Embodiments are generally related to the field of drilling and drilling equipment. Embodiments are generally related to sensing devices and methods thereof. Embodiments are also related to pressure sensors, including pressure transmitters.
In modern drilling operations, whether in the resource, utility or environmental industries, there presently exist many devices and methods for measuring and determining the composition of geological sites, drill bit environments, and environmental waste sites. There is also a need to keep track of pressure and temperature variations during drilling operations.
In the oil drilling and environmental remediation industries, for example, drilling requires operating through boreholes rather than excavating entire sites and treating contaminated soil above ground. If drilled solids contain toxic or radioactive substances, the cost of drilling increases due to worker safety concerns as well as the need to collect, document, dispose of drill cuttings of rock and other subterranean materials brought to the surface, and to decontaminate drilling equipment. Once a site is characterized, wells are typically drilled in which to position barriers, or to inject or pump out toxic subsurface fluids. Such wells must be drilled horizontally or diagonally, a method called directional drilling. Directional drilling is the process of using a drill bit to drill a borehole in a specific direction to achieve a specific drilling objective. Measurements concerning the drift angle, the azimuth, and tool face orientation all aid in directional drilling. Sensor devices can also be normally utilized in directional drilling operations to characterize a given geological or environmental waste site. A need exists for making evasive sensor measurements during such drilling operations.
Temperature and/or pressure sensors, for example, can be adapted for use in drilling operations. Various sensors are known in the pressure sensing arts. Pressure transducers are well known in the art. One example of a pressure transducer is a device formed with a silicon substrate and an epitaxial layer, which is grown on the substrate and implemented in the context of a solid state device. One of the major problems with such pressure transducer devices is that such devices are not reliable in corrosive, high-pressure and/or high-temperature applications. Measuring pressure in downhole drilling operations utilizing sensing technologies is both expensive and unreliable. A need therefore exists for a low-cost reliable high accuracy pressure measurement device that can be used in downhole drilling operations.
The following summary of the invention is provided to facilitate an understanding of some of the innovative features unique to the present invention and is not intended to be a full description. A full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
It is, therefore, one aspect of the present invention is to provide an apparatus and a method which overcomes the above noted prior art limitations.
It another aspect of the present invention to provide an improved sensor apparatus and method.
It is an additional aspect of the present invention to provide for an improved pressure transmitter apparatus method and apparatus.
It is a further aspect of the present invention to provide an electromechanical approach for implementing down pressure transmitters utilized in drilling operations.
The aforementioned aspects of the invention and other objectives and advantages can now be achieved as described herein. A downhole pressure transmitter apparatus and method of making the same is disclosed. In general, a pressure fitting can be provided in association with a tube formed into a spiral shape. One end of said tube is sealed and the other end of said tube is affixed to said pressure fitting. As the tube is exposed to a differential pressure, said tube unwinds, thereby creating a rotary motion that is proportional and linear to said differential pressure sensor, thereby providing an indication of pressure within a downhole environment.
In accordance with one embodiment, a hollow tube, referred to as a Bourdon tube can be utilized and formed into a spiral shape. One end of the tube is sealed and the other end is affixed to the pressure fitting. As the tube is exposed to a pressure differential (between the pressure inside the tube and outside the tube) it unwinds creating a rotary motion. The rotary motion of the coil is proportional and linear to the pressure differential. The rotary motion can be captured using one of several potential measurement technologies (e.g., RVDT, Potentiometer, Hall Effect, Magnetoresistive, Optical, Fiber Optic, etc.).
The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the present invention and, together with the detailed description of the invention, serve to explain the principles of the present invention.
The particular values and configurations discussed in these non-limiting examples can be varied and are cited merely to illustrate at least one embodiment of the present invention and are not intended to limit the scope of the invention.
The configuration depicted in
The downhole pressure transmitter apparatus 200 generally includes a pressure fitting 202, which can be connected to or in communication with a spiral shaped tube 210 located within a housing 203. A calibration window 204 can be provided in association with the housing 203 in order to permit calibration of the downhole pressure transmitter apparatus 200. A sensing element 206 can be encased by or connected to the housing 203. A plurality of lead wires can extend from housing 203 and may communicate electrically with the sensing element 206. A connector 208 can also be provided, which can be utilized to connect the downhole pressure transmitter apparatus 200 to another device or unit, such as, for example the downhole assembly 35 illustrated in
The tube 210 can be provided as a hollow tube, referred to as a Bourdon tube, and can be formed into a spiral shape. In general, a Bourdon Tube is a pressure measurement device and can be used in applications where relatively static pressure measurements are needed. A typical Bourdon tube contains a curved tube that is open to external pressure input on one end and is coupled mechanically to an indicating needle on the other end.
One end of the tube 210 is sealed and the other end is affixed to the pressure fitting 202. As the tube 210 is exposed to a pressure differential (i.e., between the pressure inside the tube 210 and outside the tube 210), the tube 210 unwinds, thereby creating a rotary motion. The tube 210 thus forms a coil. The rotary motion of the coil is proportional and linear to the pressure differential. The rotary motion can be captured using one of a number potential measurement technologies (e.g., RVDT, Potentiometer, Hall Effect, Magnetoresistive, Optical, Fiber Optic, etc.). For example, the sensing element 206 can function as a measurement device, such as an RVDT device, an RVR device, a Hall Effect sensor, a magnetoresistive sensor, or a fiber optic based sensor, depending upon design considerations.
An Rotational Variable Differential Transformer (RVDT) device is a sensor that can be used to measure rotational angles. One example of a Hall effect sensor that may be implemented in accordance with one potential embodiment is disclosed in U.S. Pat. No. 7,002,229, entitled “Self Aligned Hall With Field Plate,” which issued to Isaac D. Cohen on Feb. 21, 2006. U.S. Pat. No. 7,002,229 is assigned to Honeywell International Inc. of Morristown, N.J., and is incorporated herein by reference. An example of a magnetoresistive sensor and/or Hall Effect sensor, which can also be adapted for use in accordance with one or more embodiments, is disclosed in U.S. Pat. No. 6,759,843, entitled “Sensing Methods and Systems for Hall and/or MR Sensors,” which issued to Gregory R. Furlong on Jul. 6, 2004. U.S. Pat. No. 6,759,843 is assigned to Honeywell International Inc. of Morristown, N.J., and is incorporated herein by reference,
The downhole pressure transmitter apparatus 200 offers a number of advantages and benefits. For example, apparatus 200 provides for media isolation, in that it isolates the measurement media from the sensing element 206. Apparatus 200 also offers high-temperature performance capabilities because it does not utilize silicon based electronics. The temperature range is limited only by the yield stress vs. temperature of the Bourdon Tube 210 and the limitations of the rotary sensing technology. Apparatus 200 additionally offers a flexible output format due to its inherent failure detection capabilities. Because apparatus 200 does not use silicon based electronics, the number of failure modes are dramatically reduced. The remaining failure modes such as broken or shorted wires can be detected and the monitoring system can respond accordingly.
It is contemplated that the use of the present invention can involve components having different characteristics. It is intended that the scope of the present invention be defined by the claims appended hereto, giving full cognizance to equivalents in all respects.
Number | Name | Date | Kind |
---|---|---|---|
2679757 | Fay | Jun 1954 | A |
2908881 | Pitzer | Oct 1959 | A |
3013233 | Bourns | Dec 1961 | A |
3066739 | Saurenman et al. | Dec 1962 | A |
3145359 | Parkinson | Aug 1964 | A |
3180152 | Metzger et al. | Apr 1965 | A |
3232115 | Bennett et al. | Feb 1966 | A |
3247720 | Hicks | Apr 1966 | A |
3267734 | Marks | Aug 1966 | A |
3605500 | Trekkell | Sep 1971 | A |
3780574 | Miller | Dec 1973 | A |
3810387 | Stancliff | May 1974 | A |
3820391 | Baker | Jun 1974 | A |
3911748 | Lindsay | Oct 1975 | A |
4212198 | Divine | Jul 1980 | A |
4279155 | Balkanli | Jul 1981 | A |
4567921 | King | Feb 1986 | A |
4651569 | Paros et al. | Mar 1987 | A |
4805448 | Armell | Feb 1989 | A |
5008664 | More et al. | Apr 1991 | A |
5503013 | Zeller | Apr 1996 | A |
5722488 | Normann et al. | Mar 1998 | A |
6492697 | Plagens et al. | Dec 2002 | B1 |
6538576 | Schultz et al. | Mar 2003 | B1 |
6679332 | Vinegar et al. | Jan 2004 | B2 |
6707293 | Wan et al. | Mar 2004 | B2 |
6759843 | Furlong | Jul 2004 | B2 |
7002229 | Cohen | Feb 2006 | B2 |
7152700 | Church et al. | Dec 2006 | B2 |
20040206170 | Chen et al. | Oct 2004 | A1 |
20050103527 | Church et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070283752 A1 | Dec 2007 | US |