This disclosure relates generally to actuators for downhole tools.
Oil and gas wells have been drilled at depths ranging from a few thousand feet to as deep as five miles. A large portion of the current drilling activity involves directional drilling that includes drilling boreholes deviated from vertical by a few degrees to horizontal boreholes, to increase the hydrocarbon production from earth formations. Conventional drilling assemblies can include a suite of tools and instruments to effectuate drilling and obtain information relating to the formation being drilled. Some of these tools and instruments may require manipulation while downhole. For instance, information about the subterranean formations traversed by the borehole may be obtained using sidewall coring tools. Such tools use coring bits that are extended laterally from the drilling assembly and pressed against a borehole wall. Once a coring sample is obtained, the coring bit is retracted into the drilling assembly.
In certain aspects, the present disclosure addresses the need to efficiently manipulate sidewall coring bits. More generally, the present disclosure addresses the need to manipulate physical objects when confined to very restricted boundaries.
In aspects, the present disclosure provides an apparatus for manipulating an object in a borehole in an earthen formation. The apparatus may include a body configured to be conveyed along the borehole and a plurality of linear actuators disposed in the body and operatively connected to the object. The plurality of linear actuators applies a translational and rotational movement to the object.
In aspects, the present disclosure provides a method for manipulating an object in a borehole in an earthen formation. The method may include disposing a plurality of linear actuators in a body; operatively connecting the object to the plurality of linear actuators; conveying the body into the borehole; and applying a translational and rotational movement to the object using the plurality of linear actuators.
Illustrative examples of some features of the disclosure thus have been summarized rather broadly in order that the detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
For detailed understanding of the present disclosure, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals and wherein:
The present disclosure relates to actuator assemblies that may be used to manipulate objects in locations where space is limited. The downhole environment is one example of a situation wherein the motion of physical objects must be confined to very restricted boundaries. As will be appreciated from the discussion below, actuator assemblies according to the present disclosure are well suited to manipulating objects in environments that have limited room. These actuator assemblies may be compact yet possess a very high degree of articulated movement in multiple directions, and therefore can be used in areas having small volumes. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein.
While the present disclosure is described in the context of a hydrocarbon producing well, the present teachings may be equally applied to a water well, a geothermal well, or any other human made feature for accessing the subsurface. Likewise, the present teachings are not limited to only drilling systems that are discussed below. For instance, the actuator assemblies of the present disclosure may also be used in connection with well tools that are conveyed by non-rigid carriers such as wireline, slickline, or e-lines.
Referring now to
Depending on the application, the BHA 20 may also include other devices (not shown) such as a steering unit, a drilling motor, a sensor sub, a bidirectional communication and power module (BCPM), and a formation evaluation (FE) sub. In some configurations, the BHA 20 may include active stabilizers, under-reamers, tractors, thrusters, downhole blow-out preventers, etc. The BHA 20 may include numerous instruments and tools designed to perform any number of downhole tasks. While some of these devices may be static, other devices may move relative to the BHA 20 during operation.
Referring to
In one arrangement, the actuator assembly 100 may use three actuators 110, 112, 114 to physically manipulate an object 116, which may be part of the object. The manipulation can include translation/axial displacement and tilting. That is, the actuator assembly 100 can apply a translational and rotational movement to the object 16. The term “rotational” encompasses tilting, pivoting, and other motions about one or more axes. The object 116 can be configured for a number of different functionalities that may require precise positioning and motion.
The actuators 110, 112, 114 may be linear actuators that provide the object 116 with multiple degrees of freedom of motion. In embodiments, each actuator 110, 112, 114 may include a power section 120 and an extension section 122. The power section 120 may be a cylinder or a motor and the extension section 122 may be a rod, shaft, or other elongated member. In a conventional manner, the power section 120 can axially extend and retract the extension section 122. The actuators 110, 112, 114 can be driven hydraulically by double acting pistons with servo-hydraulic drive units or single acting pistons with integrated spring retract, driven electrically via spindle drives, or driven with any other drive assembly that provides principally linear movement. Linear actuators principally generate a drive force that linearly displaces an object (e.g., “pull” or “push”) as opposed to outputting a rotary force.
In one arrangement, the actuators 110, 112 directly manipulate the object 116 and the actuator 114 directly manipulates the actuator 112. This arrangement may be implemented by: connecting one end of the actuator 110 to a stationary structure 128 of the BHA 20 (
The range of movement of the object 116 is only limited by the stroke of the actuators 110, 112, 114 and the attack angle. The attack angle is a function of the anchor points 150, 152, 154 at which the actuators 110, 112, 114 are fixed to the housing and the stroke built-in in each of the actuators 110, 112, 114. Thus, the attack angle changes as a function of the stroke of the actuators 110, 112, 114. The actuator 114 controls the attack angle of the actuator 112. By using the three actuators 110, 112, 114, the actuator assembly 100 is statically defined with three controllable degrees of freedom of movement. Specifically, the actuator assembly 100 can have linear movement along two axes under different angles as well as the movement along interpolated curves. Furthermore, the object 116 can be tilted to a limited angle independent from the other movements.
By way of non limiting example, the actuator assembly 100 has a relatively flat and compact configuration. This compact configuration is possible due to the actuators 110, 112, 114 being linearly aligned (side-by-side) and arranged along the same geometric plane. Because the actuators 110, 112, 114 are linear actuators, the translating motions of the actuators 110, 112, 114 are also along the same geometric plane.
In some non-limiting embodiments, the actuator assembly 100 may be used in connection with formation sampling devices, as described below.
Referring to
During operation, the actuator assembly 100 extends the coring bit 178 laterally out of the body 162 and into contacting engagement with a borehole wall 184. Thereafter, the coring bit 178 is rotated by the driveshaft 180 to cut a coring sample. Once the coring bit 178 has penetrated into the formation a desired depth, the actuator assembly 100 can shift or move the coring bit 178 as needed in order to snap or break off the coring sample from the formation. The actuator assembly 100 can then retract the coring bit 178 into the body 162. Referring to
In embodiments, the actuator assembly 100 can perform functions beyond simply manipulating the coring bit 178. For example, the linear actuators 116 may manipulate objects such as storages for core containers or core magazines, slide sleeves between positions, and other devices disposed along or drill string 16 or even external to the drill string 16.
From the above, it should be appreciated that the actuator assembly 100 can efficiently initiate a series of discrete movements while requiring only a relatively small amount of space in the BHA 20. As shown in
Referring to
The actuator assembly 100 may be operated autonomously or be partly or completely controlled from the surface. In some arrangements, information from the sensors 190 and other sensors may be sent via uplinks to the surface so that operators using suitable controllers and displays can monitor the activity, position, and condition of the actuator assembly 100. Based on this information, operators can send control signals via downlinks to operate the actuator assembly 100. The uplinks and downlinks can be transmitted via the communication devices previously discussed: mud pulse telemetry, wired pipe, optical fibers, EM signals.
From the above, it should be appreciated that the actuator assemblies of the present disclosure may be used to manipulate various downhole objects. For instance, the object of the actuator assembly can comprise fluid sampling devices, fluid sampling containers, borehole calipers, and other instruments. The linear actuators may also be used to extend or retract pads, move devices such as cutting elements (e.g., saws, fluid emitting nozzles, lasers, etc.), or screw drivers, anchors, sliding sleeves, etc., and grasping devices (e.g., magnets, tongs, hooks, etc). Thus, the object may interact with any downhole assembly, the borehole, wellbore tubulars (e.g., casing, liners, screens), wellbore fluids, and/or the formation.
The actuator assembly 100 may be energized using downhole and/or surface sources. Downhole sources include fuel cells, electrical batteries, electrical power generators and hydraulic sources, pneumatic sources. Surface sources include electrical power lines, pressurized fluid lines, etc.
The foregoing description is directed to particular embodiments of the present disclosure for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope of the disclosure. It is intended that the following claims be interpreted to embrace all such modifications and changes.
This application is a continuation of U.S. patent application Ser. No. 17/010,571, filed Sep. 2, 2020, which is a continuation of U.S. patent application Ser. No. 15/244,679, filed Aug. 23, 2016, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 17010571 | Sep 2020 | US |
Child | 17683255 | US | |
Parent | 15244679 | Aug 2016 | US |
Child | 17010571 | US |