The present invention relates to equipment and techniques for generating power downhole in a well, such as an oil and gas well. More particularly, this invention includes a downhole generator assembly with a progressive cavity pump which converts fluid energy into rotational power, which then may be used to generate electrical power or hydraulic power to one or more downhole tools.
Various types of downhole power generators have been devised for supplying power to one or more downhole tools, such as sensor tools, measurement-while-drilling (MWD) tools, rotary steerable tools, etc. Many of these downhole generators use fluid power transmitted from the surface to the bottom hole assembly, and commonly rotate a vane within the flow path of the fluid to generate rotary power, which may then be used to generate electrical power. Other devices, such as those disclosed in U.S. Pat. Nos. 6,739,413 and 7,025,152, utilize rotation of a tubular string at the surface to generate downhole power. Those skilled in the art will appreciate that these latter types of systems are not generally favored since rotation of a tubular string may not always be feasible, and may subject the downhole components to high wear.
U.S. Pat. No. 4,415,823 discloses a downhole turbine which drives a generator. U.S. Pat. Nos. 3,036,645 and 2,944,603 also disclose early versions of downhole generators utilizing turbines. U.S. Pat. Nos. 4,369,373, 4,654,537, 4,740,711, 5,149,984, 5,517,464, 5,839,508, 6,672,409, and 7,133,325 also disclose turbine-type devices for generating downhole energy. U.S. Pat. No. 7,002,261 discloses the downhole generation of electrical power utilizing either a turbine or a positive displacement motor, and U.S. Pat. No. 5,248,096 teaches a downhole power generation unit which includes a drilling motor for converting fluid energy into mechanical rotational energy.
U.S. Pat. No. 4,491,738 discloses a technique for generating electrical power downhole with a generator including an anchor which is movable in reciprocating mode in response to pressure pulses in the drilling fluid. U.S. Pat. No. 4,732,225 teaches a downhole motor with a permanent magnet coupling. U.S. Pat. No. 6,011,346 discloses a technique for generating electrical power downhole utilizing piezoelectric members responsive to the flowing stream of fluid.
While various types of downhole generators have been devised, the most popular method of generating power downhole is to use the flowing fluid to rotate a turbine or vane, which then rotates a shaft to drive a generator. Many of these vane-type devices have significant problems due to potential plugging of the device, due to unintentional lost circulation of the fluid, or due to a relatively high rpm but a low torque output. While these vane-type devices have their disadvantages, they also have a significant advantage over other presently available downhole generators, including those which utilize a positive displacement motor. The latter type of prior art devices are believed to suffer from problems associated with articulated joints or universal joints which experience high wear. The bearings on such devices also tend to experience high wear, in part due to the fairly high rpm of the pump in response to fluid flowing through the pump.
The disadvantages of the prior art are overcome by the present invention, and an improved mechanism and technique for generating power downhole is hereinafter disclosed.
In one embodiment, a generator for positioning downhole in a drill string generates power for powering one or more downhole tools. The generator includes a generally tubular housing for positioning within the drill string, including one or more ports extending radially through the housing. A rotary shaft is also positioned at least partially within the housing. A progressive cavity housing and a progressive cavity rotor are provided, with the rotor rotating in response to fluid passing through the progressive cavity housing to rotate the rotary shaft. A restriction is provided in the annulus downstream from the ports for controlling the fluid flow in the flow annulus and past the restriction, and thereby the fluid flowing through the progressive cavity housing. In one embodiment, the rotary shaft powers a pump to supply hydraulic power to one or more tools. In another embodiment, the rotary shaft rotates one of windings or magnets relative to the other of windings and magnets to generate electrical power for powering one or more tools.
According to one embodiment, a method of generating power downhole for powering one or more tools comprises providing the generally tubular housing, a rotary shaft, and progressive cavity housing as discussed above. The progressive cavity rotor rotates in the progressive cavity housing in response to fluid passing through the progressive cavity housing, thereby rotating the rotary shaft. A restriction is formed in the annulus downstream from the one or more ports for controlling the fluid flow in the flow annulus surrounding the housing and past the restriction, and thereby the fluid flow through the progressive cavity housing.
These and further features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
The generator 10 as shown in
In a preferring embodiment, the restriction 36 is adjustable, either by changing out the restriction at the surface and by putting in a larger or smaller restriction, or by providing a restriction which is responsive to the energy from the generator to selectively actuate and radially move pads to increase or decrease the flow restriction. Other techniques may be used to vary the effective size of the restriction 36. Another progressive cavity restriction 38 may be provided in fluid communication with the bore through the progressive cavity pump, and further restricts the fluid flow through the progressive cavity housing. The restriction 38 may be a selectively sized orifice.
Fluid flowing downhole in the annulus between the work string and the drill string thus passes through the ports 26 and into the progressive cavity housing 28, thereby rotating the rotor 30. In many embodiments, a substantial portion of the flow downhole to the generator does not pass through the power section formed by housing 28 and rotor 30, but rather flows in the annulus 34 exterior of the progressive cavity housing, past the restriction 36, and then to the bit.
A coupling 46 is provided for transferring the circular motion of the rotor 30 to concentric rotation of the shaft which drives the hydraulic generator 52.
In the
In the
Referring now to
In the
In the
One of the advantages of the present invention is that it minimizes the use of U-joints or other articulated joints, which have significant problems when used in many downhole tools. In some applications, a magnetic bearing may be used to reduce friction and minimize wear. The motor used to power the generator preferably is a 1:2 motor, meaning that the motor has the 1 helix rotor and a 2 helix stator enclosing the motor. Motors with more conventional 4:3 or 5:4 assemblies are less preferred, and in many applications will not produce the desired high torque at a reasonable RPM. Using a positive displacement motor as the power generator has significant advantages over vane-type pumps, in that plugging problems associated with vane-type pumps are not common to PDM motors. Also, a downhole assembly as disclosed herein may be used with little concern for lost circulation problems, since significant flow around the powering source occurs even when the generator is supplying electrical power to the downhole tools.
Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.
Number | Name | Date | Kind |
---|---|---|---|
2944603 | Baker et al. | Jul 1960 | A |
3036645 | Rowley | May 1962 | A |
4369373 | Wiseman | Jan 1983 | A |
4415823 | Jurgens | Nov 1983 | A |
4491738 | Kamp | Jan 1985 | A |
4654537 | Gaspard | Mar 1987 | A |
4732225 | Jurgens et al. | Mar 1988 | A |
4740711 | Sato et al. | Apr 1988 | A |
5149984 | Schultz et al. | Sep 1992 | A |
5248896 | Forrest | Sep 1993 | A |
5517464 | Lerner et al. | May 1996 | A |
5659205 | Weisser | Aug 1997 | A |
5839508 | Tubel et al. | Nov 1998 | A |
6011346 | Buchanan et al. | Jan 2000 | A |
6557639 | Matthews et al. | May 2003 | B1 |
6568076 | Bottos et al. | May 2003 | B2 |
6672409 | Dock et al. | Jan 2004 | B1 |
6739413 | Sharp et al. | May 2004 | B2 |
7002261 | Cousins | Feb 2006 | B2 |
7025152 | Sharp et al. | Apr 2006 | B2 |
7133325 | Kotsonis et al. | Nov 2006 | B2 |
20070096571 | Yuratich | May 2007 | A1 |
20080246427 | Petit | Oct 2008 | A1 |
20090169364 | Downton | Jul 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100000793 A1 | Jan 2010 | US |