic field that results in NMR excitation of the formation 106, and may further acquire NMR signals representative of the NMR conditions in the formation 106. As illustrated, the direction of the RF magnetic field is orthogonal to the static magnetic field generally indicated by the arrow 309.
The transversal-dipole antenna 315 is positioned on the magnet 301 and, more specifically, secured to a soft magnetic core 310 of the magnet 301. For instance, as illustrated, the transversal-dipole antenna 315 may extend about the outer diameter of the soft magnetic core 310. The soft magnetic core 310 is secured to the magnet 301 and, more particularly, to the central magnetic piece 304. In the illustrated embodiment, the soft magnetic core 310 extends about at least some of the outer diameter of the central magnetic piece 304 such that a nested, concentric relationship results. For the purposes of discussion herein, the soft magnetic core 310 is assumed cylindrical in shape. However, the soft magnetic core 310 is not restricted to any particular shape or size, and the shape and size thereof can vary as per application and design requirements. Further, for the sake of clarity of illustration, a cutaway view of the soft magnetic core 310 is shown in
The soft magnetic core 310 is used for RF magnetic flux concentration. The volume of investigation 306 can be made axially long enough and radially wide enough (e.g., 20 cm long, and 0.5 cm wide) to provide immunity or otherwise a decreased sensitivity to axial motion, lateral motion, or both of the logging tool 126 (
An axially longer sensitivity region may enable measurement while conveying the drill string 112 (
The soft magnetic core 310 may be used to concentrate the flux of RF magnetic field generated by the transversal-dipole antenna 315. The flux concentration may result in an increased RF magnetic field in the volume of investigation 306 and thereby an increased SNR. The soft magnetic core 310 also electromagnetically shields the magnetic pieces 302a, 302b, and/or 304, or other components of the NMR sensor 300 (and/or the logging tool 126) from the RF magnetic field generated by the transversal-dipole antenna 315. As a result, the eddy current losses in the NMR sensor 300 are reduced. This reduction in eddy current may also reduce electromagnetic acoustic ringing, which may cause undesired signal interfering with the generated NMR signals.
The magnetic flux due to the static magnetic field generated by the magnetic pieces 302a, 302b, and 304 may be at least partly shorted by the soft magnetic core 310. An amount by which the magnetic flux of the static magnetic field is shorted depends on the magnetic permeability of the material of the soft magnetic core 310. The greater the magnetic permeability of the material of the soft magnetic core 310, the greater is the shorting of the magnetic flux of the static magnetic field . The shorting of the magnetic flux reduces static magnetic field in the volume of investigation 306 and also may saturate the soft magnetic core 310 and, therefore, reduce its efficiency. The shorting of the magnetic flux and other undesirable effects may be reduced by using a soft magnetic core 310 having a lower magnetic permeability. However, the lower magnetic permeability material may reduce the efficiency of the transversal-dipole antenna 315 in generating the RF magnetic field and reduce the desirable shielding effect provided by the soft magnetic core 310.
The soft magnetic core 402 may be made of or otherwise include an anisotropic magnetic material 408 having a magnetic permeability that varies with direction. The anisotropy in the magnetic permeability of the material 408 of the soft magnetic core 402 may be an intrinsic property of the material 408 or the material 408 may be manufactured to exhibit anisotropy in the magnetic permeability. In any example, the anisotropic magnetic material 408 may be or include different material grades of metal powder cores produced by Fluxtrol, Inc. or Micrometals, Inc., or other soft magnetic metal ribbon or tape wound cores.
The soft magnetic core 404 may be composed of an isotropic magnetic material 410 having a magnetic permeability that does not vary with direction. The magnetic permeability of the soft magnetic core 404 can be made anisotropic by defining one or more annular gaps 406 in the isotropic magnetic material 410, thereby defining annular segments of the isotropic magnetic material 410 that are separated from each other. The annular gaps 406 reduce the magnetic permeability in the direction of the static magnetic field in the soft magnetic core 404 compared to the magnetic permeability in the direction of RF magnetic field .
Numerical modeling may be used to quantify the effect of the anisotropy of the permeability of the soft magnetic cores 402 and 404 on the SNR of a NMR measurement performed using the NMR sensor 300 (
During exemplary operation of the NMR sensor 500, the static magnetic field is generated by the magnet 502 and the RF magnetic field is generated by the NMR antenna 506. In order to reduce the shorting of the magnetic flux in the soft magnetic core 504, an axial non-magnetic gap 508 may be defined longitudinally in at least a portion of the soft magnetic core 504. The axial non-magnetic gap 508 may recue the shorting of the magnetic flux in the soft magnetic core 504 by shape the static magnetic field generated by the magnet 502. The axial non-magnetic gap 508 may be filled with a variety of non-magnetic, electrically insulating/non-conductive materials such as, but not limited to, a high temperature plastic, a thermoplastic, a polymer (e.g., polyimide), a ceramic, an epoxy material, air, or any combination thereof.
Numerical modeling may be used to compare performances of isotropic and anisotropic magnetic materials in terms of their effect on the SNR when performing a NMR measurement using the NMR sensor 500. In one test case scenario, the magnetic permeability of the anisotropic material of the soft magnetic core 504 in the direction of the static magnetic field was assumed to be about 23, while the magnetic permeability in the direction of the RF magnetic field was assumed to be about 56. Compared to an isotropic material with magnetic permeability of 23, the SNR increase when using the NMR sensor 500 for analyzing a non-conductive bore mud and 1 Ohm-m resistivity rock formation was around 9%. The efficiency of the NMR sensor 500, which may be defined as the SNR per square root of the power loss, was obtained to be about 13%.
In any embodiment of the NMR sensors 300 and 500 disclosed above, the static magnetic field may be kept unchanged from its value when using an isotropic material for the soft magnetic core. Instead, the cross-sectional area of the soft magnetic cores 310 and 504 may be reduced. A reduced cross-sectional area of the soft magnetic core may make the NMR sensors 300 and 500 less expensive, and may result in a simpler and more robust sensor and NMR tool design.
Therefore, the disclosed systems and methods are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered, combined, or modified and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the elements that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
This application claims priority under 35 U.S.C. § 119 to Provisional Application No. 62/131,339 filed on Mar. 11, 2015, in the United States Patent and Trademark Office.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/017069 | 2/9/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/144460 | 9/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3187284 | Rinia | Jun 1965 | A |
4629986 | Clow et al. | Dec 1986 | A |
5280243 | Miller | Jan 1994 | A |
5557201 | Kleinberg et al. | Sep 1996 | A |
6018243 | Taicher | Jan 2000 | A |
6348792 | Beard et al. | Feb 2002 | B1 |
6452388 | Reiderman | Sep 2002 | B1 |
6534980 | Toufaily et al. | Mar 2003 | B2 |
6580273 | Reiderman et al. | Jun 2003 | B2 |
20010045829 | Prammer | Nov 2001 | A1 |
20020022699 | Kuriyama et al. | Feb 2002 | A1 |
20050189945 | Reiderman | Sep 2005 | A1 |
20060255799 | Reiderman | Nov 2006 | A1 |
20070182408 | Blanz | Aug 2007 | A1 |
20070222444 | Reiderman | Sep 2007 | A1 |
20090072825 | Prammer | Mar 2009 | A1 |
20150061664 | Reiderman et al. | Mar 2015 | A1 |
20150061665 | Reiderman et al. | Mar 2015 | A1 |
20150115965 | Reiderman | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
0932055 | Jul 1999 | EP |
02084332 | Oct 2002 | WO |
Entry |
---|
ISR/WO for PCT/US2016/017069 dated May 17, 2016. |
European Application Serial No. 16762097.0; Extended European Search Report; dated Dec. 19, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170010378 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62131339 | Mar 2015 | US |