This disclosure relates to downhole phase separation in subterranean formations, and in particular, in deviated wells.
Gas reservoirs that have naturally low reservoir pressures can be susceptible to liquid loading at some point in the production life of a well due to the reservoir's inability to provide sufficient pressure to carry wellbore liquids to the surface. As liquids accumulate, slug flow of gas and liquid phases can be encountered, especially in deviated wells. As a deviated well turns vertically at a heel, gas can segregate and migrate upward in comparison to liquid due to the effects of gravity and collect to form gas slugs. Slug flows are unstable and can bring solids issues and pumping interferences, which can result in an increase in operating expenses, excessive workover costs, and insufficient pressure drawdown.
This disclosure describes technologies relating to downhole phase separation in subterranean formations, and in particular, in deviated wells. Certain aspects of the subject matter described can be implemented as a system. The system includes a packer, a first tubular, a second tubular, and a connector. The packer is configured to be disposed in a deviated portion of a well formed in a subterranean formation. The packer is configured to form a seal with an inner wall of the well. The first tubular extends through the packer and has a cross-sectional flow area that is smaller than a cross-sectional flow area of the well. The first tubular includes a first inlet and a first outlet portion. The first inlet is configured to receive a wellbore fluid. The first outlet portion is configured to induce separation of a gaseous portion of the wellbore fluid from a remainder of the wellbore fluid, such that the gaseous portion flows uphole through an annulus between the inner wall of the well and the first tubular. The second tubular includes a second inlet and a second outlet. The second inlet is configured to receive at least a liquid portion of the remainder of the wellbore fluid. The second outlet is configured to discharge the liquid portion of the remainder of the wellbore fluid. The connector is coupled to the first tubular and the second tubular. The connector is coupled to the first outlet portion of the first tubular, such that the connector is configured to prevent flow of the wellbore fluid from the first tubular through the connector. The connector is configured to fluidically connect the second tubular to a downhole artificial lift system disposed within the well, uphole of the connector. A sump for accumulation of solid material from the wellbore fluid is defined by a region of the annulus between the inner wall of the well and the first tubular, downhole of the second inlet of the second tubular and uphole of the packer.
This, and other aspects, can include one or more of the following features. The deviated portion of the well in which the packer is disposed can have a deviation angle in a range of from 70 degrees (°) to 90° (horizontal). The first tubular can include a first portion near the first inlet. The first portion can have a first deviation angle. The first outlet portion can have a second deviation angle that is less than the first deviation angle. The first outlet portion of the first tubular can define perforations. The perforations can be configured to induce separation of the gaseous portion of the wellbore fluid from the remainder of the wellbore fluid as the wellbore fluid flows through the perforations. The second tubular can have a cross-sectional flow area that is smaller than the cross-sectional flow area of the first tubular. The first tubular can extend past the packer. The first inlet can be positioned downhole in comparison to the packer.
Certain aspects of the subject matter described can be implemented as a system. The system includes a packer, a first tubular, and a second tubular. The packer is configured to be disposed in a deviated portion of a well formed in a subterranean formation. The packer is configured to form a seal with an inner wall of the well. The first tubular extends through the packer. The first tubular has a cross-sectional flow area that is smaller than a cross-sectional flow area of the well. The first tubular includes a first inlet and a first outlet. The first inlet is configured to receive a wellbore fluid. The first outlet is configured to discharge the wellbore fluid into an annulus within the well, uphole of the packer. The second tubular is coupled to the first tubular. The second tubular includes a second inlet and a second outlet. The second inlet is configured to receive at least a liquid portion of the wellbore fluid. The second outlet is configured to discharge the liquid portion of the wellbore fluid to a downhole artificial lift system disposed within the well. The first tubular and the second tubular share a common wall that defines a divided section. The first outlet of the first tubular is disposed at an uphole end of the divided section. The second inlet of the second tubular is disposed at a downhole end of the divided section. A sump for accumulation of solid material from the wellbore fluid is defined by a region of an annulus between the inner wall of the well and the first tubular, downhole of the second inlet of the second tubular and uphole of the packer.
This, and other aspects, can include one or more of the following features. The deviated portion of the well in which the packer is disposed can have a deviation angle in a range of from 70 degrees (°) to 90° (horizontal). The first tubular can include a first portion near the first inlet. The first portion can have a first deviation angle. The first tubular can include a second portion near the first outlet. The second portion can have a second deviation angle less than the first deviation angle. The second tubular can have a cross-sectional flow area that is smaller than the cross-sectional flow area of the first tubular. The first tubular can extend past the packer. The first inlet can be positioned downhole in comparison to the packer.
Certain aspects of the subject matter described can be implemented as a method. A packer is disposed in a deviated portion of a well formed in a subterranean formation. The packer seals with an inner wall of the well. A first tubular extends through the packer. The first tubular has a cross-sectional flow area that is smaller than a cross-sectional flow area of the well. The first tubular includes a first inlet and a first outlet. The first tubular receives a wellbore fluid via the first inlet. The first outlet discharges the wellbore fluid into an annulus within the well, uphole of the packer. A second tubular is coupled to the first tubular. The second tubular includes a second inlet. The second tubular receives at least a liquid portion of the wellbore fluid via the second inlet. The second tubular directs the liquid portion of the wellbore fluid to a downhole artificial lift system disposed within the well. A sump is defined by a region of an annulus between the inner wall of the well and the first tubular, downhole of the second inlet of the second tubular and uphole of the packer. The sump receives at least a portion of solid material carried by the wellbore fluid.
This, and other aspects, can include one or more of the following features. The deviated portion of the well in which the packer is disposed can have a deviation angle in a range of from 70 degrees (°) to 90° (horizontal). The first tubular can include a first portion near the first inlet. The first portion can have a first deviation angle. The first tubular can include a second portion near the first outlet. The second portion can have a second deviation angle that is less than the first deviation angle. The second tubular can have a cross-sectional flow area that is smaller than the cross-sectional flow area of the first tubular. The first tubular can extend past the packer. The first inlet can be positioned downhole in comparison to the packer. The first tubular and the second tubular can share a common wall that defines a divided section. The first outlet of the first tubular can be disposed at an uphole end of the divided section. The second inlet of the second tubular can be disposed at a downhole end of the divided section. Fluid flowing from the first tubular to the second tubular can flow into the annulus before entering the second tubular. The first tubular and the second tubular can be coupled by a connector. The connector can prevent the wellbore fluid from flowing from the first tubular and through the connector. The connector can fluidically connect the second tubular to the downhole artificial lift system. The first tubular can include multiple outlets. The first outlet can be one of the outlets. The multiple outlets of the first tubular can induce separation of a gaseous portion of the wellbore fluid from a remainder of the wellbore fluid as the wellbore fluid flows out of the first tubular through the multiple outlets.
The details of one or more implementations of the subject matter of this disclosure are set forth in the accompanying drawings and the description. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
A phase separation system includes a seal that seals against a wall of a wellbore. A first tubular extends through the seal. The first tubular includes an inlet downhole of the packer that receives a wellbore fluid. The first tubular includes an outlet uphole of the packer that discharges the wellbore fluid into an annulus between the first tubular and the wall of the wellbore, uphole of the packer. A gaseous portion of the wellbore fluid separates from a remainder of the wellbore fluid and flows uphole through the annulus to the surface. The first tubular is coupled to a second tubular. The second tubular includes an inlet downhole of the outlet of the first tubular and uphole of the packer. The inlet of the second tubular receives at least a liquid portion of the wellbore fluid discharged by the first tubular. The second tubular includes an outlet uphole of the inlet of the second tubular that discharges the liquid portion of the wellbore fluid. The liquid portion of the wellbore fluid discharged by the second tubular flows to a downhole artificial lift system to be produced to the surface. A sump is defined by a region of the annulus downhole of the inlet of the second tubular and uphole of the packer. The sump can accumulate solid material carried by the wellbore fluid.
The subject matter described in this disclosure can be implemented in particular implementations, so as to realize one or more of the following advantages. The phase separation systems described herein can effectively mitigate and/or eliminate downhole slugging issues in wells, and in particular, in deviated wells. The phase separation systems described herein can mitigate and/or eliminate liquid loading issues in wells, and in particular, in deviated wells. The phase separation systems described herein can reduce a cross-sectional flow area of multi-phase wellbore fluids in comparison to a cross-sectional flow area of an annulus of a well for gas flow, which can facilitate downhole gas-liquid separation and also mitigate and/or eliminate gas carry-under and liquid carry-over in wells, and in particular, in deviated wells. The phase separation systems described herein can reduce costs associated with well completion operations.
In some implementations, the well 100 is a gas well that is used in producing hydrocarbon gas (such as natural gas) from the subterranean zones of interest to the surface. While termed a “gas well,” the well need not produce only dry gas, and may incidentally or in much smaller quantities, produce liquid including oil, water, or both. In some implementations, the well 100 is an oil well that is used in producing hydrocarbon liquid (such as crude oil) from the subterranean zones of interest to the surface. While termed an “oil well,” the well not need produce only hydrocarbon liquid, and may incidentally or in much smaller quantities, produce gas, water, or both. The production from the well 100 can be multiphase in any ratio. In some implementations, the production from the well 100 can produce mostly or entirely liquid at certain times and mostly or entirely gas at other times. For example, in certain types of wells it is common to produce water for a period of time to gain access to the gas in the subterranean zone.
The wellbore of the well 100 is typically, although not necessarily, cylindrical. All or a portion of the wellbore is lined with a tubing, such as casing 112. The casing 112 connects with a wellhead at the surface and extends downhole into the wellbore. The casing 112 operates to isolate the bore of the well 100, defined in the cased portion of the well 100 by the inner bore of the casing 112, from the surrounding Earth 108. The casing 112 can be formed of a single continuous tubing or multiple lengths of tubing joined (for example, threadedly) end-to-end. The casing 112 can be perforated in the subterranean zone of interest to allow fluid communication between the subterranean zone of interest and the bore of the casing 112. In some implementations, the casing 112 is omitted or ceases in the region of the subterranean zone of interest. This portion of the well 100 without casing is often referred to as “open hole.”
The wellhead defines an attachment point for other equipment to be attached to the well 100. For example, the well 100 can be produced with a Christmas tree attached to the wellhead. The Christmas tree can include valves used to regulate flow into or out of the well 100. The well 100 includes a downhole artificial lift system 150 residing in the wellbore, for example, at a depth that is nearer to subterranean zone than the surface. The artificial lift system 150, being of a type configured in size and robust construction for installation within a well 100, can include any type of rotating equipment that can assist production of fluids to the surface and out of the well 100 by creating an additional pressure differential within the well 100. For example, the artificial lift system 150 can include a pump, compressor, blower, or multi-phase fluid flow aid.
In particular, casing 112 is commercially produced in a number of common sizes specified by the American Petroleum Institute (the “API”), including 4½, 5, 5½, 6, 6⅝, 7, 7⅝, 7¾, 8⅝, 8¾, 9⅝, 9¾, 9⅞, 10¾, 11¾, 11⅞, 13⅜, 13½, 13⅝, 16, 18⅝, and 20 inches, and the API specifies internal diameters for each casing size. The artificial lift system 150 can be configured to fit in, and (as discussed in more detail below) in certain instances, seal to the inner diameter of one of the specified API casing sizes. Of course, the artificial lift system 150 can be made to fit in and, in certain instances, seal to other sizes of casing or tubing or otherwise seal to a wall of the well 100.
Additionally, the construction of the components of the artificial lift system 150 are configured to withstand the impacts, scraping, and other physical challenges the artificial lift system 150 will encounter while being passed hundreds of feet/meters or even multiple miles/kilometers into and out of the well 100. For example, the artificial lift system 150 can be disposed in the well 100 at a depth of up to 10,000 feet (3,048 meters). Beyond just a rugged exterior, this encompasses having certain portions of any electronics being ruggedized to be shock resistant and remain fluid tight during such physical challenges and during operation. Additionally, the artificial lift system 150 is configured to withstand and operate for extended periods of time (for example, multiple weeks, months or years) at the pressures and temperatures experienced in the well 100, which temperatures can exceed 400 degrees Fahrenheit (° F.)/205 degrees Celsius (° C.) and pressures over 2,000 pounds per square inch gauge (psig), and while submerged in the well fluids (gas, water, or oil as examples). Finally, the artificial lift system 150 can be configured to interface with one or more of the common deployment systems, such as jointed tubing (that is, lengths of tubing joined end-to-end), a sucker rod, coiled tubing (that is, not-jointed tubing, but rather a continuous, unbroken and flexible tubing formed as a single piece of material), or wireline with an electrical conductor (that is, a monofilament or multifilament wire rope with one or more electrical conductors, sometimes called e-line) and thus have a corresponding connector (for example, a jointed tubing connector, coiled tubing connector, or wireline connector).
In some implementations, the artificial lift system 150 can be implemented to alter characteristics of a wellbore by a mechanical intervention at the source. Alternatively, or in addition to any of the other implementations described in this specification, the artificial lift system 150 can be implemented as a high flow, low pressure rotary device for gas flow. Alternatively, or in addition to any of the other implementations described in this specification, the artificial lift system 150 can be implemented in a direct well-casing deployment for production through the wellbore. Other implementations of the artificial lift system 150 as a pump, compressor, or multiphase combination of these can be utilized in the well bore to effect increased well production.
The artificial lift system 150 locally alters the pressure, temperature, flow rate conditions, or a combination of these of the fluid in the well 100 proximate the artificial lift system 150. In certain instances, the alteration performed by the artificial lift system 150 can optimize or help in optimizing fluid flow through the well 100. As described previously, the artificial lift system 150 creates a pressure differential within the well 100, for example, particularly within the locale in which the artificial lift system 150 resides. In some instances, a pressure at the base of the well 100 is a low pressure, so unassisted fluid flow in the wellbore can be slow or stagnant. In these and other instances, the artificial lift system 150 introduced to the well 100 adjacent the perforations can reduce the pressure in the well 100 near the perforations to induce greater fluid flow from the subterranean zone, increase a temperature of the fluid entering the artificial lift system 150 to reduce condensation from limiting production, increase a pressure in the well 100 uphole of the artificial lift system 150 to increase fluid flow to the surface, or a combination of these.
The artificial lift system 150 moves the fluid at a first pressure downhole of the artificial lift system 150 to a second, higher pressure uphole of the artificial lift system 150. The artificial lift system 150 can operate at and maintain a pressure ratio across the artificial lift system 150 between the second, higher uphole pressure and the first, downhole pressure in the wellbore. The pressure ratio of the second pressure to the first pressure can also vary, for example, based on an operating speed of the artificial lift system 150. The artificial lift system 150 can operate in a variety of downhole conditions of the well 100. For example, the initial pressure within the well 100 can vary based on the type of well, depth of the well 100, and production flow from the perforations into the well 100.
The well 100 includes a phase separation system 160. The phase separation system 160 includes a seal 161 integrated or provided separately with a downhole system, as shown with the artificial lift system 150. The seal 161 divides the well 100 into an uphole zone 130 above the seal 161 and a downhole zone 132 below the seal 161. The seal 161 is configured to seal against the wall of the wellbore, for example, against the interior wall of the casing 112 in the cased portions of the well 100 or against the interior wall of the wellbore in the uncased, open hole portions of the well 100. In certain instances, the seal 161 can form a gas- and liquid-tight seal at the pressure differential the artificial lift system 150 creates in the well 100. For example, the seal 161 can be configured to at least partially seal against an interior wall of the wellbore to separate (completely or substantially) a pressure in the well 100 downhole of the seal 161 from a pressure in the well 100 uphole of the seal 161. Although not shown in
The phase separation system 160 includes a first tubular 163, a second tubular 165, and a connector 167. The first tubular 163 extends through the seal 161. The first tubular 163 includes an inlet 163a configured to receive a wellbore fluid 190. The first tubular 163 has a cross-sectional flow area that is smaller than a cross-sectional flow area of the well 100 (for example, the wellbore). The wellbore fluid 190 entering the first tubular 163 via the inlet 163a accelerates due to the decreased cross-sectional flow area. The first tubular 163 includes an outlet portion 163b that is configured to induce separation of a gaseous portion 190a of the wellbore fluid 190 from a remainder of the wellbore fluid 190 (for example, a liquid portion 190b of the wellbore fluid and solid material 190c carried by the wellbore fluid). In some implementations, the outlet portion 163b defines perforations 163c, and the perforations 163c are configured to induce separation of the gaseous portion 190a of the wellbore fluid 190 from the remainder of the wellbore fluid 190 as the wellbore fluid 190 flows through the perforations 163c. For example, the perforations 163c can induce a “bubbling” effect that enhances separation of the gaseous portion 190a of the wellbore fluid 190 from the remainder of the wellbore fluid 190. In some implementations, the first tubular 163 includes a swirl device (not shown), such as helical vanes disposed within the outlet portion 163b of the first tubular 163, which can induce rotation in the wellbore fluid 190 flowing through the first tubular 163. The rotation of the wellbore fluid 190 induced by the swirl device can enhance phase separation via centrifugal force.
The gaseous portion 190a of the wellbore fluid 190 can then flow uphole through an annulus 130a of the uphole zone 130 between the inner wall of the well 100 (for example, the casing 112) and the first tubular 163. In some implementations, as shown in
The second tubular 165 includes an inlet 165a configured to receive at least a liquid portion 190b of the wellbore fluid 190. The second tubular 165 includes an outlet 165b configured to discharge the liquid portion 190b of the wellbore fluid 190. The liquid portion 190b of the wellbore fluid 190 discharged by the outlet 165b of the second tubular 165 flows to the artificial lift system 150 to be produced to the surface. In some implementations, the second tubular 165 has a cross-sectional flow area that is smaller than the cross-sectional flow area of the first tubular 163. Decreasing the cross-sectional flow areas of the first tubular 163 and the second tubular 165 directly increases the cross-sectional flow area of the annulus 130a of the uphole zone 130, which can facilitate the separation of phases (gas from liquid and solid from liquid) of the wellbore fluid 190. In some implementations, the inlet 165a of the second tubular 165 includes a screen (not shown) that is configured to prevent solid material of a certain size from flowing through the screen and into the second tubular 165 via the inlet 165a. The screen can be sized to prevent sand or other particulate matter that is expected to be produced with the production fluid (for example, identified from production data obtained for the well 100) from flowing through the screen and into the second tubular 165 via the inlet 165a.
The connector 167 is coupled to the first tubular 163 and the second tubular 165. The connector 167 is coupled to the outlet portion 163b of the first tubular 163, such that the connector 167 is configured to prevent flow of the wellbore fluid 190 from the first tubular 163 through the connector 167. That is, any fluid that flows into the first tubular 163 via the inlet 163a flows out of the first tubular 163 through the perforations 163c of the outlet portion 163b instead of flowing through the connector 167. The connector 167 is configured to fluidically connect the second tubular 165 to the artificial lift system 150, which is disposed uphole of the connector 167.
A sump 169 of the phase separation system 160 is defined by a region of the annulus 130a of the uphole zone 130 between the inner wall of the well 100 (for example, the casing 112) and the first tubular 163, downhole of the inlet 165a of the second tubular 165 and uphole of the seal 161. The sump 169 can accumulate the solid material 190c carried by the wellbore fluid 190. For example, the solid material 190c carried by the wellbore fluid 190 can flow into the first tubular 163 via the inlet 163a, out of the first tubular 163 via the outlet portion 163b, and settle in the sump 169 due to gravity. The perforations 163c of the outlet portion 163b of the first tubular 163 can be sized, such that the solid material 190c can pass through the perforations 163c without getting lodged/stuck in the perforations 163c. The perforations 163c can be sized to allow sand or other particulate matter (for example, identified from production data obtained for the well 100) to pass through the perforations 163c without getting lodged/stuck in the perforations 163c, so that the sand or other particulate matter can be discharged to the annulus 130a of the uphole zone 130 between the inner wall of the well 100 (for example, the casing 112) and the first tubular 163 and subsequently settle in the sump 169. The perforations 163c of the outlet portion 163b of the first tubular 163 can have any shape, for example, circular or any other geometric shape.
The phase separation system 260 includes a first tubular 263 and a second tubular 265. The first tubular 263 can be substantially similar to the first tubular 163 of the phase separation system 160 shown in
The gaseous portion 190a of the wellbore fluid 190 can then flow uphole through the annulus 230a of the uphole zone 230 between the inner wall of the well 100 (for example, the casing 112) and the first tubular 263. In some implementations, as shown in
The second tubular 265 can be substantially similar to the second tubular 165 of the phase separation system 160 shown in
The second tubular 265 is coupled to the first tubular 263. The first tubular 263 and the second tubular 265 share a common wall 267 that defines a divided section 268. The outlet 263b of the first tubular 263 is disposed at an uphole end of the divided section 268. The inlet 265a of the second tubular 265 is disposed at a downhole end of the divided section 268. Thus, the divided section 268 ensures that fluid flowing from the first tubular 263 to the second tubular 265 (for example, the liquid portion 190b of the wellbore fluid 190) flows out of the first tubular 263 via the outlet 263b and into the annulus 230a before entering the second tubular 265 via the inlet 265a.
A sump 269 of the phase separation system 260 is defined by a region of the annulus 230a of the uphole zone 230 between the inner wall of the well 100 (for example, the casing 112) and the first tubular 263, downhole of the inlet 265a of the second tubular 265 and uphole of the seal 261. The sump 269 can be substantially similar to the sump 169 of the phase separation system 160 shown in
At block 304, a wellbore fluid (such as the wellbore fluid 190) is received by a first tubular (such as the first tubular 163 or 263) via an inlet (such as the inlet 163a or 263a, respectively) of the first tubular 163, 263.
At block 306, the wellbore fluid 190 is discharged by an outlet (such as the outlet portion 163b or outlet 263b) of the first tubular 163, 263 into an annulus (such as the annulus 130a or 230a) within the well 100, uphole of the seal 161, 261. When the method 300 is implemented by the phase separation system 160, the connector 167 prevents the wellbore fluid 190 from flowing from the first tubular 163 and through the connector 167. Instead, any fluid that flows into the first tubular 163 via the inlet 163a flows out of the first tubular 163, for example, through the perforations 163c of the outlet portion 163b. The perforations 163c induce separation of the gaseous portion (such as the gaseous portion 190a) of the wellbore fluid 190 from a remainder of the wellbore fluid 190 (for example, the liquid portion 190b of the wellbore fluid and the solid material 190c carried by the wellbore fluid), as the wellbore fluid 190 flows out of the first tubular 163 through the perforations 163c.
At block 308, at least a liquid portion (such as the liquid portion 190b) of the wellbore fluid 190 is received by a second tubular (such as the second tubular 165 or 265) via an inlet (such as the inlet 165a or 265a, respectively) of the second tubular 165, 265. In some implementations, the inlet 165a, 265a can prevent solid material of a certain size from flowing into the second tubular 165, 265, for example, using a screen. For example, the screen can prevent sand or other particulate matter that is expected to be produced with the production fluid (for example, identified from production data obtained for the well 100) from flowing through the screen and into the second tubular 165, 265 via the inlet 165a, 265a.
At block 310, the liquid portion 190b of the wellbore fluid 190 is directed by the second tubular 165, 265 to a downhole artificial lift system (such as the artificial lift system 150) disposed within the well 100. When the method 300 is implemented by the phase separation system 160, the connector 167 fluidically connects the second tubular 165 to the artificial lift system 150.
At block 312, at least a portion of solid material carried by the wellbore fluid 190 (such as the solid material 190c) is received by a sump (such as the sump 169 or 269).
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
As used in this disclosure, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. The statement “at least one of A and B” has the same meaning as “A, B, or A and B.” In addition, it is to be understood that the phraseology or terminology employed in this disclosure, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.
As used in this disclosure, the term “about” or “approximately” can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.
As used in this disclosure, the term “substantially” refers to a majority of, or mostly, as in at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, or at least about 99.999% or more.
As used in this disclosure, the term “deviation angle” is the angle at which a longitudinal axis of a wellbore (or portion of a wellbore that is of interest) diverges from vertical. A deviation angle of 0° or 180° means that the longitudinal axis of the wellbore (or portion of the wellbore that is of interest) is vertical. A deviation angle of 90° means that the longitudinal axis of the wellbore (or portion of the wellbore that is of interest) is horizontal.
Values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a range of “0.1% to about 5%” or “0.1% to 5%” should be interpreted to include about 0.1% to about 5%, as well as the individual values (for example, 1%, 2%, 3%, and 4%) and the sub-ranges (for example, 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement “X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise. Likewise, the statement “X, Y, or Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise.
Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.
Moreover, the separation or integration of various system modules and components in the previously described implementations should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described components and systems can generally be integrated together or packaged into multiple products.
Accordingly, the previously described example implementations do not define or constrain the present disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
335164 | Vitalis | Feb 1886 | A |
646887 | Stowe et al. | Apr 1900 | A |
1485504 | Hollander | Mar 1924 | A |
1559155 | Bullock | Oct 1925 | A |
1674815 | Barnhart | Jun 1928 | A |
1912452 | Hollander | Jun 1933 | A |
1941442 | Moran et al. | Dec 1933 | A |
1978277 | Noble | Oct 1934 | A |
2204857 | Aladar | Jun 1940 | A |
2216315 | Aladar | Oct 1940 | A |
2287027 | Cummins | Jun 1942 | A |
2407987 | Landberg | Sep 1946 | A |
2556435 | Moehrl | Jun 1951 | A |
2625110 | Haentjens et al. | Jan 1953 | A |
2641191 | Alfred | Jun 1953 | A |
2643723 | Lynes | Jun 1953 | A |
2782720 | Dochterman | Feb 1957 | A |
2845869 | Herbenar | Aug 1958 | A |
2866417 | Otto | Dec 1958 | A |
2931384 | Clark | Apr 1960 | A |
3007418 | Brundage et al. | Nov 1961 | A |
3022739 | Herrick et al. | Feb 1962 | A |
3034484 | Stefancin | May 1962 | A |
3038698 | Troyer | Jun 1962 | A |
3075743 | Sheets | Jan 1963 | A |
3123010 | Witt et al. | Mar 1964 | A |
3126755 | Luck | Mar 1964 | A |
3129875 | Cirillo | Apr 1964 | A |
3132595 | Bower | May 1964 | A |
3139835 | Wilkinson | Jul 1964 | A |
3171355 | Harris et al. | Mar 1965 | A |
3175403 | Nelson | Mar 1965 | A |
3175618 | Lang et al. | Mar 1965 | A |
3213797 | McMahan | Oct 1965 | A |
3229642 | Lobanoff | Jan 1966 | A |
3251226 | Cushing | May 1966 | A |
3272130 | Mosbacher | Sep 1966 | A |
3413925 | Campolong | Dec 1968 | A |
3433163 | Brancart | Mar 1969 | A |
3448305 | Raynal et al. | Jun 1969 | A |
3462082 | Everett | Aug 1969 | A |
3516765 | Boyadjieff | Jun 1970 | A |
3558936 | Horan | Jan 1971 | A |
3638732 | Huntsinger et al. | Feb 1972 | A |
3663845 | Apstein | May 1972 | A |
3680989 | Brundage | Aug 1972 | A |
3724503 | Cooke | Apr 1973 | A |
3771910 | Laing | Nov 1973 | A |
3795145 | Miller | Mar 1974 | A |
3839914 | Modisette et al. | Oct 1974 | A |
3874812 | Hanagarth | Apr 1975 | A |
3906792 | Miller | Sep 1975 | A |
3918520 | Hutchison | Nov 1975 | A |
3961758 | Morgan | Jun 1976 | A |
3970877 | Russell et al. | Jul 1976 | A |
3975117 | Carter | Aug 1976 | A |
3981626 | Onal | Sep 1976 | A |
4025244 | Sato | May 1977 | A |
4096211 | Rameau | Jun 1978 | A |
4127364 | Eiermann | Nov 1978 | A |
4139330 | Neal | Feb 1979 | A |
4154302 | Cugini | May 1979 | A |
4181175 | McGee et al. | Jan 1980 | A |
4226275 | Frosch | Oct 1980 | A |
4266607 | Halstead | May 1981 | A |
4289199 | McGee | Sep 1981 | A |
4336415 | Walling | Jun 1982 | A |
4374530 | Walling | Feb 1983 | A |
4387318 | Kolm et al. | Jun 1983 | A |
4387685 | Abbey | Jun 1983 | A |
4417474 | Elderton | Nov 1983 | A |
4425965 | Bayh, III et al. | Jan 1984 | A |
4440221 | Taylor et al. | Apr 1984 | A |
4476923 | Walling | Oct 1984 | A |
4491176 | Reed | Jan 1985 | A |
4497185 | Shaw | Feb 1985 | A |
4536674 | Schmidt | Aug 1985 | A |
4576043 | Nguyen | Mar 1986 | A |
4580634 | Cruise | Apr 1986 | A |
4582131 | Plummer et al. | Apr 1986 | A |
4586854 | Newman et al. | May 1986 | A |
4619323 | Gidley | Oct 1986 | A |
4627489 | Reed | Dec 1986 | A |
4632187 | Bayh, III et al. | Dec 1986 | A |
4658583 | Shropshire | Apr 1987 | A |
4662437 | Renfro | May 1987 | A |
4665981 | Hayatdavoudi | May 1987 | A |
4676308 | Chow | Jun 1987 | A |
4685523 | Paschal, Jr. et al. | Aug 1987 | A |
4741668 | Bearden et al. | May 1988 | A |
4757709 | Czernichow | Jul 1988 | A |
RE32866 | Cruise | Feb 1989 | E |
4838758 | Sheth | Jun 1989 | A |
4850812 | Voight | Jul 1989 | A |
4856344 | Hunt | Aug 1989 | A |
4867633 | Gravelle | Sep 1989 | A |
4969364 | Masuda | Nov 1990 | A |
4986739 | Child | Jan 1991 | A |
5033937 | Wilson | Jul 1991 | A |
5094294 | Bayh, III et al. | Mar 1992 | A |
5113379 | Scherbatskoy | May 1992 | A |
5150619 | Turner | Sep 1992 | A |
5158440 | Cooper et al. | Oct 1992 | A |
5169286 | Yamada | Dec 1992 | A |
5180014 | Cox | Jan 1993 | A |
5195882 | Freeman | Mar 1993 | A |
5201848 | Powers | Apr 1993 | A |
5209650 | Lemieux | May 1993 | A |
5224182 | Murphy et al. | Jun 1993 | A |
5240073 | Bustamante | Aug 1993 | A |
5246336 | Furukawa | Sep 1993 | A |
5261796 | Niemiec et al. | Nov 1993 | A |
5269377 | Martin | Dec 1993 | A |
5285008 | Sas-Jaworsky et al. | Feb 1994 | A |
5301760 | Graham | Apr 1994 | A |
5317223 | Kiesewetter et al. | May 1994 | A |
5319272 | Raad | Jun 1994 | A |
5323661 | Cheng | Jun 1994 | A |
5334801 | Mohn | Aug 1994 | A |
5335542 | Ramakrishnan et al. | Aug 1994 | A |
5337603 | McFarland et al. | Aug 1994 | A |
5358378 | Holscher | Oct 1994 | A |
5375622 | Houston | Dec 1994 | A |
5482117 | Kolpak | Jan 1996 | A |
5494413 | Campen et al. | Feb 1996 | A |
5591922 | Segeral et al. | Jan 1997 | A |
5605193 | Bearden et al. | Feb 1997 | A |
5613311 | Burtch | Mar 1997 | A |
5613555 | Sorem et al. | Mar 1997 | A |
5620048 | Beauquin | Apr 1997 | A |
5641915 | Ortiz | Jun 1997 | A |
5649811 | Krol, Jr. et al. | Jul 1997 | A |
5653585 | Fresco et al. | Aug 1997 | A |
5693891 | Brown | Dec 1997 | A |
5708500 | Anderson | Jan 1998 | A |
5736650 | Hiron et al. | Apr 1998 | A |
5755288 | Bearden et al. | May 1998 | A |
5834659 | Ortiz | Nov 1998 | A |
5845709 | Mack et al. | Dec 1998 | A |
5848642 | Sola | Dec 1998 | A |
5880378 | Behring | Mar 1999 | A |
5886267 | Ortiz et al. | Mar 1999 | A |
5892860 | Maron et al. | Apr 1999 | A |
5905208 | Ortiz et al. | May 1999 | A |
5908049 | Williams et al. | Jun 1999 | A |
5921285 | Quigley et al. | Jul 1999 | A |
5939813 | Schob | Aug 1999 | A |
5954305 | Calabro | Sep 1999 | A |
5965964 | Skinner et al. | Oct 1999 | A |
5975205 | Carisella | Nov 1999 | A |
6044906 | Saltel | Apr 2000 | A |
6068015 | Pringle | May 2000 | A |
6082455 | Pringle et al. | Jul 2000 | A |
6113675 | Branstetter | Sep 2000 | A |
6129507 | Ganelin | Oct 2000 | A |
6148866 | Quigley et al. | Nov 2000 | A |
6155102 | Toma | Dec 2000 | A |
6164308 | Butler | Dec 2000 | A |
6167965 | Bearden et al. | Jan 2001 | B1 |
6176323 | Weirich | Jan 2001 | B1 |
6179269 | Kobylinski et al. | Jan 2001 | B1 |
6192983 | Neuroth et al. | Feb 2001 | B1 |
6193079 | Weimer | Feb 2001 | B1 |
6209652 | Portman et al. | Apr 2001 | B1 |
6257332 | Vidrine et al. | Jul 2001 | B1 |
6264440 | Klein et al. | Jul 2001 | B1 |
6286558 | Quigley et al. | Sep 2001 | B1 |
6289990 | Dillon et al. | Sep 2001 | B1 |
6298917 | Kobylinski et al. | Oct 2001 | B1 |
6325143 | Scarsdale | Dec 2001 | B1 |
6357485 | Quigley et al. | Mar 2002 | B2 |
6357530 | Kennedy | Mar 2002 | B1 |
6361272 | Bassett | Mar 2002 | B1 |
6413065 | Dass | Jul 2002 | B1 |
6414239 | Gasque, Jr. | Jul 2002 | B1 |
6427778 | Beall et al. | Aug 2002 | B1 |
6454010 | Thomas et al. | Sep 2002 | B1 |
6463810 | Liu | Oct 2002 | B1 |
6504258 | Schultz et al. | Jan 2003 | B2 |
6530211 | Holtzapple et al. | Mar 2003 | B2 |
6544013 | Kato et al. | Apr 2003 | B2 |
6546812 | Lewis | Apr 2003 | B2 |
6547519 | deBlanc et al. | Apr 2003 | B2 |
6550327 | Van Berk | Apr 2003 | B1 |
6557642 | Head | May 2003 | B2 |
6578638 | Guillory et al. | Jun 2003 | B2 |
6588266 | Tubel et al. | Jul 2003 | B2 |
6601460 | Materna | Aug 2003 | B1 |
6601651 | Grant | Aug 2003 | B2 |
6604550 | Quigley et al. | Aug 2003 | B2 |
6629564 | Ramakrishnan et al. | Oct 2003 | B1 |
6679692 | Feuling et al. | Jan 2004 | B1 |
6681894 | Fanguy | Jan 2004 | B1 |
6726449 | James et al. | Apr 2004 | B2 |
6728165 | Roscigno et al. | Apr 2004 | B1 |
6733249 | Maier et al. | May 2004 | B2 |
6741000 | Newcomb | May 2004 | B2 |
6755609 | Preinfalk | Jun 2004 | B2 |
6768214 | Schultz et al. | Jul 2004 | B2 |
6776054 | Stephenson | Aug 2004 | B1 |
6779601 | Wilson | Aug 2004 | B2 |
6807857 | Storm, Jr. | Oct 2004 | B2 |
6808371 | Niwatsukino et al. | Oct 2004 | B2 |
6811382 | Buchanan et al. | Nov 2004 | B2 |
6848539 | Lee et al. | Feb 2005 | B2 |
6856132 | Appel et al. | Feb 2005 | B2 |
6857452 | Quigley et al. | Feb 2005 | B2 |
6857920 | Marathe et al. | Feb 2005 | B2 |
6863137 | Terry et al. | Mar 2005 | B2 |
6913079 | Tubel | Jul 2005 | B2 |
6920085 | Finke et al. | Jul 2005 | B2 |
6932160 | Murray et al. | Aug 2005 | B2 |
6935189 | Richards | Aug 2005 | B2 |
6973972 | Aronstam | Dec 2005 | B2 |
6993979 | Segeral | Feb 2006 | B2 |
7017681 | Ivannikov et al. | Mar 2006 | B2 |
7021905 | Torrey et al. | Apr 2006 | B2 |
7032662 | Malone et al. | Apr 2006 | B2 |
7086294 | DeLong | Aug 2006 | B2 |
7093665 | Dass | Aug 2006 | B2 |
7104321 | Carruth | Sep 2006 | B2 |
7107860 | Jones | Sep 2006 | B2 |
7199480 | Fripp et al. | Apr 2007 | B2 |
7224077 | Allen | May 2007 | B2 |
7226279 | Andoskin et al. | Jun 2007 | B2 |
7242103 | Tips | Jul 2007 | B2 |
7249805 | Cap | Jul 2007 | B2 |
7259688 | Hirsch et al. | Aug 2007 | B2 |
7262532 | Seidler et al. | Aug 2007 | B2 |
7275592 | Davis | Oct 2007 | B2 |
7275711 | Flanigan | Oct 2007 | B1 |
7338262 | Gozdawa | Mar 2008 | B2 |
7345372 | Roberts et al. | Mar 2008 | B2 |
7377312 | Davis | May 2008 | B2 |
7410003 | Ravensbergen et al. | Aug 2008 | B2 |
7647948 | Quigley et al. | Jan 2010 | B2 |
7668411 | Davies et al. | Feb 2010 | B2 |
7670122 | Phillips et al. | Mar 2010 | B2 |
7670451 | Head | Mar 2010 | B2 |
7699099 | Bolding et al. | Apr 2010 | B2 |
7730937 | Head | Jun 2010 | B2 |
7762715 | Gordon et al. | Jul 2010 | B2 |
7770650 | Young et al. | Aug 2010 | B2 |
7775763 | Johnson et al. | Aug 2010 | B1 |
7819640 | Kalavsky et al. | Oct 2010 | B2 |
7841395 | Gay et al. | Nov 2010 | B2 |
7841826 | Phillips | Nov 2010 | B1 |
7847421 | Gardner et al. | Dec 2010 | B2 |
7849928 | Collie | Dec 2010 | B2 |
7905295 | Mack | Mar 2011 | B2 |
7906861 | Guerrero et al. | Mar 2011 | B2 |
7946341 | Hartog et al. | May 2011 | B2 |
8013660 | Fitzi | Sep 2011 | B2 |
8016545 | Oklejas et al. | Sep 2011 | B2 |
8047232 | Bernitsas | Nov 2011 | B2 |
8066033 | Quigley et al. | Nov 2011 | B2 |
8067865 | Savant | Nov 2011 | B2 |
8141625 | Reid | Mar 2012 | B2 |
8197602 | Baron | Jun 2012 | B2 |
8235126 | Bradley | Aug 2012 | B2 |
8258644 | Kaplan | Sep 2012 | B2 |
8261841 | Bailey et al. | Sep 2012 | B2 |
8302736 | Olivier | Nov 2012 | B1 |
8337142 | Eslinger et al. | Dec 2012 | B2 |
8408064 | Hartog et al. | Apr 2013 | B2 |
8419398 | Kothnur et al. | Apr 2013 | B2 |
8421251 | Pabon et al. | Apr 2013 | B2 |
8426988 | Hay | Apr 2013 | B2 |
8493556 | Li et al. | Jul 2013 | B2 |
8506257 | Bottome | Aug 2013 | B2 |
8564179 | Ochoa et al. | Oct 2013 | B2 |
8568081 | Song et al. | Oct 2013 | B2 |
8579617 | Ono et al. | Nov 2013 | B2 |
8604634 | Pabon et al. | Dec 2013 | B2 |
8638002 | Lu | Jan 2014 | B2 |
8648480 | Liu et al. | Feb 2014 | B1 |
8771499 | McCutchen et al. | Jul 2014 | B2 |
8786113 | Tinnen et al. | Jul 2014 | B2 |
8821138 | Holtzapple et al. | Sep 2014 | B2 |
8905728 | Blankemeier et al. | Dec 2014 | B2 |
8916983 | Marya et al. | Dec 2014 | B2 |
8925649 | Wiebe et al. | Jan 2015 | B1 |
8936430 | Bassett | Jan 2015 | B2 |
8948550 | Li et al. | Feb 2015 | B2 |
8950476 | Head | Feb 2015 | B2 |
8960309 | Davis | Feb 2015 | B2 |
8973433 | Mulford | Mar 2015 | B2 |
9022106 | McCoy | May 2015 | B1 |
9080336 | Yantis | Jul 2015 | B1 |
9091144 | Swanson et al. | Jul 2015 | B2 |
9106159 | Wiebe et al. | Aug 2015 | B1 |
9109429 | Xu et al. | Aug 2015 | B2 |
9130161 | Nair et al. | Sep 2015 | B2 |
9133709 | Huh et al. | Sep 2015 | B2 |
9140815 | Lopez et al. | Sep 2015 | B2 |
9157297 | Williamson, Jr. | Oct 2015 | B2 |
9170149 | Hartog et al. | Oct 2015 | B2 |
9200932 | Sittler | Dec 2015 | B2 |
9203277 | Kori et al. | Dec 2015 | B2 |
9234529 | Meuter | Jan 2016 | B2 |
9239043 | Zeas | Jan 2016 | B1 |
9321222 | Childers et al. | Apr 2016 | B2 |
9322389 | Tosi | Apr 2016 | B2 |
9353614 | Roth et al. | May 2016 | B2 |
9383476 | Trehan | Jul 2016 | B2 |
9499460 | Kawamura et al. | Nov 2016 | B2 |
9500073 | Alan et al. | Nov 2016 | B2 |
9518458 | Ellithorp | Dec 2016 | B2 |
9540908 | Olivier | Jan 2017 | B1 |
9574438 | Flores | Feb 2017 | B2 |
9581489 | Skinner | Feb 2017 | B2 |
9587456 | Roth | Mar 2017 | B2 |
9593561 | Xiao et al. | Mar 2017 | B2 |
9599460 | Wang et al. | Mar 2017 | B2 |
9599505 | Lagakos et al. | Mar 2017 | B2 |
9617847 | Jaaskelainen et al. | Apr 2017 | B2 |
9631482 | Roth et al. | Apr 2017 | B2 |
9677560 | Davis et al. | Jun 2017 | B1 |
9757796 | Sherman et al. | Sep 2017 | B2 |
9759025 | Vavik | Sep 2017 | B2 |
9759041 | Osborne | Sep 2017 | B2 |
9784077 | Gorrara | Oct 2017 | B2 |
9880096 | Bond et al. | Jan 2018 | B2 |
9903010 | Doud et al. | Feb 2018 | B2 |
9915134 | Xiao et al. | Mar 2018 | B2 |
9932806 | Stewart | Apr 2018 | B2 |
9951598 | Roth et al. | Apr 2018 | B2 |
9964533 | Ahmad | May 2018 | B2 |
9976381 | Martin et al. | May 2018 | B2 |
9982519 | Melo | May 2018 | B2 |
10100596 | Roth et al. | Oct 2018 | B2 |
10115942 | Qiao et al. | Oct 2018 | B2 |
10138885 | Ejim et al. | Nov 2018 | B2 |
10151194 | Roth et al. | Dec 2018 | B2 |
10209383 | Barfoot et al. | Feb 2019 | B2 |
10253610 | Roth et al. | Apr 2019 | B2 |
10273399 | Cox et al. | Apr 2019 | B2 |
10280727 | Saponja | May 2019 | B2 |
10287853 | Ejim et al. | May 2019 | B2 |
10308865 | Cox et al. | Jun 2019 | B2 |
10323644 | Shakirov et al. | Jun 2019 | B1 |
10337302 | Roth et al. | Jul 2019 | B2 |
10337312 | Xiao et al. | Jul 2019 | B2 |
10352125 | Frazier | Jul 2019 | B2 |
10367434 | Ahmad | Jul 2019 | B2 |
10378322 | Ejim et al. | Aug 2019 | B2 |
10465477 | Abdelaziz et al. | Nov 2019 | B2 |
10465484 | Turner et al. | Nov 2019 | B2 |
10487259 | Cox et al. | Nov 2019 | B2 |
10501682 | Cox et al. | Dec 2019 | B2 |
10533558 | Melo et al. | Jan 2020 | B2 |
10578111 | Xiao et al. | Mar 2020 | B2 |
10584702 | Melo | Mar 2020 | B2 |
10590751 | Saponja et al. | Mar 2020 | B2 |
10677031 | Xiao | Jun 2020 | B2 |
10731441 | Xiao | Aug 2020 | B2 |
10844701 | Xiao et al. | Nov 2020 | B2 |
10851596 | Roth et al. | Dec 2020 | B2 |
10900315 | Xiao | Jan 2021 | B2 |
10941778 | Xiao et al. | Mar 2021 | B2 |
11028682 | Zhang | Jun 2021 | B1 |
11095191 | Wrighton | Aug 2021 | B2 |
11162340 | Xiao | Nov 2021 | B2 |
11162493 | Melo et al. | Nov 2021 | B2 |
11220890 | Xiao | Jan 2022 | B2 |
20010036334 | Choa | Nov 2001 | A1 |
20020043404 | Trueman et al. | Apr 2002 | A1 |
20020074742 | Quoiani | Jun 2002 | A1 |
20020079100 | Simpson | Jun 2002 | A1 |
20020109080 | Tubel et al. | Aug 2002 | A1 |
20020121376 | Rivas | Sep 2002 | A1 |
20020153141 | Hartman | Oct 2002 | A1 |
20030079880 | Deaton et al. | May 2003 | A1 |
20030141071 | Hosie | Jul 2003 | A1 |
20030161739 | Chu et al. | Aug 2003 | A1 |
20030185676 | James | Oct 2003 | A1 |
20030226395 | Storm et al. | Dec 2003 | A1 |
20040013547 | Allen | Jan 2004 | A1 |
20040060705 | Kelley | Apr 2004 | A1 |
20050047779 | Jaynes et al. | Mar 2005 | A1 |
20050098349 | Krueger et al. | May 2005 | A1 |
20050166961 | Means | Aug 2005 | A1 |
20050200210 | Kotsonis et al. | Sep 2005 | A1 |
20050217859 | Hartman | Oct 2005 | A1 |
20050254943 | Fukuchi et al. | Nov 2005 | A1 |
20060066169 | Daugherty et al. | Mar 2006 | A1 |
20060076956 | Sjolie et al. | Apr 2006 | A1 |
20060086498 | Wetzel et al. | Apr 2006 | A1 |
20060096760 | Ohmer | May 2006 | A1 |
20070012437 | Clingman et al. | Jan 2007 | A1 |
20070181304 | Rankin et al. | Aug 2007 | A1 |
20070193749 | Folk | Aug 2007 | A1 |
20070212238 | Jacobsen et al. | Sep 2007 | A1 |
20070220987 | Clifton et al. | Sep 2007 | A1 |
20080048455 | Carney | Feb 2008 | A1 |
20080093084 | Knight | Apr 2008 | A1 |
20080100828 | Cyr et al. | May 2008 | A1 |
20080187434 | Neiszer | Aug 2008 | A1 |
20080236842 | Bhavsar et al. | Oct 2008 | A1 |
20080262737 | Thigpen et al. | Oct 2008 | A1 |
20080264182 | Jones | Oct 2008 | A1 |
20080277941 | Bowles | Nov 2008 | A1 |
20080290876 | Ameen | Nov 2008 | A1 |
20080292454 | Brunner | Nov 2008 | A1 |
20090001304 | Hansen et al. | Jan 2009 | A1 |
20090016899 | Davis | Jan 2009 | A1 |
20090090513 | Bissonnette | Apr 2009 | A1 |
20090110579 | Amburgey | Apr 2009 | A1 |
20090151928 | Lawson | Jun 2009 | A1 |
20090151953 | Brown | Jun 2009 | A1 |
20090166045 | Wetzel et al. | Jul 2009 | A1 |
20090255669 | Ayan et al. | Oct 2009 | A1 |
20090304322 | Davies et al. | Oct 2009 | A1 |
20090289627 | Johansen et al. | Nov 2009 | A1 |
20090293634 | Ong | Dec 2009 | A1 |
20100040492 | Eslinger et al. | Feb 2010 | A1 |
20100122818 | Rooks | May 2010 | A1 |
20100164231 | Tsou | Jul 2010 | A1 |
20100186439 | Ogata et al. | Jul 2010 | A1 |
20100206577 | Martinez | Aug 2010 | A1 |
20100236794 | Duan | Sep 2010 | A1 |
20100244404 | Bradley | Sep 2010 | A1 |
20100258306 | Camilleri | Oct 2010 | A1 |
20100288493 | Fielder et al. | Nov 2010 | A1 |
20100300413 | Ulrey et al. | Dec 2010 | A1 |
20100308592 | Frayne | Dec 2010 | A1 |
20110017459 | Dinkins | Jan 2011 | A1 |
20110024107 | Sunyovszky et al. | Feb 2011 | A1 |
20110024231 | Wurth et al. | Feb 2011 | A1 |
20110036568 | Barbosa | Feb 2011 | A1 |
20110036662 | Smith | Feb 2011 | A1 |
20110049901 | Tinnen | Mar 2011 | A1 |
20110088462 | Samson et al. | Apr 2011 | A1 |
20110155390 | Lannom et al. | Jun 2011 | A1 |
20110162832 | Reid | Jul 2011 | A1 |
20110169353 | Endo | Jul 2011 | A1 |
20110185805 | Roux et al. | Aug 2011 | A1 |
20110203848 | Krueger et al. | Aug 2011 | A1 |
20110273032 | Lu | Nov 2011 | A1 |
20110278094 | Gute | Nov 2011 | A1 |
20110296911 | Moore | Dec 2011 | A1 |
20110300008 | Fielder et al. | Dec 2011 | A1 |
20120012327 | Plunkett et al. | Jan 2012 | A1 |
20120018143 | Lembcke | Jan 2012 | A1 |
20120018148 | Bryant et al. | Jan 2012 | A1 |
20120211245 | Fuhst et al. | Aug 2012 | A1 |
20120282119 | Floyd | Nov 2012 | A1 |
20120292915 | Moon | Nov 2012 | A1 |
20130019673 | Sroka | Jan 2013 | A1 |
20130300833 | Perkins | Jan 2013 | A1 |
20130048302 | Gokdag et al. | Feb 2013 | A1 |
20130051977 | Song | Feb 2013 | A1 |
20130066139 | Wiessler | Mar 2013 | A1 |
20130068454 | Armistead | Mar 2013 | A1 |
20130068481 | Zhou | Mar 2013 | A1 |
20130073208 | Dorovsky | Mar 2013 | A1 |
20130081460 | Xiao et al. | Apr 2013 | A1 |
20130091942 | Samson et al. | Apr 2013 | A1 |
20130119669 | Murphree | May 2013 | A1 |
20130119830 | Hautz | May 2013 | A1 |
20130136639 | Simpson | May 2013 | A1 |
20130167628 | Hull et al. | Jul 2013 | A1 |
20130175030 | Ige | Jul 2013 | A1 |
20130189123 | Stokley | Jul 2013 | A1 |
20130200628 | Kane | Aug 2013 | A1 |
20130213663 | Lau et al. | Aug 2013 | A1 |
20130227940 | Greenblatt | Sep 2013 | A1 |
20130248429 | Dahule | Sep 2013 | A1 |
20130255370 | Roux et al. | Oct 2013 | A1 |
20130259721 | Noui-Mehidi | Oct 2013 | A1 |
20140012507 | Trehan | Jan 2014 | A1 |
20140014331 | Crocker | Jan 2014 | A1 |
20140027546 | Kean et al. | Jan 2014 | A1 |
20140037422 | Gilarranz | Feb 2014 | A1 |
20140041862 | Ersoz | Feb 2014 | A1 |
20140116720 | He et al. | May 2014 | A1 |
20140144706 | Bailey et al. | May 2014 | A1 |
20140167418 | Hiejima | Jun 2014 | A1 |
20140175800 | Thorp | Jun 2014 | A1 |
20140208855 | Skinner | Jul 2014 | A1 |
20140209291 | Watson et al. | Jul 2014 | A1 |
20140265337 | Harding et al. | Sep 2014 | A1 |
20140265654 | Satterfield | Sep 2014 | A1 |
20140284937 | Dudley et al. | Sep 2014 | A1 |
20140311737 | Bedouet et al. | Oct 2014 | A1 |
20140341714 | Casa | Nov 2014 | A1 |
20140343857 | Pfutzner | Nov 2014 | A1 |
20140369879 | Friedman | Dec 2014 | A1 |
20140377080 | Xiao et al. | Dec 2014 | A1 |
20150034580 | Nakao et al. | Feb 2015 | A1 |
20150068769 | Xiao et al. | Mar 2015 | A1 |
20150071795 | Vazquez et al. | Mar 2015 | A1 |
20150075772 | Saponja | Mar 2015 | A1 |
20150114127 | Barfoot et al. | Apr 2015 | A1 |
20150192141 | Nowitzki et al. | Jul 2015 | A1 |
20150204336 | McManus et al. | Jul 2015 | A1 |
20150233228 | Roth | Aug 2015 | A1 |
20150308245 | Stewart et al. | Oct 2015 | A1 |
20150308444 | Trottman | Oct 2015 | A1 |
20150318920 | Johnston | Nov 2015 | A1 |
20150330194 | June et al. | Nov 2015 | A1 |
20150354308 | June et al. | Dec 2015 | A1 |
20150354590 | Kao | Dec 2015 | A1 |
20150376907 | Nguyen | Dec 2015 | A1 |
20160010451 | Melo | Jan 2016 | A1 |
20160016834 | Dahule | Jan 2016 | A1 |
20160024849 | Kocis et al. | Jan 2016 | A1 |
20160164377 | Gauthier | Jun 2016 | A1 |
20160168957 | Tubel | Jun 2016 | A1 |
20160169231 | Michelassi et al. | Jun 2016 | A1 |
20160177659 | Voll et al. | Jun 2016 | A1 |
20160273947 | Mu et al. | Sep 2016 | A1 |
20160305447 | Dreiss et al. | Oct 2016 | A1 |
20160332856 | Steedley | Nov 2016 | A1 |
20170012491 | Schob et al. | Jan 2017 | A1 |
20170033713 | Petroni | Feb 2017 | A1 |
20170038246 | Coates et al. | Feb 2017 | A1 |
20170058664 | Xiao et al. | Mar 2017 | A1 |
20170074082 | Palmer | Mar 2017 | A1 |
20170075029 | Cuny et al. | Mar 2017 | A1 |
20170122046 | Vavik | May 2017 | A1 |
20170138189 | Ahmad et al. | May 2017 | A1 |
20170159668 | Nowitzki et al. | Jun 2017 | A1 |
20170167498 | Chang | Jun 2017 | A1 |
20170175752 | Hofer et al. | Jun 2017 | A1 |
20170183942 | Veland | Jun 2017 | A1 |
20170184097 | Reeves | Jun 2017 | A1 |
20170194831 | Marvel | Jul 2017 | A1 |
20170235006 | Ellmauthaler et al. | Aug 2017 | A1 |
20170241421 | Markovitch | Aug 2017 | A1 |
20170260846 | Jin et al. | Sep 2017 | A1 |
20170292533 | Zia | Oct 2017 | A1 |
20170321695 | Head | Nov 2017 | A1 |
20170321711 | Collins et al. | Nov 2017 | A1 |
20170328151 | Dillard | Nov 2017 | A1 |
20170343006 | Ehrsann | Nov 2017 | A1 |
20170346371 | Gruetzner | Nov 2017 | A1 |
20170350399 | Eslinger et al. | Dec 2017 | A1 |
20180045543 | Farhadiroushan et al. | Feb 2018 | A1 |
20180052041 | Yaman et al. | Feb 2018 | A1 |
20180058157 | Melo et al. | Mar 2018 | A1 |
20180066671 | Murugan | Mar 2018 | A1 |
20180128661 | Munro | May 2018 | A1 |
20180134036 | Galtarossa et al. | May 2018 | A1 |
20180155991 | Arsalan et al. | Jun 2018 | A1 |
20180171763 | Malbrel et al. | Jun 2018 | A1 |
20180171767 | Huynh et al. | Jun 2018 | A1 |
20180172020 | Ejim | Jun 2018 | A1 |
20180202843 | Artuso et al. | Jul 2018 | A1 |
20180223642 | Zahran | Aug 2018 | A1 |
20180223854 | Brunvold et al. | Aug 2018 | A1 |
20180226174 | Rose | Aug 2018 | A1 |
20180238152 | Melo | Aug 2018 | A1 |
20180274311 | Zsolt | Sep 2018 | A1 |
20180283155 | Saponja | Oct 2018 | A1 |
20180284304 | Barfoot et al. | Oct 2018 | A1 |
20180306019 | Saponja | Oct 2018 | A1 |
20180306199 | Reed | Oct 2018 | A1 |
20180320059 | Cox et al. | Nov 2018 | A1 |
20180340389 | Wang | Nov 2018 | A1 |
20180351480 | Ahmad | Dec 2018 | A1 |
20180363660 | Klahn | Dec 2018 | A1 |
20190025095 | Steel | Jan 2019 | A1 |
20190032667 | Ifrim et al. | Jan 2019 | A1 |
20190040863 | Davis et al. | Feb 2019 | A1 |
20190049054 | Gunnarsson | Feb 2019 | A1 |
20190128113 | Ross et al. | May 2019 | A1 |
20190253003 | Ahmad | Aug 2019 | A1 |
20190253004 | Ahmad | Aug 2019 | A1 |
20190253005 | Ahmad | Aug 2019 | A1 |
20190253006 | Ahmad | Aug 2019 | A1 |
20190271217 | Radov et al. | Sep 2019 | A1 |
20190368291 | Xiao et al. | Dec 2019 | A1 |
20190376371 | Arsalan | Dec 2019 | A1 |
20190376378 | Saponja | Dec 2019 | A1 |
20200018317 | Landi et al. | Jan 2020 | A1 |
20200032637 | Saponja | Jan 2020 | A1 |
20200056462 | Xiao et al. | Feb 2020 | A1 |
20200056615 | Xiao et al. | Feb 2020 | A1 |
20200220431 | Wrighton | Jul 2020 | A1 |
20200248538 | Xiao et al. | Aug 2020 | A1 |
20200248695 | Xiao et al. | Aug 2020 | A1 |
20200355184 | Xiao et al. | Dec 2020 | A1 |
20210002985 | Xiao | Jan 2021 | A1 |
20210040826 | Xiao et al. | Feb 2021 | A1 |
20210372244 | Riachentsev et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
1226325 | Sep 1987 | CA |
2629578 | Oct 2009 | CA |
2168104 | Jun 1994 | CN |
1507531 | Jun 2004 | CN |
101328769 | Dec 2008 | CN |
101328796 | Dec 2008 | CN |
101592475 | Dec 2009 | CN |
201496028 | Jun 2010 | CN |
101842547 | Sep 2010 | CN |
102471701 | May 2012 | CN |
101488805 | Aug 2012 | CN |
202851445 | Apr 2013 | CN |
103185025 | Jul 2013 | CN |
203420906 | Feb 2014 | CN |
103913186 | Jul 2014 | CN |
104100231 | Oct 2014 | CN |
104141633 | Nov 2014 | CN |
104533797 | Apr 2015 | CN |
105043586 | Nov 2015 | CN |
103835988 | Jan 2016 | CN |
105239963 | Jan 2016 | CN |
105422047 | Mar 2016 | CN |
103717901 | Jun 2016 | CN |
106133326 | Nov 2016 | CN |
107144339 | Sep 2017 | CN |
206496768 | Sep 2017 | CN |
105371943 | Jun 2018 | CN |
107664541 | Jun 2018 | CN |
108534910 | Sep 2018 | CN |
104236644 | Dec 2018 | CN |
2260678 | Jun 1974 | DE |
3022241 | Dec 1981 | DE |
3444859 | Jun 1985 | DE |
3520884 | Jan 1986 | DE |
19654092 | Jul 1998 | DE |
10307887 | Oct 2004 | DE |
102007005426 | May 2008 | DE |
102008001607 | Nov 2009 | DE |
102008054766 | Jun 2010 | DE |
202012103729 | Oct 2012 | DE |
102012215023 | Jan 2014 | DE |
102012022453 | May 2014 | DE |
102013200450 | Jul 2014 | DE |
102012205757 | Aug 2014 | DE |
0380148 | Aug 1990 | EP |
579981 | Jan 1994 | EP |
0579981 | Jan 1994 | EP |
0637675 | Feb 1995 | EP |
1101024 | May 2001 | EP |
1143104 | Oct 2001 | EP |
1270900 | Jan 2003 | EP |
1369588 | Dec 2003 | EP |
2072971 | Jun 2009 | EP |
2801696 | Dec 2014 | EP |
2893301 | May 2018 | EP |
3527830 | Aug 2019 | EP |
670206 | Apr 1952 | GB |
2166472 | May 1986 | GB |
2173034 | Oct 1986 | GB |
2218721 | Nov 1989 | GB |
2226776 | Jul 1990 | GB |
2283035 | Apr 1995 | GB |
2348674 | Oct 2000 | GB |
2477909 | Aug 2011 | GB |
2504104 | Jan 2014 | GB |
S 57146891 | Sep 1982 | JP |
4019375 | Jan 1992 | JP |
2003502155 | Jan 2003 | JP |
2005076486 | Mar 2005 | JP |
2006510484 | Mar 2006 | JP |
2010156172 | Jul 2010 | JP |
2013110910 | Jun 2013 | JP |
2014047422 | Mar 2014 | JP |
98500 | Oct 2010 | RU |
122531 | Nov 2012 | RU |
178531 | Apr 2018 | RU |
WO 1993006331 | Apr 1993 | WO |
WO 1995004869 | Feb 1995 | WO |
WO 1998046857 | Oct 1998 | WO |
WO 1999027256 | Jun 1999 | WO |
WO 2002072998 | Sep 2002 | WO |
WO 2005066502 | Jul 2005 | WO |
WO 2006117935 | Nov 2006 | WO |
WO 2009046709 | Apr 2009 | WO |
WO 2009113894 | Sep 2009 | WO |
WO 2009129607 | Oct 2009 | WO |
WO 2011066050 | Jun 2011 | WO |
WO 2011101296 | Aug 2011 | WO |
WO 2011133620 | Oct 2011 | WO |
WO 2011135541 | Nov 2011 | WO |
WO 2012058290 | May 2012 | WO |
WO 2012166638 | Dec 2012 | WO |
WO 2013005091 | Jan 2013 | WO |
WO 2013089746 | Jun 2013 | WO |
WO 2013171053 | Nov 2013 | WO |
WO 2014116458 | Jul 2014 | WO |
WO 2014127035 | Aug 2014 | WO |
WO 2014147645 | Sep 2014 | WO |
WO 2015034482 | Mar 2015 | WO |
WO 2015041655 | Mar 2015 | WO |
WO 2015073018 | May 2015 | WO |
WO 2015084926 | Jun 2015 | WO |
WO 2015123236 | Aug 2015 | WO |
WO 2016003662 | Jan 2016 | WO |
WO 2016012245 | Jan 2016 | WO |
WO 2016050301 | Apr 2016 | WO |
WO 2016081389 | May 2016 | WO |
WO 2016089526 | Jun 2016 | WO |
WO 2016111849 | Jul 2016 | WO |
WO 2016130620 | Aug 2016 | WO |
WO 2016160016 | Oct 2016 | WO |
WO 2016195643 | Dec 2016 | WO |
WO 2017021553 | Feb 2017 | WO |
WO 2017146593 | Aug 2017 | WO |
WO 2018022198 | Feb 2018 | WO |
WO 2018096345 | May 2018 | WO |
WO 2018125071 | Jul 2018 | WO |
WO 2018145215 | Aug 2018 | WO |
WO 2019243789 | Dec 2019 | WO |
WO 2020165046 | Aug 2020 | WO |
Entry |
---|
“Echo Dissolvable Fracturing Plug,” EchoSeries, Dissolvable Fracturing Plugs, Gryphon Oilfield Solutions, Aug. 2018, 1 page. |
“TervAlloy Degradable Magnesium Alloys,” Terves Engineered Response, Engineered for Enhanced Completion Efficiency, Feb. 2018, 8 pages. |
“Ocean Exploration and Resource Development Technology”, Editorial Board of Science and Technology Prospering the Sea Series, Ocean Press, Oct. 31, 2001, pp. 79, 14 pages, English Abstract only. |
Abelsson et al., “Development and Testing of a Hybrid Boosting Pump,” OTC 21516, Offshore Technology Conference, presented at the Offshore Technology Conference, May 2-5, 2011, 9 pages. |
Alhanati et al., “ESP Failures: Can we talk the same language?” SPE paper, SPE ESP Workshop held in Houston, Apr. 25-27, 2001, 11 page. |
Alhasan et al., “Extending mature field production life using a multiphase twin screw pump,” BHR Group Multiphase 15, 2011, 11 pages. |
Baker Hughes, “Multiphase Pump: Increases Efficiency and Production in Wells with High Gast Content,” Brochure overview, retrieved from URL <https://assets.www.bakerhughes.com/system/69/00d970d9dd11e3a411ddf3c1325ea6/28592.MVP_Overview.pdf>, 2014, 2 pages. |
Bao et al., “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” Journal of Lightwave Technology 35:16, Aug. 15, 2017, 12 pages. |
Blunt, “Effects of heterogeneity and wetting on relative permeability using pore level modeling,” SPE 36762, Society of Petroleum Engineers (SPE), SPE Journal 2:01 (70-87), Mar. 1997, 19 pages. |
Bryant and Blunt, “Prediction of relative permeability in simple porous media,” Physical Review A 46:4, Aug. 1992, 8 pages. |
Bybee et al., “Through-Tubing Completions Maximize Production,” SPE-0206-0057, Society of Petroleum Engineers (SPE), Drilling and Cementing Technology, JPT, Feb. 2006, 2 pages. |
Champion et al., “The application of high-power sound waves for wellbore cleaning,” SPE 82197, Society of Petroleum Engineers International (SPE), presented at the SPE European Formation Damage Conference, May 13-14, 2003, 10 pages. |
Chappell and Lancaster, “Comparison of methodological uncertainties within permeability measurements,” Wiley InterScience, Hydrological Processes 21:18 (2504-2514), Jan. 2007, 11 pages. |
Chen et al., “Distributed acoustic sensor based on two-mode fiber,” Optics Express, 26:19, Sep. 17, 2018, 9 pages. |
Corona et al., “Novel Washpipe-Free ICD Completion With Dissolvable Material,” OTC-28863-MS, Offshore Technology Conference (OTC), presented at the Offshore Technology Conference, April 30-May 3, 2018, 10 pages. |
Cox et al., “Realistic Assessment of Proppant Pack Conductivity for Material Section,” SPE-84306-MS, Society of Petroleum Engineers (SPE), presented at the SPE Annual Technical Conference and Exhibition, Oct. 5-8, 2003, 12 pages. |
Cramer et al., “Development and Application of a Downhole Chemical Injection Pump for Use in ESP Applications,” SPE 14403, Society of Petroleum Engineers (SPE), presented at the 66th Annual Technical Conference and Exhibition, Sep. 22-25, 1985, 6 page. |
Danfoss, “Facts Worth Knowing about Frequency Converters,” Handbook VLT Frequency Converters, Danfoss Engineering Tomorrow, 180 pages. |
DiCarlo et al., “Three-phase relative permeability of water-wet, oil-wet, and mixed-wet sandpacks,” SPE 60767, Society of Petroleum Engineers (SPE), presented at the 1998 SPE Annual Technical Conference and Exhibition, Sep. 27-30, 1998, SPE Journal 5:01 (82-91), Mar. 2000, 10 pages. |
Dixit et al., “A pore-level investigation of relative permeability hysteresis in water-wet systems,” SPE 37233, Society of Petroleum Engineers (SPE), presented at the 1997 SPE International Symposium on Oilfield Chemistry, Feb. 18-21, 1997, SPE Journal 3:02 (115-123), Jun. 1998, 9 pages. |
Drozdov et al., “The Use of Umbilicals as a New Technology of Artificial-Lift Operation of Oil and Gas Wells without Well Killing when Workover,” SPE 160689, Society of Petroleum Engineers, presented at the SPE Russian Oil & Gas Exploration & Production Technical Conference and Exhibition in Moscow, Russia, Oct. 16-18, 2012, 8 pages. |
ejprescott.com [online], “Water, Sewer and Drain Fittings B-22, Flange Adaptors,” retrieved from URL <https://www.ejprescott.com/media/reference/FlangeAdaptorsB-22.pdf> retrieved on Jun. 15, 2020, available on or before Nov. 2010 via wayback machine URL <http://web.archive.org/web/20101128181255/https://www.ejprescott.com/media/reference/FlangeAdaptorsB-22.pdf>, 5 pages. |
Fatt, “The network model of porous media,” SPE 574-G, I. Capillary Pressure Characteristics, AIME Petroleum Transactions 207: 144-181, Dec. 1956, 38 pages. |
Fornarelli et al., “Flow patterns and heat transfer around six in-line circular cylinders at low Reynolds number,” JP Journal of Heat and Mass Transfer, Pushpa Publishing House, Allahabad, India, Feb. 2015, 11:1 (1-28), 28 pages. |
Geary et al., “Downhole Pressure Boosting in Natural Gas Wells: Results from Prototype Testing,” SPE 11406, Society of Petroleum Engineers International (SPE), presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Oct. 20-22, 2008, 13 pages. |
Gillard et al., “A New Approach to Generating Fracture Conductivity,” SPE-135034-MS, Society of Petroleum Engineers (SPE), presented at the SPE Annual Technical Conference and Exhibition, Sep. 20-22, 2010, 14 pages. |
Godbole et al., “Axial Thrust in Centrifugal Pumps—Experimental Analysis,” Paper Ref: 2977, presented at the 15th International Conference on Experimental Mechanics, ICEM15, Jul. 22-27, 2012, 14 pages. |
Gomaa et al., “Computational Fluid Dynamics Applied To Investigate Development and Optimization of Highly Conductive Channels within the Fracture Geometry,” SPE-179143-MS, Society of Petroleum Engineers (SPE), SPE Production & Operations, 32:04, Nov. 2017, 12 pages. |
Gomaa et al., “Improving Fracture Conductivity by Developing and Optimizing a Channels Within the Fracture Geometry: CFD Study,” SPE-178982-MS, Society of Petroleum Engineers (SPE), presented at the SPE International Conference and Exhibition on Formation Damage Control, Feb. 24-26, 2016, 25 pages. |
Govardhan et al., “Critical mass in vortex-induced vibration of a cylinder,” European Journal of Mechanics B/Fluids, Jan.-Feb. 2004, 23:1 (17-27), 11 pages. |
Heiba et al., “Percolation theory of two-phase relative permeability,” SPE Reservoir Engineering 7:01 (123-132), Feb. 1992, 11 pages. |
Hua et al., “Comparison of Multiphase Pumping Techniques for Subsea and Downhole Applications,” SPE 146784, Society of Petroleum Engineers International (SPE), presented at the SPE Annual Technical Conference and Exhibition, Oct. 30-Nov. 2, 2011, Oil and Gas Facilities, Feb. 2012, 11 pages. |
Hui and Blunt, “Effects of wettability on three-phase flow in porous media” American Chemical Society (ACS), J. Phys. Chem. 104 :16 (3833-3845), Feb. 2000, 13 pages. |
Juarez and Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Applied Optics 46:11, Apr. 10, 2007, 4 pages. |
Keiser, “Optical fiber communications,” 26-57, McGraw Hill, 2008, 16 pages. |
Kern et al., “Propping Fractures With Aluminum Particles,” SPE-1573-G-PA, Society of Petroleum Engineers (SPE), Journal of Per. Technology, 13:6 (583-589), Jun. 1961, 7 pages. |
Krag et al., “Preventing Scale Deposition Downhole Using High Frequency Electromagnetic AC Signals from Surface Enhance Production Offshore Denmark,” SPE-170898-MS, Society of Petroleum Engineers International (SPE), presented at the SPE Annual Technical Conference and Exhibition, Oct. 27-29, 2014, 10 pages. |
laserfocusworld.com [online], “High-Power Lasers: Fiber lasers drill for oil,” Dec. 5, 2012, retrieved on May 31, 2018, retrieved from URL: <https://www.laserfocusworld.com/articles/print/volume-48/issue-12/world-news/high-power-lasers-fiber-lasers-drill-for-oil.html>, 4 pages. |
Li et al., “In Situ Estimation of Relative Permeability from Resistivity Measurements,” EAGE/The Geological Society of London, Petroleum Geoscience 20: 143-151, 2014, 10 pages. |
machinedesign.com [online], Frances Richards, “Motors for efficiency: Permanent-magnet, reluctance, and induction motors compared,” Apr. 2013, retrieved on Nov. 11, 2020, retrieved from URL <https://www.machinedesign.com/motors-drives/article/21832406/motors-for-efficiency-permanentmagnet-reluctance-and-induction-motors-compared>. |
Mahmud et al., “Effect of network topology on two-phase imbibition relative permeability,” Transport in Porous Media 66:3 (481-493), Feb. 2007, 14 pages. |
Meyer et al., “Theoretical Foundation and Design Formulae for Channel and Pillar Type Propped Fractures—A Method to Increase Fracture Conductivity,” SPE-170781-MS, Society of Petroleum Engineers (SPE), presented at the SPE Annual Technical Conference and Exhibition, Oct. 27-29, 2014, 25 pages. |
Mirza, “The Next Generation of Progressive Cavity Multiphase Pumps use a Novel Design Concept for Superior Performance and Wet Gas Compression,” Flow Loop Testing, BHR Group, 2007, 9 pages. |
Mirza, “Three Generations of Multiphase Progressive Cavity Pumping,” Cahaba Media Group, Upstream Pumping Solutions, Winter 2012, 6 pages. |
Muswar et al., “Physical Water Treatment in the Oil Field Results from Indonesia,” SPE 113526, Society of Petroleum Engineers International (SPE), presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Oct. 18-20, 2010, 11 pages. |
Nagy et al., “Comparison of permeability testing methods,” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering 399-402, 2013, 4 pages. |
Palisch et al., “Determining Realistic Fracture Conductivity and Understanding its Impact on Well Performance—Theory and Field Examples,” SPE-106301-MS, Society of Petroleum Engineers (SPE), presented at the 2007 SPE Hydraulic Fracturing Technology Conference, Jan. 29-31, 2007, 13 pages. |
Parker, “About Gerotors,” Parker Haffinfin Corp, 2008, 2 pages. |
Poollen et al., “Hydraulic Fracturing—FractureFlow Capacity vs Well Productivity,” SPE-890-G, Society of Petroleum Engineers (SPE), presented at 32nd Annual Fall Meeting of Society of Petroleum Engineers, Oct. 6-9, 1957, published as Petroleum Transactions AIME 213, 1958, 5 pages. |
Poollen, “Productivity vs Permeability Damage in Hydraulically Produced Fractures,” Paper 906-2-G, American Petroleum Institute, presented at Drilling and Production Practice, Jan. 1, 1957, 8 pages. |
Purcell, “Capillary pressures—their measurement using mercury and the calculation of permeability therefrom,” Petroleum Transactions, AIME, presented at the Branch Fall Meeting, Oct. 4-6, 1948, Journal of Petroleum Technology 1:02 (39-48), Feb. 1949, 10 pages. |
Qin et al., “Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems,” Sensors, MDPI, 17:1870, Aug. 14, 2017, 10 pages. |
Qin Guozhi et al., “Anti-corrosion Coating Technology and Equipment Application Manual”, Sinopec Press, Jun. 30, 2004, pp. 257, 19 pages, English Abstract only. |
Rzeznik et al., “Two Year Results of a Breakthrough Physical Water Treating System for the Control of Scale in Oilfield Applications,” SPE114072, Society of Petroleum Engineers International (SPE), presented at the 2008 SPE International Oilfield Scale Conference, May 28-29, 2008, 11 pages. |
Schlumberger, “AGH: Advanced Gas-Handling Device,” Product Sheet, retrieved from URL: <http://www.slb.com/˜/media/Files/artificial_lift/product_sheets/ESPs/advanced_gas_handling_ps.pdf>, Jan. 2014, 2 pages. |
Schöneberg, “Wet Gas Compression with Twin Screw Pumps,” Bornemann Pumps, Calgary Pump Symposium 2005, 50 pages. |
Simpson et al., “A Touch, Truly Multiphase Downhole Pump for Unconventional Wells,” SPE-185152-MS, Society of Petroleum Engineers (SPE), presented at the SPE Electric Submersible Pump Symposium, the Woodlands, Texas, Apr. 24-28, 2017, 20 pages. |
Sulzer Technical Review, “Pushing the Boundaries of Centrifugal Pump Design,” Oil and Gas, Jan. 2014, 2 pages. |
Takahashi et al., “Degradation Study on Materials for Dissolvable Frac Plugs,” URTEC-2901283-MS, Unconventional Resources Technology Conference (URTC), presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Jul. 23-25, 2018, 9 pages. |
Tinsley and Williams, “A new method for providing increased fracture conductivity and improving stimulation results,” SPE-4676-PA, Society of Petroleum Engineers (SPE), Journal of Petroleum Technology, 27:11, Nov. 1975, 7 pages. |
tm4.com [online], “Outer rotor for greater performance,” available on or before Dec. 5, 2017, via internet archive: Wayback Machine URL <https://web.archive.org/web/20171205163856/https://www.tm4.com/technology/electric-motors/external-rotor-motor-technology/>, retrieved on May 17, 2017, retrieved from URL <https://www.tm4.com/technology/electric-motors/external-rotor-motor-technology/>, 2 pages. |
Vincent, “Examining Our Assumptions—Have Oversimplifications Jeopardized our Ability To Design Optimal Fracture Treatments,” SPE-119143-MS, Society of Petroleum Engineers (SPE), presented at the 2009 SPE Hydraulic Fracturing Technology Conference, Jan. 19-21, 2009, 51 pages. |
Vincent, “Five Things You Didn't Want to Know about Hydraulic Fractures,” ISRM-ICHF-2013-045, presented at the International Conference for Effective and Sustainable Hydraulic Fracturing: An ISRM specialized Conference, May 20-22, 2013, 14 pages. |
Vysloukh, “Chapter 8: Stimulated Raman Scattering,” 298-302, in Nonlinear Fiber Optics, 1990, 5 pages. |
Walker et al., “Proppants, We Don't Need No Proppants—A Perspective of Several Operators,” SPE-38611-MS, Society of Petroleum Engineers (SPE), presented at the 1997 Annual Technical Conference and Exhibition, Oct. 5-8, 1997, 8 pages. |
Wang Bing et al., “Wellbore Scaling and Descaling Research,” Oil Field Equipment, Nov. 2007, 36(11): 17-21, English Abstract. |
Wang et al., “Rayleigh scattering in few-mode optical fibers,” Scientific reports, 6:35844, Oct. 2016, 8 pages. |
Wylde et al., “Deep Downhole Chemical Injection on BP-Operated Miller: Experience and Learning,” SPE 92832, Society of Petroleum Engineers (SPE), presented at the 2005 SPE International Symposium on Oilfield Chemistry, May 11-12, 2005, SPE Production & Operations, May 2006, 6 pages. |
Xiao et al., “Induction Versus Permanent Magnet Motors for ESP Applications,” SPE-192177-MS, Society of Petroleum Engineers (SPE), presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Apr. 23-26, 2018, 15 pages. |
Yamate et al., “Optical Sensors for the Exploration of Oil and Gas,” Journal of Lightwave Technology 35:16, Aug. 15, 2017, 8 pages. |
Yu et al., “Borehole seismic survey using multimode optical fibers in a hybrid wireline,” Measurement, Sep. 2018, 125:694-703, 10 pages. |
Zhan et al., “Characterization of Reservoir Heterogeneity Through Fluid Movement Monitoring with Deep Electromagnetic and Pressure Measurements,” SPE 116328, Society of Petroleum Engineers International (SPE), presented at the 2008 SPE Annual Technical Conference and Exhibition, Sep. 21-24, 2008, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20230184077 A1 | Jun 2023 | US |